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I 

Abstract 

This paper shous that contrary to statements extant in the 

literature, it is possible to introduce fermions into a lattice gauge 

theory in such a uay as to preserve the continuous chiral symmetries of 

the massless theory and the physics of the axial anomaly. The 

particular model discussed is the lattice Schwinger model, and the 

methods used are based upon the non-perturbative gauge-invariant 

variational techniques introduced by Horn and Weinstein. It is 

demonstrated that the physics of the anomaly, and its relation to the 

angles appearing in the exact solution to the continuum model appears in 

a simple and elegant way. The generalization of the model to several 

sets of independent fermions is discussed at the end of the paper. Some 

brief remarks are made about what happens if one attempts to gauge an 

anomalous current. These results are of interest, since the 

DWY-prescription is the only known way of writing down purely lattice 

gauge theories with only left-handed fermions. 
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1. INTRODUCTION 

This paper demonstrates that one can understand the structure of the 

continuum Schuinger model, including its axial anomaly, by studying a 

chirally invariant lattice version of the theory. The analysis to be 

presented is structured along the lines suggested in a recent paper by 

D. Horn and M. Weinstein’ where a formalism for carrying out gauge 

invariant variational calculations for lattice gauge theories was 

introduced. In the case of the Schuinger model we uill need only the 

most general aspects of this method, and no detailed assumptions about 

Me nature of the variational wavefunctions will be required. 

One reason for studying the structure of the lattice Schuinger model 

is that in the past few years several authors have argued it is 

impossible to formulate lattice gauge theories which possess both the 

continuous chiral symmetries and chiral anomalies of the continuum 

limit.z’Q The arguments presented to buttress this position have ranged 

from technically correct, but unnecessarily restrictive3”, to 

incorrect* . A discussion of the relationship of this uork to the 

material to be presented here appears in the concluding section of this 

paper. 

Another reason for studying the Schslinger model is that it has many 

fascinating properties. In addition to the axial anomaly which gives 

the photon a mass, it possesses two angles which label the exact 

solutions to the model but which do not appear in the Hamiltonian, and a 

Goldstone mode which seizes. 5 Our goal to show that not only are these 

features of the theory understandable, but that the physics behind these 

phenomena appears in an elegant and simple manner. Furthermore, ue will 
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show that this physics only emerges when one formulates the chirally 

symmetric lattice theory using the derivative introduced by Drell, 

Weinstein and Yankielowicz, (DWY). 6*7 We hope this discussion will 

clarify the physics and lay to rest the spurious argument which says 

that because a lattice theory defined using the DWY-derivative has a 

conserved chiral charge it cannot have any of the physics of the axial 

anomaly. 

2. REPRISE OF KNOWN FACTS 

The continuum Schwinger model describes the electrodynamics of 

massless fermions in 1+1-dimensions. As a consequence of the axial 

anomaly the photon, or more precisely the plasma oscillation, becomes a 
- 

massive excitation. Exact solution of the continuum model* reveals that 

the -exact solutions of the equations of motion are labeled by two 

angles, say d(e)=2ue and 0, but that only one linear combination of 

these angles has a physical significance. Discussion of the massive 

Schwinger model by Coleman et a1.9 revealed that one of the parameters 

represents a background electric field; however, the significance of the 

second angle remained less clear. 

Actually, the question of whether physics depends on any linear 

combination of the ang les defin ing the exact solutions can only be 

answered if one carefu lly speci fies the algebra of observables along 

with the Lagrangian or Hamilton ian of the system. In fact, if one 

specifies the algebra of observables to contain all gauge invariant 

operators which are invariant with respect to global chiral 

transformations, then ail of the different solutions to the continuum 
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model are unitarily equivalent. If, however, one allows all gauge 

invariant observables uithout regard to their properties under chiral 

transformations, then the set of continuum solutions form a l-parameter 

family of inequivalent solutions. (Allowing general gauge invariant 

observables amounts to permitting mass operators as observables even if 

you do not add them to the Hamiltonian.) 

