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Abstract

This paper shous that contrary to statements extant in the
literature, it is possible to introduce fermions into a lattice gauge
theory in such a way as to preserve the continuous chiral symmetries of
the massless theory and the physics of the axial anomaly. The
particular model discussed is the lattice Schuinger model, and the
methods used are based upon the non-perturbative gauge-invariant
variational techniques introduced by Horn and Weinstein. It is
demonstrated that the physics of the anomaly, and its relation to the
angles appearing in the exact solution to the continuum model appears in
a simple and elegant way. The generalization of the model to several
sets of iPdependent fermions is discussed at the end of the paper. Some
brief remarks are made about what happens if one attempts to gauge an
anomalous current. These results are of interest, since th;
DUY-prescription is the only knoun uway of writing doun purely lattice

gauge theories with only left-handed fermions.



1. INTRODUCTION

This paper demonstrates that one can understand the structure of the
continuum Schuinger model, including its axial anomaly, by studying a
chirally invariant lattice version of the theory. The analysis to be
presented is structured along the lines suggested in a recent paper by
D. Horn and M. Weinstein! uhere a formalism for carrying out gauge
invariant variational calculations for lattice gauge theories uas
introduced. In the case of the Schuinger model we will need only the
most general aspects of this method, and no detailed assumptions about
the nature of the variational wavefunctions will be required.

One reason for studying the structure of the lattice Schuinger model
is that iq the past few years several authors have argued it is
impossible to formulate lattice gauge theories which possess both the
continuous chiral symmetries and chiral anomalies of the coﬁiinuum
1imit.2°Y The arguments presented to buttress this position have ranged
from technically correct, but unnecessarily restrictive3d-", to
incorrect? . A discussion of the relationship of this work to the
material to be presented here appears in the concluding section of this
paper.

Another reason for studying the Schuinger model is that it has many
fascinating properties. In addition to the axial anomaly which gives
the photon a mass, it possesses two angles which label the exaet
solutions to the model but which do not appear in the Hamiltonian, and a
Soldstone mode which seizes.® Our goal to show that not only are these
features of the theory understandable, but that the physics behind these

phenomena appears in an elegant and simple manner. Furthermore, we will



show that this physics only emerges when one formulates the chirally
symmetric lattice theory using the derivative introduced by Drell,
Weinstein and Yankielowicz, (BWY).®:7 We hope this discussion will
clarify the physics and lay to rest the spurious argument which says
that because a lattice theory defined using the DWY-derivative has a
conserved chiral charge it cannot have any of the physics of the axial

ancmaly.

2. REPRISE OF KNOWN FACTS

The continuum Schuinger model describes the electrodynamics of
massless fermions in 1+1-dimensions. As a consequence of the axial
anomaly the photon, or more precisely the plasma oscillation, becomes a
massive ex;itation. Exact solution of the continuum model® reveals that
the exact solutions of the equations of motion are lébeled bg tuo
angles, say $#(e)=2me and ©, but that only one linear combination of
these angles has a physical significance. Discussion of the massive
Schuinger model by Coleman et al.? revealed that one of the parameters
represents a background electric field; houwever, the significance of the
second angle remained less clear.

Actually, the question of whether physics depends on any linear
combination of the angles defining the exact solutions can only be
ansuered if one carefully specifies the algebra of observables élong
with the Lagrangian or Hamiltonian of the system. In fact, if one
specifies the algebra of observables to contain all gauge invariant

operators uwhich are invariant uwith respect to glebal chiral

transformations, then all of the different solutions to the continuum



model are unitarily equivalent. 1If, houwever, one allous all gauge
invariant observables uithout regard to their properties under chiral
transformations, then the set of continuum solutions form a 1-parameter
family of inequivalent solutions. (Allowing general gauge invariant
observables amounts to permitting mass operators as observables even if

you do not add them to the Hamiltonian.)

3. FORMALISM OF THE LATTICE SCHWINGER MODEL

3.1 SOME DEFINITIONS

The Hamiltonian of the lattice Schuwinger model is
g2
H = —3% Eg2 - i ¥*(j3) o3 8/(j4-32) ¥(jz) exp(i}’ Ag)
2 £ {31,392}

(3.1}
where the directed sum, Z'; is the sum over all links joining j4 to j2,
and is taken uwith a plus sign if jq is to the left of j; and with a
minus sign if j, is to the left of jy. The operators Eg and Ag are
taken to be conjugate harmonic oscillator variables associated uith each
link &, and the field ¥(j) is a tuo component fermi field associated
with each vertex of our one dimensional lattice. The function §7(j4-3j3)

is the DUY-derivative and is given by

1
§7(J4-32) =

Y ik expl ik€is=3z) 1
2N+1 k

where the variable k runs over

2N+1 (3.2)



and the gamma matrices for the one dimensional theory are 2X2 Pauli spin

matrices chosen so that

Yo = B = 04
Yy = -i02
@ = Y5 = YY1 T 03 (3.3)

It is convenient to write the two component spinor field ¥(j) in terms

of fermion annihilation and creation operators as

1 0
¥(j) = b(j) + d*(3)
0 1 (3.4

and its Fourier transform is conventionally written as
1

Y(k) = ¥ expl-ikil ¥(3)
V2N+1

i 0
-= b(k) + d*(-k)
0 1 (3.5)

The factor of (2N+1) stands for the number of sites on the lattice and

is related to L, the length of the lattice in dimensionful units, and to
the maximum momentum cutoff, A, by the condition

(2N+1)
L = = (2N+1)a
A (3.6)

where a = A~' is the lattice spacing.
Adopting these definitions one can reurite the Hamiltonian for the
free fermi field (see (3.1) without the exp [ i) Ag ] factors) as,
H=Yk[b*(k)btk) - d*(kd)dtk) ] ' (3.7

We also observe that the Hamiltonian commutes with the number operators

Np = ¥ b*(k)b(k) = ¥ b*(j)b(j)
k 3
and
Ng = § d*(k)d(k) = ¥ d*(jd)d(j)

k ] (3.8)



If one defines the total electric charge operator to be

Q= 1Y [9’(j).?(j)]
j

(3.9)
and the total chiral charge as
Qs = i} [w*(j>.vsw(j>]
j (3.10)

then it is easy to reurite these operators in terms of Ny and Ng as
Q = Np - Ng
and
Qs = Np + Ng (3.11)
The last piece of general information which we need for our
discussioq_is that the groundstate of the free fermion theory is

13vae> = bY(0)d*(OIbl-kydd (k). .. b*(-ky)d* (k) 10>
‘ (3.12)

where 10> is the state annihilated by all of the operators by and dg.,
and where the momenta k4 are defined to be kp = 2un/(2N+1). A1l other
charge zero states having finite energy are obtained by adding or
removing pairs of b’s and d’s having momenta small on the scale of the

cutoff A.

