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ABSTRACT 

I have calculated, at zero temperature and using the thin-wall 

approximation, the exponential suppression factor in the rate of decay 

of the false vacuum per unit volume for a real scalar field. The 

effects of classical gravity are included. Both the false and the true 

vacua have arbitrary cosmological constants. I speculate on the effects 

of gravity in the new inflationary universe scenario. 
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To appreciate the importance of gravity in the new inflationary 

universe scenario, I have calculated the bubble decay rate for a single 

scale field decaying from the false vacuum to the true vacuum including 

the effects of gravity. This calculation has a large cosmological 

constant for both the false and true vacua and is performed at zero 

temperature. Also, to obtain an analytic result, the potential for the 

scalar field is assumed to allow the use of the thin-wall approximation. 

Recently Linde,' Albrecht and Steinhardtz have renewed interest in 

the inflation universe for solving the cosmological problems of 

flatness, homogeneity, isotropy and under-abundance of magnetic 

monopoles. Their scenario requires that the Higgs potential for the 

grand unified theory be at or near the Coleman-Weinberg3 limit. The 

special nature of this limit is that at zero temperature the effective 

potential is approximately constant until the Higgs field gets close to 

its grand unified vacuum expectation value, u. At a temperature, T, 

much less than or this plateau has a bump of height O(T') at a 

distance O(T) from the origin. This bump allows the universe to 

supercool in the symmetric phase, but since the bump disappears as the 

temperature goes to zero, the phase transition must eventually take 

place. 

With the Coleman-Weinberg potential, the universe cools many orders 

of magnitude below the critical temperature Tc r o :: lot5 GeV before the 

phase transition takes place. Linde and Albrecht and Steinhardt 

disagree on how this phase transition takes place. Linde assumes it is 

by bubble nucleation whereas Albrecht and Steinhardt argue for the 

transition occurring by thermal fluctuations. This disagreement is not 
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important to my discussion. What is important is that both groups have 

the transition occurring aS a temperature less than lo8 GeV. 

Therefore, the length scale associated with the transition is greater 

than (lo8 GeV)-'. 

After the critical fluctuation has occurred, the Higgs field in the 

center of the fluctuating region is a long way from its equilibrium 

value and that in the subsequent "slow roll down the hill" the universe 

continues to inflate. This inflation is then purported to solve all the 

forementioned cosmological problems. 

However, as Hut and Klinkhamer," and Hawking and Moss5 have pointed 

out there is another length scale associated with this problem. The 

Schwarzchild radius for an energy density of (lOi GeV)', which is 

typical of supercooled grand unified theories in the symmetric phase, is 

(lD1l GeV)"'. In this letter, I provide evidence that suggests that the 

phase transition occurs by bubble nucleation, close to a temperature of 

10" GeV, stimulated by classical gravity. 

The zero temperature, thin-wall calculation is a direct extension 

of the work of Coleman and DeLuccia6 and I will follow their paper 

except for a few minor changes in notation. For a single scalar field 

including gravitation, the action is given by 

S = s d"x fi[fgwQ,@,# - U(9)-(16nGl-'R1 (1) 

where R is the curvature scalar. In this theory, a cosmological term 

need not be included explicitly as adding a constant to U(9) is 

equivalent to adding such a term. The potential U(4) is chosen so as to 

have both a false vacuum at 9f, Uf E U(#f) and a true vacuum at #t, 
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ut z UC++>. ’ The barrier between the two minima is assumed to be large, 

so that the thin-wall approximation is applicable, at least in a flat 

space-time. 

The decay of the false vacuum proceeds by the nucleation of bubbles 

of true vacuum in the false vacua. The bubble nucleation rate per unit 

volume equals AexpC-B/t!l~l+O(~-tS)), where B is the action for the bounce. 

The bounce, $B, is the solution of the Euclidean equations of motion 

with minimum action, which interpolates between the true and the false 

vacua. 

I will assume like the authors of Ref. 6 that the solution of minimum 

action is invariant under four-dimensional rotations. If this is false, 

then this halculation puts only a lower bound on the bubble nucleation 

rate. The most general rotationally invariant Euclidean metric is 

dsZ = dt* + p2t.$)dR2 . (2) 

where S is the radial co-ordinate and p is the radius of curvature. 

Also the + field is now only a function of t. With this symmetry the 

Euclidean equations of motion are just the Coleman-DeLuccia equations 

3P# dU 
9” + - #J = _ 

P d# 

KP2 
P 12 = 1 + - (4#‘2 - U) 

3 

(3) 

(4) 

where K = ~TIG and prime denotes d/de. 