3. FORMALISM OF THE LATTICE SCHWINGER MODEL 

3.1 SOME DEFINITIONS 

The Hamiltonian of the lattice Schwinger model is 

cl2 
H = -1 Ez2 - iI g+(j,) ua b'(jl-j2) Q(jz) exp(ix' AX) 

2x {j19j2) 
(3.1) 

where the directed sum, I', is the sum over all links joining jl to jz, 

and is t&ken with a plus sign if jl is to the left of j2 and with a 

minus sign if je is to the left of jl. The operators EX and AX are 

taken to be conjugate harmonic oscillator variables associated with each 

link X, and the field 9(j) is a two component fermi field associated 

with each vertex of our one dimensional lattice. The function S'(j,-j2) 

is the DWY-derivative and is given by 

1 
S'(jl-j2) = - 1 ik expC ik(jl-j2) 1 

2N+l k 

where the variable k runs over 

21rn 
k =-,-N<n<N 

2N+ 1 
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and the gamma matrices for the one dimensional theory are 2x2 Pauli spin 

matrices chosen so that 

70 = I3 = u1 
71 = -icft 
a = 75 = 7071 = u3 (3.3) 

It is convenient to write the two component spinor field Y(j) in terms 

of fermion annihilation and creation operators as 

g(j) = b(j) [i] + d+(j) [:I 

and its Fourier transform is conventionally written as 

'4(k) exp[-ik jl 9(j) 
JZN+l j 

-= b(k) [;] + d+(-k) [:] 

(3.4) 

(3.5) 

The-factor of (2N+l) stands for the number of sites on the lattice and 

is related to L, the length of the lattice in dimensionful units, and to 

the maximum momentum cutoff, A, by the condition 

(2N+l) 
L = - = (2N+l)a 

A (3.6) 

where a = A-' is the lattice spacing. 

Adopting these definitions one can rewrite the Hamiltonian for the 

free fermi field (see (3.1) without the exp C ic As I factors) as, 

H = 1 k I: b+(k)b(k) - d+(k)d(k) 1 (3.7) 

We also observe that the Hamiltonian commutes with the number operators 

Nb = 1 b+(k)b(k) = 1 b+(j)b(j) 
k j 

and 

Nd = 1 d*(k)d(k) = 1 d+(j)d(j) 
k j (3.8) 
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If one defines the total electric charge operator to be 

Q = 41 Q+(jl,Y(jl 
j [ 1 (3.9) 

and the total chiral charge as 

45 = f Y+(j),75Y(j) 1 (3.101 

then it is easy to rewrite these operators in terms of Nb and Nd as 

Q = tib - Nd 

and 

Q5 = Nb + Nd (3.11) 

The last piece of general information which ue need for our 

discussion is that the groundstate of the free fermion theory is - 

lip vat) = b+(O)d+(OIb’-k,1d+(k,J....b+C-k,)d+(k,)lO> 
(3.12) 

where IO> is the state annihilated by all of the operators bk and dkr 

and where the momenta kn are defined to be kn = 2lrn/(2N+l). All other 

charge zero states having finite energy are obtained by adding or 

removing pairs of b’s and d’s having momenta small on the scale of the 

cutoff A. 

3.2 GAUGE INVARIANCE 

In defining the Hamiltonian, (3.11, ue have implicitly defined the 

theory in Ao=O gauge. Hence, the Maxwell equation V-E-p=0 is not one of 

the operator equations of motion. However, as defined, the theory 

possesses an invariance with respect to arbitrary time independent gauge 

transformations wherein 

A(j) -) A(j) + a(j+l) - a(j) 

and 
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P(j) + exp(-ia(jII6Cj) (3.13) 

where we use the notation A(j) to denote the field associated with the 

link joining the points j and j+l. In order to have the missing Maxwell 

equation hold as an operator equation of motion one must restrict 

attention to the subspace of qauqe invariant states, ie., those states 

I#> for which [G(j)r-V.E(j)+p(j)lls>=o. Actually, this point needs more 

careful discussion and we will return to it in a moment. 