3.2 GAUGE INVARIANCE
In defining the Hamiltonian, (3.1), we have implicitly defined the
theory in Ag=0 gauge. Hence, the Maxuell equation V:E-p=0 is not one of
the operator equations of motion. Houever, as defined, the theory
possesses an invariance With respect to arbitrary time independent gauge
transformations wherein
A(3) = A(J) + a(j+1) - a(J)

and



¥(3) » exp(-ial(j)I¥(]) (3.13)
where uwe use the notation A(j) to denote the field associated with the
link joining the points j and j+1. 1In order to have the missing Maxuell
equation hold as an operator equation of motion one must restrict

attention to the subspace of gauge invariant states, ie., those states

I#$> for which [6(3)=-V-E(3)+p(3j)I1#>=0. Actually, this point needs more

careful discussion and we will return to it in a moment.

3.3 THE GIVM IDEA

While, in order to carry out a physically meaningful variational (or
for that matter, perturbative) calculation, one must restrict attention
to gauge invariant states, constructing wavefunctions which satisfy
these con;traints is a truly formidable task for any but the simplest
gauge theories. Horn and Weinstein! suggested thatAone can>évoid this
difficulty by choosing for a trial state any arbitrary function

18C..,A(3),..)> and then projecting it onto its gauge invariant part,

Pl1$>. The projection operator, P, is defined as

P = H Po(j)
b
where
Po(3) = No § da(3j) exp(ialj)e(3j)) (3.149)

where Np is a normalization operator defined so that PZ = P. Since |%$>
is an arbitrary wavefunction depending upon a set of variational
parameters, {Ra}, PI$> will in general be a gauge invariant trial
wavefunction depending upon the same set of parameters. Houwever, in
general the norm of Pl$> will not be unity. For this reason the

variational parameters are to be determined by minimizing the functional



($1PHPI®> (PIHPI®
Ej3) = =
<®IP2id> ¢iPld®> (3.15)

This is a simple idea uwhich at first glance seems to be impossible to
carry out. The gist of the arguments presented in Ref.1 is that,
surprisingly, the necessary manipulations can be carried out in detail
for a large class of interesting wavefunctions 1¢>. In the discussion
to follou, we will only use this idea in order to provide us with and
organizing principle for what follows, the reader will not need any more

information than that which has already been presented.

3.4 GAUGE PROJECTING: A SIMPLE PHYSICS QUESTION

In the preceding sections we noted that in order to have V-E-p = 0
hold as an operator equation of motion we have to restrict attention to
gauge invariant states. Actually, one has to be a little md;e careful
in arriving at this conclusion. The point is that one wants this
equation to be true because one is quantizing the classical theory of
electromagnetic interactions, and this equation is true for the
classical theory. MNote houwever, that in discussing the classical theory
one does not assume that this equation holds at the boundaries of the
system because the classical equations of motion do not come with
boundary conditions. Boundary conditions must be arrived at from other
physical considerations. 1In this case choosing boundary conditgons
amounts to deciding whether there are classical charges at the walls of
the system. Since gauge invariance is assumed to be a superselection
rule (ie., not only is the Hamiltonian assumed to be gauge invariant,

but one also assumes that all physical observables are also gauge



invariant) it follous that to uniquely define the theory one must first
diagonalize all of the 6(j)’s. We have already noted that the
eigenvalues of G(j) must be zero for all j’s in the interior, but for
j=* N any eigenvalues are possible. In other words, one is free to
restrict attention to states for which

GCENI IS = e(2N)I$)> . (3.16)
The generators of gauge transformations for -N ¢ j (N are the operators

G(i) = - EGI) + ECi~1) + p(i) 3.17)

where, p(i) is the local charge density operator

(1) = np(i) - ngli) . (3.18)
The gauge generators for the tuwo endpoints{ i = -Nand i = N are given
by

G(-Ni>= - E(-N) + p(-N)
and -’

G(N) = E(N-1) + p(N) . (3.19)

Hence, the most general projection operator we can use is
Ple(-N),e(N)) = fda(-N)Jda(N) exp(ia(-N)(G(-N)-€e(-N))

exp(ia(N)(GIN)-e(N)) [l Po(3)

{int}

(3.20)
where the product of the operators Pg(j) is taken only over the interior
points of the lattice. Also, since ue are interested in the sector for

which the total electric charge vanishes, then

b] (3.21)
implies that for the operator P(e(-N),e(N)) to project onto a state of Q
= Np = Ng = 0 one must choose

€ = e(~-N) = - e(N2 (3.22)

- 10 -



For this reason our tuo parameter family of projection operators is
reduced to a one parameter family. The label € signifies the existence
of a background electric field which enters from the left hand boundary
of the lattice and leaves from the right.

In order to make the correspondance between the theory formulated on
an open lattice and that formulated on a closed lattice with an equal
number of sites and links (ie., a ring) as simple as possible, it is
convenient to define the one parameter family of projection operators as
follous

Ple’) = fdS¢ explie’§¢) S(8¢)
where the operator S(6i) can be uritten as .

2N

S(64) = exp | i §¢ 1(6(N) - G(-N)

2N+1

xfda’ exp(3ia’(6(NI+G(-N))) [l Po(3)
{int} (3.23)

1f we think of carrying out the indicated a«’,a(3j) integrations as
summing over contigurations a(3j) with fixed boundary conditions, in
order to make things look as they would in the continuum path integral
formulation, then we can uwrite

S(64) = ¥ Ulalid))
{atid} (3.24)

where U(a(3)) is the unitary transformation
Uta(j)) = expliy a(jd6(3) ) . | (3.25)
and the sum over configurations {a(j))} in (3.24) runs over functions
a(3j) such that
2N

a(N) - a(=-N) = 64
(2N+1) (3.26)

- 11 -



It is straightforuard to verify that with this definition the variable
€’ differs from the background field by a factor of 2N/(2N+1), ie.,
(2N+1)
€ = —m— ¢’
2N (3.27)
and so, it can be identified with the background field only in the limit

L = (2N+1)a » ». Since this is the limit of interest we will ignore

this distinction in uhat follous.