The Euclidean action for a solution of these equations is 
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3P 
Se = 4n2 s d.f[p3u - -1 + surface terms. 

x 

The bounce action, 

B E Se($b) - se(#f) (6) 

can be divided into three regions in the thin wall approximation. 

Outside the wall, Boutside = 0. The contribution from the wall is given 

by, 

Bwall = 2nZj53S, (7) 

where P is the radius of curvature of the bubble wall and 

Sl = 2.fdt[U(+b) - uf + tuf - ut)(+b - +f)/(+t - +f)]. (81 

The contribution from inside the bubble is, 

12n2 
Binside = - 

K I 

Kut 312 . 

Ut"[(l - - ij21 -ll-ct 3 f> 
3 I (91 

To find the critical bubble size, B has to be extremized with respect to 

P. At the extremum 

PO2 
pt = 

(10) 

where j5, = 3Sl/tUf-Ut) is the critical size without gravity, 

x2 = r.K(Uf + Ut)/31” 

and 

A2 = CK(lJf - Ut)/31” . 

(11) 

(12) 

The bounce action for the critical size bubble is 
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B = B, r[(p,/2~)2,X2/A21 (131 

where 

27r2S, b 
B0 = 

2(Uf-U+)3 (14) 

is the critical action without gravity and the function r is given by 

2((1+3x+2x2+x2y2+x3y2k-(1+2x+x2y2)3/2) 
r(x,y) = . 

X2(1-yt)(1+2X+X2y2)3'2 (151 

The Coleman-DeLuccia calculations are the limits At/A2 goes to t 1. 

For these limits Eq.IlO) and (15) reduce to 

ii0 
p = 

1 t (i5,/2h)2 (16) 

and 

1 
r[t(F,/2A12, 11 = 

Cl 2 (jj,/2A)‘12 (17) 

which are the results they obtained. 

For the scenario mentioned at the beginning of this paper, both Uf 

and Ut are positive so the interest is in B/B, for X2 > 0. Figure 1 is 

a plot of B/E0 for various values of jj,/2X and X/A. For (B,/2h12 >> 1, 

the following limits are worth noting: 

(il for (~Q/2A12.X2/A2 <C 1, then 

(18) 
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(ii) for (b,/2A12.X2/A2 >> 1, then 

2A’ 
r[(p,/2X)2,X2/A21 = (p,/2x)-b . 

X2(X2+A21 (19) 

Therefore, the falloff crosses over from a cubic to a quartic power 

around 

(P,/2A).X/A = 1 . (20) 

For a later discussion of the paper by Hawking and Moss, I would like 

to emphasize that for positive X2, 

2h2A2 
p2 < - = CKUf/31” . 

h2+A2 (21) 

That is , the critical bubble size in the presence of gravity is always 

smaller or equal to the scale factor for the false vacuum de Sitter 

space universe regardles s of the size of the critical bubble in flat 

space-time. Also, for positive X2, B 5 Bq. 

The range of validity of these results is that, first, for the semi- 

classical approach to be reliable B >> 1. Second, the thin-wall 

approximation is only a good approximation when the thickness of the 

wall is small compared to j5q, IXI and A. 

In a supercooled universe with a Coleman-Weinberg Higgs potential, 

the critical bubble size, at temperature T, is O(T-‘I. Thus, at 

temperatures less than 10” GeV the effects of gravity should be 

included in calculating the bubble nucleation rate, as the size of the 

bubble and the scale factor for the universe are comparable. 

Unfortunately, the results of the zero temperature, thin-wall 
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calculation %annot be taken over directly to this scenario, but they 

give us 6n indication of what to expect, that is, a similar modification 

of the bounce action and the corresponding bubble nucleation rate. I 

would like to emphasize at this point, that multiplying ,the bounce 

action by a number of order unity can change the nucleation rate by 

many orders of magnitude. Therefore, it is unlikely that such a 

universe could cool much below 10” GeV, let alone cool to less than 

1D8 GeV required by authors in Refs. 1 and 2. 

Hawking and Moss have also come to this conclusion. They argue that 

the universe cannot cool below the Hawking temperature, 

w2Tr1CxUf/31+~. In discussing the phase transition, these authors 

discard bubbles which in flat space-time are larger than the scale 

factor of the universe. This is puzzling, as I have shown in this 

paper # see Eq. (211, that gravity can drastically modi-fy the size of 

such bubbles, making them smaller than the scale factor of the universe. 

These authors argue for a homogeneous transition of the whole universe. 

The finite temperature calculation, without the use of the thin-wall 

approximation is presently being performed. 

I would like to thank the members of the SLAC theory group for 

stimulating discussions. 
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Figure Caption 

. 

The ratio B/B, (=r) as a function of (ij,/2X) for various values of X/A. 
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