3.3 THE GIVM IDEA 

While, in order to carry out a physically meaningful variational (or 

for that matter, perturbative) calculation, one must restrict attention 

to gauge invariant states, constructing wavefunctions which satisfy 

these constraints is a truly formidable task for any but the simplest 

gauge theories. Horn and Weinstein’ suggested that one can avoid this 

difficulty by choosing for a trial state any arbitrary function 

I*( ..,A(jl,.. I> and then projecting it onto its gauge invariant part, 

PI’p>. The projection operator, P, is defined as 

P E n PO(j) 
j 

where 

PO(j) = NO s da(j) exp(ia(j)G(jI) (3.14) 

where No is a normalization operator defined so that P2 = P. Since I*> 

is an arbitrary wavefunction depending upon a set of variational 

parameters, (X,), Plip> will in general be a gauge invariant .trial 

wavefunction depending upon the same set of parameters. However, in 

general the norm of PI*> will not be unity. For this reason the 

variational parameters are to be determined by minimizing the functional 
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<;PlPHPl;h> <ipIHPI;P> 
E(X,) E = 

<+lP2l+> <*IPI*> (3.15) 

This is a simple idea which at first glance seems to be impossible to 

carry out. The gist of the arguments presented in Ref.1 is that, 

surprisingly, the necessary manipulations can be carried out in detail 

for a large class of interesting wavefunctions IO>. In the discussion 

to follow, we will only use this idea in order to provide us with and 

organizing principle for what follows, the reader will not need any more 

information than that which has already been presented. 

3.4 GAUGE PROJECTING: A SIMPLE PHYSICS QUESTION 

In the preceding sections we noted that in order to have V-E-p = D 

hold as an operator equation of motion we have to restrict attention to 

gauge invariant states. Actually, one has to be a little more careful 

in arriving at this conclusion. The point is that one wants this 

equation to be true because one is quantizing the classical theory of 

electromagnetic interactions, and this equation is true for the 

classical theory. Note however, that in discussing the classical theory 

one does not assume that this equation holds at the boundaries of the 

system because the classical equations of motion do not come with 

boundary conditions. Boundary conditions must be arrived at from other 

physical considerations. In this case choosing boundary conditions 

amounts to deciding whether there are classical charges at the walls of 

the system. Since gauge invariance is assumed to be a superselection 

rule tie., not only is the Hamiltonian assumed to be gauge invariant, 

but one also assumes that all physical observables are also gauge 

-9- 



invariant) it follows that to uniquely define the theory one must first 

diagonalize all of the G(j)'s. We have already noted that the 

eigenvalues of G(j) must be zero for all j's in the interior, but for 

j=Z N any eigenvalues are possible. In other words, one is free to 

restrict attention to states for which 

G(tN)I+> = Al+> . (3.16) 

The generators of gauge transformations for -N < j <N are the operators 

G(i) = - E(i) + E(i-1) + p(i) (3.17) 

where, p(i) is the local charge density operator 

p(i) = nb(iI - rid(i) . (3.18) 

The gauge generators for the two endpoints, i = -N and i = N are given 

by 

G(-WI = - EC-N) + p(-NJ 

and- 

G(N) = ECN-11 + p(N) . (3.19) 

Hence, the most general projection operator we can use is 

P(E(-N),E(NI) = Idat-NI+fda(NI exp(ia(-N)(G(-NI-EC-NJ) 

exp(ia(NI(G(N)-e(N)) n PO(j) 

(int) 
(3.20) 

where the product of the operators PO(j) is taken only over the interior 

points of the lattice. Also, since we are interested in the sector for 

which the total electric charge vanishes, then 

1 G(j) = Q 
j (3.211 

implies that for the operator P(s(-NI,r(NII to project onto a state of Q 

= Nb - Nd = D one must choose 

E = EC-N) = - c(N) (3.22) 
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for this reason our two parameter family of projection operators is 

reduced to a one parameter family. The label e signifies the existence 

of a background electric field Nhich enters from the left hand boundary 

of the lattice and leaves from the right. 