3.5 BACKGROUND FIELDS AND PAIR PRODUCTION
We Will nouw recapitulate an argument due to Coleman which shous that
in the irfinite volume limit there is no discernable difference in the
local physics in sectors of the theory corresponding to background
fields e1<;nd €2 if (ez-€4) = n where n is an arbitrary integer. To see
why "this is the case let us focus attention on a thesry without
dynamical fermions and ask what happens to the energy of a pair of
massive external sources when one has a constant background field.
In the theory without dymanical fermions the Hamiltonian is
g2
H=— 3 E(j)?2
2 (3.28)
and so the energy in the presence of a background field ¢ is simply
$92€¢2L. If one nouw introduces a pair of unit charges C(ie., charge one
in units of the coupling g ) so that the field betueen the charées is
reduced to (e - 1), then letting the distance betuween the charges be s
and the length of the worid L, the energy of this static configuration
is
€(s) = g%e2(L-s) + 3g?s(e -1)2 (3.29)

Differentiating €(s) with respect to s uwe obtain

- 12 -



d€

— = {92 (1 - 2¢)

ds (3.30)
which is a positive quantity if lel ¢ }. 1t follows from (3.30) that if
lel is greater than 3 it becomes energetically favorable for the pair of
charges to separate and move to the end of the lattice reducing the
strength of the background field by one unit. When dynamical fermions
are introduced this pair production process continues until the
background field penetrating to the center of the lattice has been
reduced until it lies within the range -} ¢ € ¢ {. At this point any
further screening of the background field is due to an effective
dietectric constant of the vacuum, but the pair production mechanism has
shut off. )

With this in mind uwe see that except for charges gt infinity, which
plaﬁ no role in determining the local physics, there is no d;fference
betueen sectors corresponding to values of the background field € which
differ by integers. This says that for the purpose of carrying out a
variational calculation it suffices to work in a linear combination of
states whose e-values differ by an integer. To be precise, one can
restrict attention to -% ¢ € ¢ { and define the periodic projection

operators

Pper (€) = ¥ Ple + n)
n - 3.3

Substituting this into (3.24) and carrying out the sum on n we obtain

Pper(€) = ¥ exp(2mem) S(2mm)
m (3.32)

It will be convenient in what follous to observe that every function
a(j), for which a(N) - a(-N) = 2N§4/(2N+1), can be mritten as

a(j) = a’(3) + xj (3.33)

- 13 -



where X = §¢/(2N+1). Hence, We can reurite the formuta for S(2mm) as
S(2mm) = Sy Uy
where the unitary operater Uy, is defined to be
Up = exp(idxei6(j)) (3.34)
and where xn is defined to be

2mm

Km =

(2N+1) (3.35)
This allows us to reuwrite Pper(€) in the form which will be most useful
to us, namely

Pperl€) = Sp ¥ expli#leIm) Uy
m (3.36)

where uwe have defined the angular variable.-n € ¢#(e) = 2ne £ m.

This completes our discussion of the € parameter and it should come
as no surprise at this point that #(e¢) = 2ne is one of the angles
appearing in the exact solution to the Schuinger model

Before concluding this section it is worth pointing out that if one
had worked on a periodic lattice with an equal number of links and sites
we would have arrived at exactly the same formulae. In this case a
gauge transformation is really defined by giving a link function Va and
its associated fermionic phase factor

i=1
z(3) = exp(i} Vall))
3=Je - (3.37D)
In this case the only requirement one has on the link function Va(j) is
that (3.37) defines a real periodic function 2(j), which means that Z Va
= &t = 2um. Hence, for the periodic lattice we can reurite the any
gauge function as the sum of one for uhich 6§t = 0 plus one for which Va

= 2um/7(284+1). It is easy to see that this leads to the same projection

operator formalism.

- 14 -



4. CHIRAL CHARGES, REGULATION AND ANOMALIES

4.1 Qs ON THE LATTICE AND THE PROBLEM OF NORMAL ORDERING
In Eq. (3.10) we defined the global chiral charge as a sum over sites

of the local chiral charge density qg(j), where

as(j) = § [¥*(3),rs¥(3) ] (4.1)
If one Fourier transforms this expression into momentum space one
obtains

Qs =} [ np(k) + ng(k) ]

k

where the operators np(k) and ng(k) are defined to be the number

operators
nb(ki_s b* (k)b (k)
and -
na(k) = d+(k)d(k) (4.2

Although these operators appear to be normal ordered, they are not.

This is true even for the case of free field theory, since the
groundstate of the free field theory is not the state 10), which is
annihilated by all of the b’s and d’s, but rather the state [$,5¢&)
defined in (3.12) . Hence, in the 1imit of the cutoff going to infinity
the charge Qs as defined in (4.2) does not converge to a finite
operator. As ue will see, it is the attempt to define a finite'operator
in this 1imit which explains the structure of the anomaly. Before
proceding with formal considerations, let us as what happens to a
general trial ground state for the system when ue perform a gauge

transformation. 1In particular, let us focus attention upon what happens

- 15 -



when uwe make the gauge transformation defined by the function a(j) =
2tnj/s(2N+1) for any integer n.
The discussion to follow will apply to variational functions of the

general form

1®4rial> = 2 IVgaugednXlffermiondn
n (4.3)

where the states |¥gauge>n are taken to be arbitrary functions of the
gauge fields, and the states lffermion’n are restricted in two umays.
First, it is assumed that they have total electric charge Q=0; and
second, it is assumed that they are arbitrary linear combinations of
massless free field eigenstates, uwhose energy differs from the free
fermion vacuum energy by an amount which sfays finite as the lattice
mass, A, is taken to infinity. From the point of view of perturbation
theory these restrictions allou for an essentially complete set of
physical states. 1In order to simplify our presentation we will present
the arguments to follouw for the case of a variational wavefunction which
consists of a single product state of the form

1#var) = 1¥gaugedXldyae? (4.4)
where the gauge part of the wavefunction is arbitrary. Having chosen
such a trial state the gauge invariant variational problem is reduced to
operating upon this state with the projection operator P(e). Since the
Hamiltonian is gauge invariant the expectation value of the Hamiltonian
in the state Uni¥¢rial> is the same as the expectation value of the
Hamiltonian in the state |¥4¢ria1?, where the operator U, is the unitary
transformation defined in (3.34) . Although we uill focus in what
follows on what happens to the fermionic part of the trial function, it

pays to remember that the concomitant transformation of the gauge field

- 16 -



part of the function is always understood to be taking place so as to
keep the mean energy of the state unchanged.

