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INTRODUCTION 

The continuous linear acceleration of ultra relativistic 
particles in free space by an electromagnetic field requires the 
presence of a cylindrical wave component with phase velocity that 
differs negligibly from c and with non-vanishing electric field 
component in the direction of propagation. Lawson and Woodward have 
pointed out the fact that certain geometries proposed for laser driven 
acceleration fail to satisfy these requirements.l On the other hand, 
complex wave number plane wave fields which do satisfy these require- 
mentshave been constructed by Palmer, who also points out that any 
cylindrical wave with the required properties can be formed from 
superposition of plane waves of the form which he has obtained.2 

The situation is analogous to that which occurs in standard wave- 
guide theory. There it is also true that any waveguide mode can be 
constructed by superposition of plane waves. Nevertheless, the study 
of the general properties of cylindrical waves has proved to be a 
very powerful tool for the analysis of waveguides and similar struc- 
tures. Because this may also prove to be the case for fields with 
propagation velocity c we present a brief study of their properties 
below. 

A BRIEF REVIEW OF CYLINDRICAL WAVES 

By definition, cylindrical waves with sinusoidal time dependence 
are solutions of Maxwell's equations in which the fields have the 
general form 

z = s(x,y) expi(kz-wt) 
. 

s = %(x,y> expi(kz-wt) 
(1) 
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Since each field satisfies the vector wave equation we have 

and hence the transverse variation of each field component satisfies 
the two dimensional Helmholtz equation 

V2 f(x,y) + K2 f(x,y) = 0 (2) 

where 

K2 = i!$ - k2 
C 

writing 

(3) 

h,Y) = zT + ;Es 
h 3 

, z-E T = 0 

(4) 

&x,y) = 4 + ;Bs ; ; l ST = 0 

and substituting in Maxwell's equations yields3 (Gaussian units) 

ik"zxz T (54 

ikg x 3 T 
- Gx$B = -i (5b) z 

From Eq. (3) one obtains 

(64 

(6b) 

(74 

(7b) 

The standard TE (TM) modes are obtained by setting E, (B,) equal to 
zero and choosing a suitable set of solutions of (2) for B, (Es). 
The transverse fields are then obtained from (7). 
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THE SPECIAL CASE k = w/c 

For waves which propagate at velocity c, the quantity K2, which 
appears in the denominator of Eq. (7) vanishes, so that the previously 
described procedure fails. Setting E, = B, = 0 provides an obvious 
way out of the difficulty with Eq. (7) and leads to the usually dis- 
cussed TEM modes. There are additional possibilities, however, which 
we discuss below. 

Setting K2 = 0 in (2) we obtain: 

V2f = 0 . (8) 

Setting k = w/c in (5) and carrying out a little vector algebra 
yields 

(9) 

Equation (8) tells us that B, and E, satisfy Laplaces equation, and 
(9) tells us that they are related by the Cauchy-Riemann equations. 
Thus if we write 

W(x+iy) = Bs(x,y) + iEs(x,y) , (10) 

Equations (8) and (9) are satisfied wherever W is analytic. We note 
that in the general case the modes are neither TE nor TM-as Eq. (9) 
implies that non-vanishing $Es implies non-vanishing B,. 

An additional set of useful restrictions on the transverse 
fields is obtained by taking the divergence of (5), which when 
combined with (6) yields 

&ST = - ikBs 

(114 

(lib) 

Equations (5), (6), (lo), and (11) are a set of necessary rela- 
tions which the fields must satisfy. The relations are not, however, 
independent since satisfaction of a suitable subset implies the 
others. It is sufficient, for example, to satisfy (6a), (lla), (5a) 
2nd either (10) or the two dimensional vector Laplace equation for 
ET' The simplest procedure for generating a solution is to begin 
by specifying any solution of the two dimensionaL vector Laplace 
equation. If one identifies this solution with ET, $hen (6a), (lla), 
and (5a), provide explicit formulas for B,, E,, and BT, respectively. 
Alternatively, if one identifies this solution with %I, then (6b), 
(llb), and (5b) provide explicit formulas for E,, B,, and ZT. Thus 
each solutton of the vector Laplace equation generates two independent 
solutions. 
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SOME SIMPLE APPLICATIONS 

A solution of the type applied by Palmer to the grating problem2 
is obtained by setting 

E* = E cos qye -4x 

E = 0 . 
Y 

Then from (6a) 

i aEx . 
BZ = -- = _ YE sin qye -qx 

k ay 

from (lla) 

. aE 
EZ = ;< = -y E cos qyeBqx 

and from (5a) 

“4Y 

The cylindrically symmetric solution suitable for acceleration is 
obtained by setting 

EZ = constant 

HZ = 0 

Then from (6a) and (lla) 

ik; gT = -2EZ 

and from (5a) 

ikrg 
gT = - 2 Es . 

Finally, we recall that Lawson and Woodwardl showed that any 
physical solution independent of y and valid in free space for all 
x > 0 must have vanishing Es. This result is easily obtained in the 
present context from the fact that for y independent fields (lla) and 
(8) imply that E, is constant and E, = ikE,x + constant. 
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Related TEM modes are obtained by setting %T = if($*$), 
4* $T = 2 x?!T (or ?f, = $($*$), ZT=-g xif,) where $ is the solution 

to the vector Laplace equation referred to above. Note further 
that although g x? is also a solution of the vector Laplace 
equation, the solutions which it generates by the same procedure 
are linear combinations of those obtained with 3. 