In order to make the correspondance between the theory formulated on 

an open lattice and that formulated on a closed lattice with an equal 

number of sites and links (ie., a ring) as simple as possible, it is 

convenient to define the one parameter family of projection operators as 

follows 

P(E’) = Jd6t exp(ir’bt) S(bt1 

where the operator S(6t) can be written as 

2N 
S(bt)- = exp i- 6t ~(G(N) - CC-N) 

2N+ 1 1 
xjda’ exp(~ia’(G(N)+G(-N))) fl PO(j) 

(int) (3.23) 

If ue think of carrying out the indicated a’,a(j) integrations as 

summing over configurations a(j) with fixed boundary conditions, in 

order to make things look as they would in the continuum path integral 

formulation, then we can urite 

S(bt) = 1 U(a(j)) 
{a(j)) (3.24) 

where U(a(j)) is the unitary transformation 

U(a( j)> = exp(il a(j)GCj) 1 . (3.25) 

and the sum over configurations (a(j))) in (3.24) runs over functions 

a(j) such that 

2N 
a(N) - at-N) = - bt 

(2N+l) (3.26) 
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It is straightforward to verify that with this definition the variable 

c’ differs from the background field by a factor of 2N/(2N+l), ie., 

(2Ntl) 
0 = E’ 

(3.2 2N 

and soI it can be 

L = (2Ntl)a + 00. 

this distinction 

identified with the background field only in the lim 

Since this is the limit of interest ue will ignore 

in what follows. 

7) 

it 

3.5 BACKGROUND FIELDS AND PAIR PRODUCTION 

We will now recapitulate an argument due to Coleman which shows that 

in the infinite volume limit there is no discernable difference in the 

local physics in sectors of the theory corresponding to background 

fields ~1 and EZ if (E~-EI) = n where n is an arbitrary integer. To see 

why-this is the case let us focus attention on a theory without 

dynamical fermions and ask what happens to the energy of a pair of 

massive external sources when one has a constant background field. 

In the theory without dymanical fermions the Hamiltonian is 

g2 
H =- 1 E(j12 

2 (3.28) 

and so the energy in the presence of a background field c is simply 

fg2e2L. If one now introduces a pair of unit charges (ie., charge one 

in units of the coupling g 1 so that the field between the charges is 

reduced to (e - 11, then letting the distance between the charges be s 

and the length of the world L, the energy of this static configuration 

is 

&(.s) = fg2~2(L-s) + ;g%(E -112 

Differentiating &(s) with respect to s we obtain 

(3.29) 
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d& 
- = tg2 (1 - 2C) 
ds (3.30) 

which is a positive quantity if It1 < f. It follows from (3.30) that if 

Irl is greater than t it becomes energetically favorable for the pair of 

charges to separate and move to the end of the lattice reducing the 

strength of the background field by one unit. When dynamical fermions 

are introduced this pair production process continues until the 

background field penetrating to the center of the lattice has been 

reduced until it lies within the range -f $ l I f. At this point any 

further screening of the background field is due to an effective 

dielectric constant of the vacuum, but the .pair production mechanism has 

shut off. 

With this in mind we see that except for charges at infinity, which 
. 

play no role in determining the local physics, there is no difference 

between sectors corresponding to values of the background field E which 

differ by integers. This says that for the purpose of carrying out a 

variational calculation it suffices to work in a linear combination of 

states whose r-values differ by an integer. To be precise, one can 

restrict attention to -i < c < i and define the periodic projection 

operators 

P per (cl f 1 P(e + n) 
n (3.31) 

Substituting this into (3.24) and carrying out the sum on n ue obtain 

Pper(E) = C exp(2nem) S(2amI 
m (3.32) 