What happens to the state |®,ac> mhen one operates upon it with the
gauge transformation Un? In particular, what happens when ue operate
with Uy, U, being the gauge transformation generated by the function
a(3j)=2nj/7(2N+1)? The easiest way to see what happens is to observe that
the fermion field transforms under U; as follous;

Uy ¥(3) Uq* = exp(i2mjz(2N+1)) ¥(3j) (4.5)

1f uwe reuwrite

v(j) = _1___ Y exp(ikj) b(k) [1] + exp(-ikj) d*(k) [U]
V2N+1 0 : 1 (4.6)
we see that (4.5) can be reuritten as
Uy b(k) Us* = b(k+2n/(2N+1))
and
Uy d(k) Uq* = d(k=-2m/7(2N+1)) . 4.7

Recalling that the ground state of the 1+1-dimensional massless free
fermion is the state

|§vac) = n b*('kn)d*(kn) '0)
(n=0,N) (4.8)

where the momentum kn = 2un/(28+1), it follouws from (4.7) that the state
10> is left invariant under the action of U,. Hence, ue see that

Usldvaed = b*(kqdd*(~kqy) Jl b*(-kpn)d* k) 10>
(n=0,N-1) (4.9)

Examination of (4.9) reveals that the neuw state has one extra
essentially zero momentum pair (ie., k4=2u/7(2N+1) which vanishes in the
infinite volume 1imit) and which has lost a pair at essentially infinite

momentum, ie., k=2uN/(2N+1). Since the total number of pairs is

- 17 -



unchanged, ue see that the state Unl®yac) has exactly the same Qg value
as the state |%,,50>. This is as it should be since the charge Qs as
defined is gauge invariant and non-anomalous. However, the structure of
(4.9) already contains the ansuer to the question of whether one can
understand the anomaly in a lattice gauge theory. HNote, that if one
returns to dimensionful units and removed the momentum cutoff, then one
would be in an ambiguous situation. In that case, ue still have to fill
the negative energy sea, houever there is now confusion about what
happens when we apply Uy (or Up) to such a state. The reason for this
is that U, promotes each pair b*{k)d*(k) by a unit of momentum, creating
an additional Yow momentum pair; however, the question arises of whether
or not one has a vacant state at infinite momentum. By cavalierly
taking thé_cutoff to infinity and ignoring divergences one has wound up
with the problem of the Hilbert hotel with an infiniie numbe; of rooms.
In this case, even if the hotel is filled one can always make room for
more guests by simply moving everyone up one room; if a guest leaves,
the hotel is still filled if one simply moves everyone down one room.
From this point of view, applying U; to the vacuum state of the theory
defined by naively taking the cutoff to infinity creates only a lou
momentum pair and so changes Qg by two units.

The key to understanding what is going on is the observation that our
definition of Qs does not yield a finite operator in the contindum
limit. The simplest way to deal with this problem is to copy what is
done in the Casimir problem by using an energy cutoff and defining a
regulated chiral charge, qg5(y), wuhich will be finite in the limit of the
cutoff going to infinity. For example,

¥ exp(-7E(k)2) [nplk) + ngtk) 1,
k (4.10)

qs (7)

- 18 -



where E(k)=k for the DWY-gradient, and E(k)=sin(k) for the typical
doubling prescription. The virtue of this regulated charge is that it
is finite if y/(2N+1)2 is held fixed as the ultraviolet cutoff, and
hence N, is taken to infinity. Using this definition one can take
differences betueen the expectation value of qg(¥) in a state |¥> and in
the state U41¥>. This is guaranteed to be a finite quantity. One can
then ask hou this difference behaves as the regqgulator is taken away. It
doesn’t take much to convince oneself that this leads to the same
conclusion as the Hilbert hotel analysis; namely, that if one defines

§qg = lim &q5(7)
v->0 4.1%)

then, when one applies Uy to a state I¥), 8q¢ is two. If one applies U,
to a state |¥>, 6qg is 2n. 1t follous from this result that gg5(y) is
not»a gauge invariant operator for any value of 7, since it changes
under the gauge transformation U,. Let us now establish the
relationship betwueen an energy regulator and point splitting in the
continuum. Before proceeding to this discussion houever, uwe should note
that the conclusion about the way qs behaves under a gauge
transformation is only true if one adopts a definition of the fermionic
gradient which is of the DWY form. Clearly, an energy cutoff only
removes the high-momentum states from consideration if there is no
spectrum doubling. 1If there is spectrum doubling the change in
occupation number at k near 0 and k near m are both counted; in which
case the total change in both Qs and qg is zero and the theory is

anomaly free.
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4.2 ENERGY CUTOFFS AND POINT SPLITTING

To begin, let us define the quantities appearing in (4.9) more
carefully, so as to make to passage to dimensionful units explicit. As
we have written (4.9) the quantities appearing have all been scaled by
appropriate pouers of the lattice spacing so as to be dimensionless.
Hence, the factor 2N+1 uwhich stands for the number of lattice sites, is
equal to the length of the lattice, L, divided by the lattice spacing,
a. Furthermore, the momenta, kp = 2mp/(2N+1), are equal to the

dimensionful momenta k’pa; ie.,

a L _ (4.12)

In the same way, the limits in the dimensionful momenta are
i2nN/(2N+{;a, and if one defines the continuum 1imit as taking a=»0 with
L held fixed we see that in this limit N»» as a-'. Hence, ig the limit
of small a, or large A=a"', the bounds on the k7, sums go to *mA.
Finally, in order for the energy cutoff to defined a finite operator
qs () as a»0, it is clear that va2? must be held fixed as a»0. With this
set of definitions we see that for the tranformation Uy, in the limit
a0, §qg(ya?) is

695 (va2) = 2exp(~vaZ4n2/L2) - 2exp(-ya?4n?sL2a32) (4.13)
and so ue see that first taking the continuum limit a»0 and then taking
ya?»0 we obtain §qg(yaZ=0) = 2.

With this in mind Fourier transform (4.10) and reurite everything in
dimensionful variables in configuration space. The result of this
exercise is

a5 (va?) = fdxfdy (1/4nva2)'/2 exp(-(x-y)2/4va?)

FLP )Y, vs¥(y)] 4.14)

- 20 -



It is immediately clear from the fact that operators at different points
x and y appear in the definition of qg(ra?) that the regulated operator
is not invariant under an arbitrary gauge transformation which maps ¥(x)
into exp(ia(x))¥(x). (The difference in phase factor here is due to the
fact that in order to compute qs5’ we have taken U(a) off a state and
applied it to the operator as U'YU not UYU*. ) In fact, under such a
transformation qg(ra?) goes to

qs’ (va?) = fdxfdy (1r4nra?)'/2Zexp(-(x-y)2/4va?) explilalx)-aly)]

V() Y, vs¥(y)]
(4.15)

Nou what happens to qg’(va?) in the limit vaZ-0.

In order to ansuer this question we obsérve that the point split
operators $[¥(x),ys¥(y)] are finite for x different from y, but become
singular in the limit x»y. Houwever, as is well knouwn, for a-two
dimensional theory this singularity is simply a normal ordering term.

In other words, the normal ordered operator has finite matrix elements
in all finite energy states. Hence, it is possible to reurite (4.14) as
qs’ (va?) = [dxfdy (1/mya?)'/2 explila(x)-aly))]

exp(-(x-y)zlvaz){ INCIT(),75¥(y)]) + s(x-y) }
(4.16)

where, NC [®(x),7r5¥(y)] ) is the finite part of the commutator and
s(x-y) is the singular c-number function obtained by taking the ¢,3cuum
expectation value of the commutator. A trivial manipulation gives

s(x-y) =

1

— Jdkqfdk, {explikyx)exp(-ik,y) <(Fyacllb*(ky),blkz)I1dyvacd}

an

- exp(-ikyx)explikay)<®yacl [dlkq),d* (k)T 1Evae> } 4.17)

Remembering that the vacuum state has a half-filled sea, ue see that

- 21 -



s(x-y) = ———3———— (1 - exp(-inA(x-y)) - &(x-y)

i2n(x-y) (4.13)
where the term exp(-inA) reflects the momentum cutoff which is to be
taken to infinity. Since s(x-y) is to be integrated against a smoothly
varying function of x and y, sin{(nA(x-y))/ni{x~y) is a representation of
the delta function, and the term proportional to cos(nA(x-y)) oscillates
auay as A¥wo, we will forget it in what follows and use

1
s(x-y) =

in(x-y) (4.19)
1f we substitute this form for s(x-y) and expand the phase factor
exp(ifa(y)-a(x)) as a power series in (x-y) we see that as va?-0
95’ (vyaZ-+0) becomes

1 da
- qs’/(7a?+0) = qg(va2+0) + — fdx —(x)
m dx (4.20)

Hence, ue see that if the total change in the function al(x) is zero then
qs (v»0) does not change under the corresponding gauge transformation.
1¥f the function a(x) generated one of the transformations U,, so that
Idxa'(x)=2nn then it follous that qg(vaZ-»0) changes by 2n. This is
exactly the result wmhich ne obtained from our momentum space arguments.
1f one defines qg(yaZ2+0) to be a finite operator by subtracting the
function s(x-y) from the point split expression, the same result holds
since the change in qg is a finite shift coming from the phase ;actor
multiplying the singular operator, clearly no such factor multiplies the
c-number subtraction term.

This concludes our discussion of the relationship betueen §q¢ under a

gauge transformation as computed with an energy cutoff and as computed
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from a point-splitting prescription. It should be clear to the reader
that these arguments go beyond the use of the free field vacuum state as
a trial wave-function. All that we have said for this state applies
equally uwell to any state which has a finite energy difference from the
free field ground state or any arbitrary linear combination of such
states times arbitrary boson states.

Before concluding this discussion it is worth pointing out the factor
of 1/n appearing in (4.20) is identifiable with the factor of g/nu
appearing as the coefficient of the anomaly in the continuum theory;
where by the coefficient of the anomaly I mean that in the continuum
theory the equation of motion of the axial current is d,j5H=2(gs/2m)E.
This can be done if one observes that we have adopted standard lattice
conventions and absorbed a factor of g intoc the definition of the field
A(j). 11 one undoes this transformation, the the gauge tran;formation
on the fermionic part of the wave function is given by exp(igz p(3)),
and the missing Maxuell equation becomes V-E=gp; so, (4.20) picks up a
factor of g. The remaining identification comes from the fact that

dasdx is conjugate to the field variable E.

4.3 THE RELATION BETWEEN THE PARAMETER € AND Qg

In the preceding sections we discussed the formal question of
defining an aperator g which could have a finite continuum lim%t. Let
us nouw imagine that this has been done in such a way that both the qs
and Qs value of our trial fermion state is zero. We will conclude this
section with a discussion of what happens to a state P{e)IV¥iria1> when

one acts upon it with the operator U = exp(}ifqs). Recalling that Up
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applied to an arbitrary trial state of definite qgy changes its qg value
by 2n, we see that P(e) applied to the state I¥4rj51> can be written as

Ple)I¥irial> = Po 2 expli2me(qs/2)] 1¥¢riayd (4.21)
It follows immediately from (4.21) that exp[iB(qs5s/2)] applied to
P(€)1¥¢rial> is simply the state P(e+8)|¥4¢ria1). In other uords, making
a global rotation by the gauge non-invariant chiral charge qg is
equivalent to changing the parameter € appearing in the projection
operator. This result has as its immediate corollary one of the
properties of the exact solution to the Schuinger model; namely, that if
one restricts the algebra of observables of the model to the set of Qs
conserving gauge invariant operators, then physics is independent of the
value of the parameter €.

Up to fhis point we have identified one angle, $(e), of the continuum
Schuinger model and the truly conserved operator Qs,Auhich h;s integer
eigenvalues. Houwever, continuum model is usually solved in terms of tuwo
angles and it is shown that the physics of the massless theory depends
only upon the difference of these angles. 1In the next section of this
paper ue will introduce the second angle and houw this continuum result

comes about.

5. MASS TERMS AND ©-PARAMETER IN MASSLESS FREE FERMION
TREORY

In order to understand the meaning of the second angle appearing in
the solution to the continuum Schuinger model it is necessary to go back
and discuss the physics of massless free fermion theories with a little
more care. Recall that the Hamiltonian of the lattice Schuinger model

can be uritten as
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H =3 kp Cnplkp) = nalkp))
p (5.1)

where, in dimensionless units, kp = 2np/(2N+1). We have already
discussed the fact that in finite volume (je., N finite) the groundstate
of the theory corresponds to a half-filled sea. More precisely, ue
defined the groundstate of the theory to be the state