It will be convenient in what follows to observe that every function 

a( jl, for which a(N) - at-N) = 2Nbt/(2N+l), can be uritten as 

a(j) = a’(j) + xj (3.331 
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where K E bt/(PN+l). Hence, we can rewrite the formula for S(Pam) as 

S(Pnm) = so UI 

where the unitary operatcr U,, is defined to be 

Ulll = exp(ilK,jG( j>> (3.34) 

and where xnr is defined to be 

2nm 
K, 5 

(2N+l) (3.35) 

This allows us to rewrite Pper (~1 in the form which uill be most useful 

to us, namely 

Pw?r(E) = SO 1 exp(i#(e)m) UR 
m (3.361 

where we have defined the angular variable -n < 46(e) = 2nc $ n. 

This completes our discussion of the E parameter and it should come 

as no surprise at this point that d(e) = 2nr is one -of the angles 

appearing in the exact solution to the Schwinger model 

Before concluding this section it is north pointing out that if one 

had worked on a periodic lattice with an equal number of links and sites 

we would have arrived at exactly the same formulae. In this case a 

gauge transformation is really defined by giving a link function Va and 

its associated fermionic phase factor 

j-l 
z(j) E exp(iC Va(l)I 

j=j0 (3.37) 

In this case the only requirement one has on the link function Pa(j) is 

that (3.37) defines a real periodic function z(j), which means that 1 Pa 

= bt = 2om. Hence, for the periodic lattice we can rewrite the any 

gauge function as the sum of one for which bt = 0 plus one for which Va 

= 2Trm/(2N+l). It is easy to see that this leads to the same projection 

operator formalism. 
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4. CHIRAL CHARGES, REGULATION AND ANOMALIES 

4.1 Qs ON THE LATTICE AND THE PROBLEM OF NORMAL ORDERING 

In Eq. (3.10) we defined the global chiral charge as a sum over sites 

of the local chiral charge density qs(j), where 

qs(j) E $ C-4+(jlpr53(jl 1 (4.1 

If one Fourier transforms this expression into momentum space one 

obtains 

95 = nb(k) + rid(k)) 1 
where the operators nbck) and rid(k)) are defined to be the number 

operators 

rib(k)) f b+(k)b(k) 

and- 

rid(k) E d+(k)d(k) (4.2) 

Although these operators appear to be normal ordered, they are not. 

This is true even for the case of free field theory, since the 

groundstate of the free field theory is not the state IO>, which is 

annihilated by all of the b's and d's, but rather the state I+vac> 

defined in (3.12) . Hence, in the limit of the cutoff going to infinity 

the charge 4s as defined in (4.2) does not converge to a finite 

operator. As we will see, it is the attempt to define a finite operator 

in this limit which explains the structure of the anomaly. Before 

proceding with formal considerations, let us as what happens to a 

general trial ground state for the system when we perform a gauge 

transformation. In particular, let us focus attention upon what happens 
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when we make the gauge transformation defined by the function a(j) = 

2nnj/(2N+l) for any integer n. 

The discussion to follow uill apply to variational functions of the 

general form 

1*t rial) = 1 19 gauge>nXl+fermion>n 

n (4.3) 

uhere the states I$gauge n > are taken to be arbitrary functions of the 

gauge fields, and the states l9f ernion>n are restricted in tuo uays. 

First, it is assumed that they have total electric charge Q=O; and 

second, it is assumed that they are arbitrary linear combinations of 

massless free field eigenstates, whose energy differs from the free 

fermion vacuum energy by an amount which stays finite as the lattice 

mass, AL, fs taken to infinity. From the point of vieu of perturbation 

thecry these restrictions allow for an essentially cbmplete -set of 

physical states. In order to simplify our presentation we will present 

the arguments to follow for the case of a variational wavefunction which 

consists of a single product state of the form 

I* var) = I+ gauge)X 1 *vat) (4.41 

where the gauge part of the wavefunction is arbitrary. Having chosen 

such a trial state the gauge invariant variational problem is reduced to 

operating upon this state with the projection operator P(E). Since the 

Hamiltonian is gauge invariant the expectation value of the Hamiltonian 

in the state Unllptrial> is the same as the expectation value of the 

Hamiltonian in the state Igtrial)r where the operator U, is the unitary 

transformation defined in (3.34) . Al though we will focus in what 

follous on what happens to the fermionic part of the trial function, it 

pays to remember that the concomitant transformation of the gauge field 
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part of the function is always understood to be taking place so as to 

keep the mean energy of the state unchanged. 