18yac?>=ll[b* (-kp)d*(kp)]10>, where the product is taken over p=0,N.
Actually, ue should have noted that even for finite volume there is a
two-fold ambiguity in the definition of the zero-charge state of louwest
energy, since one does not change the energy of a state by adding or
subtracting a zero-momentum pair. At first glance this would seem to be
making much ado about nothing, but the situation becomes more
interesting when one takes the limit L=a(2N+1)-w» With & held fixed. The
reason for this is that the energy of the state 1¥>=b*(kp)d+(-kpdidyacd
differs from the energy of the state 1%,5¢> by §E=2npasL, which vanishes
in the Timit L2 with pa held fixed. Note that the since this state has
one extra fermion pair, it has a Qs value which differs from that of the
state, |®yvac>, by tuo. Generalizing this discussion ue see that in the
infinite volume limit one can add any finite number of these effectively
zero energy pairs to the groundstate without changing its energy.
Moreover, with each addition of a zero energy pair one cohtains a state
with a Qs value uwhich has increased by two units. One could also
subtract an arbitrary finite number of 2ero energy pairs from the
groundstate {®,5c> and produce a state uhose Qg is is negative with
respect to the groundstate by any multiple of two units. From this it
follous that in the infinite volume limit there are an infinite number

of degenerate states with different eigenvalues of the operator Qs.
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This result suggests that we sum over a subset of these states to form
states labelled by a parameter, ©, in the follouing manner:
18> = ¥ exp(i®n) 1%vac, Qs=2Xyact2nd

= ¥ expli(8/2)Qs] 1%yac, Qs=2Xyact2n) (5.2)
where by 2Xyac we mean the eigenvalue of Qg for the massless free field
vacuum state. Actually, this way of introducing the states 18> is
ambiguous since, for exactly the same reasons, there are an infinite
number of states of a given Qs which have the same energy as the state
1$yac) in the limit Low.

In order to achieve a better understanding of what is happening in
the limit L2 we will turn our attention to massive free fermion theory
and study_the Timit in which the mass is taken to zero as the volume is
taken to infinity. We will see that these limits do not commute with
one another and this will allow us to make the definition iﬁ.(S.Z) more
precise.

1f one adds a termm } ¥(j)o4¥(j) to the Hamiltonian (5.1) we obtain

H =} [kplb*(kp)blkp) - d*(kp)d(kp))

+m Y (b*(kp)d*(~kp) + dl-kp)blkp))] ‘3
(5.

and so it is no longer true that the state I¥,5¢> is the louwest
eigenstate of this Hamiltonian. 1In order to find the true eigenstates
of the Hamiltonian one must observe that there is no mixing among
operators corresponding to different values of lkpl and so one must, for
each value of 2k, diagonalize the sub-Hamiltonian
(b*(k),b*(-k),d(k),d(-k)) M(k,-k) [b(k)

b(-k)

d* (k)

d*(-k) (5.4)

where the matrix M(k,-k) is the quadratic {form
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k 0 0 m
0 -k m 0
0 m k [}
m 0 0 -k (5.5)

Clearly the eigenvalues of this matrix are *(k2+m2)'/2 and the ground
state of the theory is obtained by filling the negative energy sea. In
this case that amounts to forming the appropriate linear combinations of
b(k) and d*(-k) corresponding to the eigenvalues -{kZ+m2)'/2 and
operating with the creation operators associated with these combinations
upon the state 10>7, which is the state annihilated by the new
operators. The resulting state will not be an eigenstate of the
operator Qs and therefore will have a projection

l§vac; QS:ZXvac+2n>m§NrJdeexp[i9(Qs-zx.vac‘zn)/ZJ '§vac)n
(5.6)

uhere 1®,5c)m stands for the vacuum state of the thepry with mass m, and
Nn is a normalization factor. It will be these states uhicﬁ.ue will use
in the (5.2) in the limit m>0.

1t should be noted at this point that one will obtain different
ansuers for 1®y53c2m in the limit m»0 depending upon whether one has
taken the limit Lo first. 1If one holds L (ie., N) fixed and takes m>0
one gets a linear combination of the tuoc degenerate the groundstates of
definite Qg=2Xy53¢ and Q5=2Xyvac—2, which we have already discussed for
the massless theory. This is because, in this case the momenta k
appearing in the matrix M(k,-k), except for the single value k ; 0, have
non-vanishing values 2wp/L and so for m small on the scale of these
values the effect of m is purely perturbative and vanishes as m»0.

However, if one takes the limit Low first, then for any m, no matter hom

small, there are an infinity of small k-values for which the effects of
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the mass term dominate. This is the non-uniformity of limits uwhich we
alluded to before.

With this discussion behind us, we introduce © as in (5.2), defining
the states 1%vsc)Qs=2Xvact2n)> as the m>0 limit of the states
18vac- Q552X yact2nd p, where the limit L-w has been taken first. Note, an
equivalent definition of the state 18> is to define it as the limit as
m»0 of the groundstate of the theory for which the mass term has been
chosen to be of the form

Hmass(®) = m ¥ [ cos(@)¥*(3)04%(3) + isin(®)V(3)(-i0)¥(3) ]
(5.7)

Another way of uriting Hpass(®) is

Hmass(8) = exp(i€Qs/2) Hpyass(0) exp(-{eQSIZ) (5.8)
which expféins the factor of €/2 which appears in our definitions.

Having managed to introduced the parameter © as the dual to the

integer eigenvalues of the operator Qs, we can now use it to construct
trial wave functions which depend upon both € and © as follous;

1¥irial> E Ple) I¥gqaugedX1I8d (5.9)
It only remains for us to shou that physics can only depend upon the

difference of these two parameters.

5.1 THE RELATIONSHIP BETWEEN THE ANOMALOUS AND CONSERVED CHIRAL
CHARGES

At this point in our discussion it is relatively easy to understand
why only the difference of the angles ¢ = 2ne and © matters in the
continuum Schuinger model, even when the algebra of observables is
enlarged to include chirality changing gauge invariant operators. The

crux of the matter lies in the fact that the states appearing in 18>
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(ie.,(5.2)), and therefore in the trial state (5.9), differ from one
another by the addition of zero momentum pairs. For each such pair the
eigenvalue of Qs is increased (or decreased) by two units. It now pays
to ask what happens to the value of q5(y=»0) when one adds a low momentum
pair to a state? Since the definition of gqg5(ya?»0) only affects the
counting of infinite momentum pairs one sees immediately that the
addition of a low momentum pair to a state also increases qg(raZ>0) by
tuo units. From this it follows that, up to a possible overall phase
tactor which has to do with the Qg value of the state we started with,
applying the transformation U £ exp(-i%qg/2) to the state
Ple)I¥gauge?*1®> changes both € and © by the same amount. We have
already seen the under this transformation € » ¢-¢, and since the
difference in Qg and qg betueen the states appearing in the definition
of ie> are the same, both operators rotate the ©-variable in the same
way too. Hence, ue see that since in the limit of volume and cutoff
going to infinity q5(v=0) commutes with the Hamiltonian, one sees that
computing expectation values in the states 12ne,9), |21e¢-9,0> and
10,8-2n€> must give the same results for the appropriately transformed

operators.

6. LOCAL CHIRAL TRANSFORMATIONS AND THE SEIZING OF THE
VACUUM )

The next question which we will discuss relates to the issue of why
the Schuinger model doesn’t have a Goldstone boson, even though it has a
spontaneously broken global Qg which is generated by a local,
gauge-invariant, charge density pg(j)=(np(3) + ng(jl)). The ansuer,

first proposed by Kogut and Susskind® is that the vacuum of the theory
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seizes. By seizing, they meant that although a global chiral rotation
could be performed on the system, any local chiral transformation costs
infinite energy (or at least energy on the order of the cutoff A). MWhat
we Wish to do in this section of the paper is to shou that one can
easily understand the mechanism underlying this process.
Let us begin by considering an unprojected trial state

Wirial) = IVgaugedXl#fermion? (6.1)
where the gauge field state is arbitrary and, for the sake of argument,
the fermionic state |ffermion> 1S the finite volume zero mass
groundstate defined in (4.8) . The problem of interest relates to what
happens to the expectation value of the Hamiltonian in the state

197> = exp(iZes (3IB(3)) I¥iriald (6.2)
for the case B(j) = 2npjs7(2N+1). In particular ue ujll be interested in
the case p=1 since in the limit Lo (N2») this should gener#ée the
longest wavelength Goldstone excitation. This can be analyzed in the
same way as we did for the case of a gauge transformation, since under
this transformation the operator ¥(j) goes to exp(iB(j)o3)¥(j). Since
B(3) = xj Fourier transforming this resuit tells us that

b(k)->b(k+x)
and

d(k)>d(k+x) (6.3)
Hence, the fermionic state .

18vac) = 1 b*(-kp)d* (k) 10>
goes over to the transformed state

14> = 1 b*(-kn+t2n/L)d* (knt20/L) 10D (6.4)
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which one can readily convince oneself creates a charged pair at lou
momentum and a balancing oppositely charged pair at k « A>, This is
exactly the same sort of thing which we discussed when we analyzed what
happened under the gauge transformations Unp, except that it is charge
and not qg which has changes at low momentum balanced by pairs at high
momentum. It follows, as it must, from (6.4) that the operators Qg and
qs are left unchanged by this transtormation. What then is different
about this case?

The important point about this transformation is that it is not a

gauge transformation. 1In the preceding discussion we uwere dealing with

gauge transformations and so although the qg(¥) properties of the states
appearing in the gauge projected trial state changed, the expectation
value of the Hamiltonian in any one of these transformed states was
aluéys the same. That, in fact, was the justification for superimposing
these states in order to form a trial state. If one kept the cutoff
fixed, one could in fact shou that the cross terms betueen the different
terms in the sum louered the energy of the state €=0. The reason uhy
the expectation value of the Hamiltonian was the same in both the
transformed and untransformed state was because the part of the trial
wavefunction involving the gauge field transformed in such a way as to
cancel the effects on the fermionic part of the trial state. Returning
to the case at hand we see the significance of the fact that th; lTocal
chiral rotation is not a gauge transformation; namely, that it does not
cause any transformation of the gauge field part of the wavefunction and
so under the local chiral rotation the expectation value of the

Hamiltonian of the transformed state is changed. It is easy to estimate
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this change for the case of very small g, since it will simply be the
expectation value of the free fermion Hamiltonian in a state which has
tuwo extra high momentum excitations. The difference in energy between
the expectation value for the transformed state and the original state
is on the order of the cutoff A. Hence, in the limit of A+» we see that
except for the case k=0, the energy of any long wavelength excitation
created by the local chiral current density is infinite and so the

vacuum seizes.

7. ANOMALY CANCELLATION AND GAUGING ANOMALOUS CURRENTS

In the previous sections of the paper we discussed the lattice
version of the ordinary Schuinger model and shouwed how one could
understand the properties of the continuum theory from general
argﬁments. We will conclude our discussion With a brief tré;tment of
what happens if one attempts to gauge a variant of this model mherein
the current one gauges is anomalous. This happens, for example, if one
gauges the current whose charge density is p4+(3)

c

p+(3) = —[¥*(3), (1+ygI¥]

2 (7.1
where ue have, for the sake of generality, assumed that the the field ¥
has charge ¢. Such a theory can be obtained from the Schuinger model if
one reurites the Hamiltonian as .

87(3-1) 1
H=3Y ——— {b*(idb(1Jexplicy’Ag) - d*(H)d(} + — § E(j)2
i 2 (7.2
In this case, only the operators b(k) transform under a large gauge

transformation and they transform as before, ie.,

Uq* b(k) Uy = b(k+2cu/l) (7.3)
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It follous immediately from (7.3) that the transformation Uy creates ¢
Tow momentum particles (not pairs in this case), and therefore from
(7.1) ue see that §q,(7a2-0) is c¢2. Hence, unlike the case of the
Schuinger model the current which has for its time component the
fermionic part of the generator of local gauge transformations is
anomalous, and can only give rise to a conserved charge if one allous
infinite momentum states to compensate for louw momentum states under
large gauge transformations.

Obviously, this model can be made back into a Schuinger model by
adding to it a field which transforms with the same charge ¢, but which
has a Hamiltonian

Hz = = ¥ ———— {B*(j)B(1)explic}y’Ag) - D*(HHDC)} .

i A (7.4)
Froﬁ the point of view of gauge transformations the operators d(j) and
D(3) are uwindou-dressing and can be ignored. The minus sign in front of
H, is significant, in that it requires that the neqative energy sea for
the B’s must be filled for positive instead of negative kyg. There is,
houever, another way to achieve cancellation of the anomaly. That is to
introduce ¢? fields of unit charge. 1In that event the change in the
total charge of the system under a U; transformation will be +cZ, coming
from the fields bj, and -1 coming from each of the fields of unit
charge. Hence, it takes c¢2 of the unit charge fields to cancel the
anomaly produced by the charge ¢ field. This is of course a uell knoun
result for the continuum theory.

The question which arises at this point is what happens if one does

not cancel the anomaly in the (1+Yg) current by either of these tuwo
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mechanisms? At first glance it would seem that the lattice theory is
perfectly well defined. 1Is there any clue as to why it might not have a
satisfactory continuum 1imit? After all, no one said that we had to
consider regulated charges.