What happens to the state I9 “a.=> uhen one operates upon it with the 

gauge transformation U,? In particular, what happens when we operate 

with Ul, U1 being the gauge transformation generate.d by the function 

a(j)=2sj/(2N+l)? The easiest way to see uhat happens is to observe that 

the fermion field transforms under Uq as follows; 

ll1 q(j) lJl+ = exp(i2nj/(2N+l)) r(j) (4.5) 

If we rewrite 

1 1 0 \p(jl = - J2N+l 1 exp(ikj) b(k) [I 
+ exp(-ikj) d*(k) 

0 [I 1 (4.6) 

we see that (4.5) can be rewritten as 

Ul b(k) U,+ = b(k+2a/(2N+l)) 

and 

U1 d(k) U,+ = d(k-2n/(2N+l)) . (4.7) 

Recalling that the ground state of the l+l-dimensional massless free 

fermion is the state 

I+ vpc> = fl b’(-kn)d+(kn) IO> 
(n=O,N) (4.8) 

where the momentum k, E 2nn/(2N+l), it follous from (4.71 that the state 

IO> is left invariant under the action of Un. Hence, we see that 

Ull*vac> = b+(k,ld+(-k,) n b+(-k,)d+(k,) IO> 
(n=O,N-11 (4.91 

Examination of (4.9) reveals that the new state has one extra 

essentially zero momentum pair tie., k,=2a/(2N+l) which vanishes in the 

infinite volume limit) and which has lost a pair at essentially infinite 

momentum, ie., k=2uN/(2N+l). Since the total number of pairs is 
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with the problem of the Hilbert hotel with an infinite number of rooms. 

In this case, even if the hotel is fi lled one can always make room for 

more guests by simply moving everyone up one room; if a guest leaves, 

the hotel is still filled if one simp iy moves everyone down one room. 

From this point of view* applying U1 to the vacuum state of the theory 

defined by naively taking the cutoff to infinity creates only a low 

momentum pair and so changes 95 by two units. 

The key to understanding what is going on is the observation that our 

definition of Qs does not yield a finite operator in the continuum 

limit. The simplest way to deal with this problem is to copy what is 

done in the Casimir problem by using an energy cutoff and defining a 

regulated chiral charge, q5 (r), which will be finite in the limit of the 

cutoff going to infinity. For example, 

qs (Y) E 1 exp(-yE(k)2) [tit.(k) + rid(k) 1 , 
k (4.10) 
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unchanged, we see that the state Unl* “a=> has exactly the same Qs value 

as the state I*vaq>. This is as it should be since the charge QS as 

defined is gauge invariant and non-anomalous. However, the structure of 

(4.9) already contains the answer to the question of whether one can 

understand the anomaly in a lattice gauge theory. Note, that if one 

returns to dimensionful units and removed the momentum cutoff, then one 

would be in an ambiguous situation. In that case, we still have to fill 

the negative energy sea, however there is now confusion about what 

happens when we apply U1 (or Un) to such a state. The reason for this 

is that U1 promotes each pair b*(k)d+(k) by a unit of momentum, creating 

an additional low momentum pair; however, the question arises of whether 

or not one has a vacant state at infinite momentum. By cavalierly 
- 

taking the cutoff to infinity and ignoring divergences one has wound up 
. 