The obvious conjecture is that for theories where one has gauged an
anomalous current the connection betueen the behavior of states at
infinite momentum and zero momentum is made so strong by the requirement
that one consider gauge invariant states, that the Lorentz invariance
properties of the continuum 1imit cannot come out correct.
Unfortunately, there is no simple way to make this argument. There is,
however, one observation about the relationship of gauge invariance and
the space-time properties of the Green’s functions of the theory uhich
can be made. Suppose one considers, for the case of L=w, or»jhe case of
a pe}iodic ltattice, the unitary transformation T3 which translates all
operators by one lattice unit. In other words, for an arbitrary
operator 0(j)

Ta*t 0(3) T4 = 0(3+1) (7.5
Let us then consider the state P(e)1$>, for an arbitrary transliation
invariant wavefunction [$>. What is the state T P(e)I$>?

Recalling that P(e) is

2unj

Ple) = Sp ¥ expli} 6(3) )
n i oL (7.6)

we see that T P(e)I®) is equal to

21nnj

TaPle) 13> = Sp ¥ exp(i} G(3+1)) 1$>

L

exp(i} 6(j)) P(e) I®

exp(iQs) Ple) ¥, 7.7
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Hence, we see that in order for the gauge projected state to be
translation invariant (up to a phase) the charge Q, must be conserved.
If the gauged charge is anomalous, no regulated version of can be used
to generate translations. This is because the conservation of the
anomalous charge requires a detailed cancellation bgtueen momenta at the
scale of the cutoff and zero momentum. On the other hand, if one
cancels out the anomalies by either of the mechanisms discussed in this
section, then the conservation of the non-anomalous charge comes from
cancellations which are local in momentum space. Hence, simultaneous
gauge and translation invariance no longer requires a relationship
between the highest and lowest momenta in the theory. In this case one
expects th;t one can proceed as in perturbation theory and remove the
effects of the high momentum states with impunity.

At present I know of no stronger result which I can statéhuhich
relates the Lorentz properties of the lattice gauge model, gauge
invariance of the wavefunction and anomalies which does not require a
detailed calculation to support this contention. Houever, this is an
interesting question uhich merits further study.

This concludes our discussion of the way in which a chirally
invariant form of the lattice Schuinger model can be used to derive
properties of the continuum theory. Although we have focused on
questions related to taking cutoffs to infinity, we hope that tﬁe reader
has realized that this was because this 1imit is useful for explicitly
evaluating certain expressions; the physics of the theory changed
smoothly as one removed all cutoffs. In particular, the question of the

€ and @ parameters had nothing to do with taking the ultra-violet
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cutoffs to infinity It is also true that the massive photon is a
property of the lTattice theory with cutoffs in place, although it
achieves a truly relativistic energy spectrum only in the limit Asw. It
is my hope that the simplicity and straightforuard nature of this
discussion will make it clear that not only is the physics of the chiral
anomaly alive and well in the chirally symmetric theories formulated by
means of the DUY-derivative, but that it can be highly illuminating to

study such questions in this way.

8. WHAT ABOUT NO-GO THEOREMS?

We noted in the introduction to the paper that many autﬁors have
claimed to prove no-go theorems about the possibility of introducing
fermions éﬁto a lattice in such a way as to preserve the continuous
chiral symmetries of the massless theory and the phyéics of the chiral
anomaly. HWe hope that the discussion up to this point convinces the
reader that, if one adopts the DWY-prescription for introducing
fermions, then these claims are not true. The simplest of the arguments
put forth to support these claims says that since the theory formulated
using the DUY-derivative possesses an exactly conserved chiral charge,
the physics of the Adler anomaly cannot be correctly obtained by taking
the continuum 1imit of the theory. As we have shoun, the anomaly is not
a property of the operator, Qg, which has no continuum limit; but
rather, of the regulated and subtracted operator, qg5(ya?>0), which does.

What about the relevance of what uwe have referred to as technically

correct no-go theorems?. These discussions prove a theorem which says

that chirally symmetric fermionic Hamiltonians with only nearest neigbor
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{or more generally, finite range) couplings always exhibit spectrum
doubling. Mhile one cannot take exception to this result, the
assumption that one should restrict attention to theories with only
nearest neighbor, or finite range, couplings is an unnecessary one. It
has already been shoun® that there exists a natural transcription of
free fermion theories to a lattice, making use of a fermionic gradient
term which introduces long range couplings. This procedure allous one
to avoid spectrum doubling and preserve the continuous chiral symmetries
of the massless theory. Furthermore, it is easy to shouw that by
exploiting the techniques introduced by Drell, Weinstein and
Yankielowicz® one can do the same for fermions coupled to scalar and
pseudo-scelar fields. In particular, it is possible to transcribe
continuum theories which allow for spontaneous breaking of chiral
symhetries, such as the SU(2) sigma model, to the lattice iﬁ.such a way
as to preserve the usual perturbation theory expansion. The only issue
not discussed in Ref.b6 was the question of hou this prescription uorks
for lattice gauge theories.

The work of Karsten and Smit2 claiming that the DUY-derivativeS
causes problems wuhen used for lattice quantum electrodynamics, has
generated a great deal of confusion about the question of introducing
fermions into lattice gauge theories. 1t has led many pecple to believe
that there are grave problems where in fact none exist. 1In a Eecent
paper Rabin'® discussed the computations of Karsten and Smit? and shoued
that the troubles they encountered come from making the expansion,
exp(igl)=1+igL+..., (where L stands for the linear dimension of the

tattice in question) and then keeping only the first two terms, which is
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an obviously incorrect procedure in the limit L9». Although Rabin does
not discuss the point in detail, the interested reader can quickly
convince himself that it is possible to define an infinite number of
lattice gauge theories using the DWY-prescription which preserve the
structure of weak coupling perturbation theory. This set of
counterexamples are sufficient to show that no-go theorems about the use
of the DUY-derivative are not possible. Moreover, they shou that the
problem has to do with the way in which couplings to transverse photons
are introduced, and not the way in which the fermionic gradient terms
are handled. Rabin does discuss the more intricate question of how one
can redefine the expansion of Karsten and Smit so that it is valid. He
shous thaﬁ.by normal ordering the Hamiltonian and adding a set of gauge
invariant counter-terms, of the same form as uere already present in the
oriéinal Hamiltonian, one can develop a convergent perturbaf%on
expansion which does agree uwith that of the continuum theory in the
1imit of zero lattice spacing. (The reader is referred to his paper for
details.)

The situation can therefore be summarized as follous: since the
pUY-derivative involves infinite range couplings in the Hamiltonian, it
avoids the no-go theorems based upon the assumption that one only has
finite range couplings in the Hamiltonian (or Lagrangian); and in
addition, the criticism of Karsten and Smit based upon perturba&ion
theory arguments is not relevant, since the perturbation expansion which

they used can be trivially seen to be incorrect.
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