where E(k)=k for the OWY-gradient, and E(k)=sin(k) for the typical 

doubling prescription. The virtue of this regulated charge is that it 

is finite if Y/(2N+l)2 is held fixed as the ultraviolet cutoff, and 

hence N, is taken to infinity. Using this definition one can take 

differences between the expectation value of qs(y) in a state I$> and in 

the state Ull$>. This is guaranteed to be a finite quantity. One can 

then ask how this difference behaves as the regulator is taken away. It 

doesn’t take much to convince oneself that this leads to the same 

conclusion as the Hilbert hotel analysis; namely, that if one defines 

Sq5 z lim bqs(r) 
r+O (4.11) 

then, when one applies ill to a state 149, 69s is two. If one applies Un 

to a state I$>, bq5 is 2n. It follows from this result that qs(r) is 

not a gauge invariant operator for any value of Y, since it.changes 

under the gauge transformation Un. Let us now establish the 

relationship between an energy regulator and point splitting in the 

continuum. Before proceeding to this discussion however, we should note 

that the conclusion about the way q5 behaves under a gauge 

transformation is only true if one adopts a definition of the fermionic 

gradient which is of the DWY form. Clearly, an energy cutoff only 

removes the high-momentum states from consideration if there is no 

spectrum doubling. If there is spectrum doubling the change in 

occupation number at k near 0 and k near TI are both counted; in which 

case the total change in both Q5 and qs is zero and the theory is 

anomaly free. 
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4.2 ENERGY CUTOFFS AND POINT SPLITTING 

To begin, let us define the quantities appearing in (4.9) more 

carefully, so as to make to passage to dimensionful units explicit. As 

we have written (4.9) the quantities appearing have all been scaled by 

appropriate powers of the lattice spacing so as to be dimensionless. 

Hence, the factor 2N+l which stands for the number of lattice sites, is 

equal to the length of the lattice, L, divided by the lattice spacing, 

a. Furthermore, the momenta, k, = 2lrp/(2N+l), are equal to the 

dimensionful momenta k’,,a; ie., 

kP 2TP 
k’rJ =--- =- 

a L (4.12) 

In the same way, the limits in the dimensionful momenta are 

t2nN/(2N+l)a, and if one defines the continuum limit as taking a+0 with 
. 

L held fixed we see that in this limit N+co as a-l. Hence, in the limit 

of small a, or large h=a’l, the bounds on the k’, sums go to rnh. 

Finally, in order for the energy cutoff to defined a finite operator 

qs(Y) as a-+0, it is clear that Ya2 must be held fixed as a+O. With this 

set of definitions we see that for the tranformation Ul, in the limit 

a+O, Gqs(ya2) is 

bq5(Ya2) = 2exp(-Ya24n2/L2) - 2exp(-Ya241r2/L2a2) (4.13) 

and so we see that first taking the continuum limit a+0 and then taking 

rat+0 we obtain bqs(ra2+0) = 2. 

With this in mind Fourier transform (4.10) and rewrite everything in 

dimensionful variables in configuration space. The result of this 

exercise is 

qs(Ya2) = .fdxJdy (1/4TrYa2)‘/2 exp(-(x-y)2/4Ya2) 

(4.14) 
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It is immediately clear from the fact that operators at different points 

x and y appear in the definition of qs(ya2) that the regulated operator 

is not invariant under an arbitrary gauge transformation which maps 9(x) 

into exp(ia(x))*(x). (The difference in phase factor here is due to the 

fact that in order to compute q;’ we have taken U(a) off a state and 

applied it to the operator as U*$U not U$U*. 1 In fact, under such a 

transformation qs(ra21 goes to 

qs ’ (ya2 1 = Jdxjdy ( 1/4aya2 1 l/2 exp(-(x-y)2/4ya2) expti(a(x)-a(y)1 

~C~(x)+,Y~Q(Y)l 
(4.15) 

Now what happens to q5’(ya2) in the limit ya2-*0. 

In order to answer this question we observe that the point split 

operators-f[0(x),rs~(y)l are finite for x different from y, but become 

singular in the limit XV. However, as is well known, for a- two 

dimensional theory this singularity is simply a normal ordering term. 

In other words, the normal ordered operator has finite matrix elements 

in all finite energy states. Hence, it is possible to rewrite (4.14) as 

q5’(ra2) = IdxIdy (l/vra2)1’2 expCi(a(x)-a(y))1 

exp(-(x-y)2/ra2)( $N(EQ(x),~~~(Y)I~ + s(x-y) ) 
(4.16) 

where, NC IY(x),r~Y(y)l 1 is the finite part of the commutator and 

s(x-y) is the singular c-number function obtained by taking the Ovacuum 

expectation value of the commutator. A trivial manipulation gives 

s(x-y) = 

-! ldk,Jdkz (exp(ik,x)exp(-ik2y) <+vacl Cb’(kq ),b(kt)l I+ypq>) 
4a 

- exp(-ik~x)exp(ik2y)<~~a~l[d(k~),dt(k2)ll~~~~> ) (4.171 

Remembering that the vacuum state has a half-filled sea, we see that 
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2 
s(x-VI = (1 - exp(-inh(x-y)I - 6(x-y) 

i2n(x-yl (4.181 

where the term exp(-isAn) reflects the momentum cutoff which is to be 

taken to infinity. Since s(x-y) is to be integrated against a smoothly 

varying function of x and y, sin(nA(x-y))/n(x-y) is a representation of 

the delta function, and the term proportional to cos(nA(x-y)) oscillates 

away as A*, we will forget it in what follows and use 

1 
s(x-yl = 

ia(x-y) (4.19) 

If we substitute this form for s(x-yl and expand the phase factor 

exp(i(a(y)-a(x)) as a power series in (x-y) we see that as ya2+0 

qs’(ra2+0) becomes - 

da 
q5’(ra2+0) = q5(ya2+O) + 1 Jdx --(xl 

n dx (4.20) 

Hence, we see that if the total change in the function a(x) is zero then 

qs(‘r+O) does not change under the corresponding gauge transformation. 

If the function a(x) generated one of the transformations Unr so that 

$dxa’(x)=2nn then it follows that q5(ra2+0) changes by 2n. This is 

exactly the result which we obtained from our momentum space arguments. 

If one defines q5(ra2+0) to be a finite operator by subtracting the 

function s(x-y) from the point split expression, the same result holds 

since the change in q5 is a finite shift coming from the phase factor 

multiplying the singular operator, clearly no such factor multiplies the 

c-number subtraction term. 

This concludes our discussion of the relationship between bqs under a 

gauge transformation as computed with an energy cutoff and as computed 

- 22 - 



from a point-splitting prescription. It should be clear to the reader 

that these arguments go beyond the use of the free field vacuum state as 

a trial wave-function. All that we have said for this state applies 

equally well to any state which has a finite energy difference from the 

free field ground state or any arbitrary linear combination of such 

states times arbitrary boson states. 

Before concluding this discussion it is worth pointing out the factor 

of 1111 appearing in (4.20) is identifiable with the factor of g/a 

appearing as the coefficient of the anomaly in the continuum theory; 

where by the coefficient of the anomaly I mean that in the continuum 

theory the equation of motion of the axial .current is bwj5w=2Cg/2w)E. 

This can be done if one observes that we have adopted standard lattice 
- 

conventions and absorbed a factor of g into the definition of the field 

A(j). If one undoes this transformation, the the gauge transformation 

on the fermionic part of the wave function is given by exp(igC p(j)), 

and the missing Maxwell equation becomes V.E=gp; sot (4.20) picks up a 

factor of g. The remaining identification comes from the fact that 

da/dx is conjugate to the field variable E. 

4.3 THE RELATION BETWEEN THE PARAMETER E AN0 Qr, 

In the preceding sections we discussed the formal question of 

defining an operator q5 which could have a finite continuum limit. Let 

us now imagine that this has been done in such a way that both the q5 

and QS value of our trial fermion state is zero. We will conclude this 

section with a discussion of what happens to a state P(c)l9triaI> when 

one acts upon it with the operator U = exp(fif3qs). Recalling that Un 
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applied to an arbitrary trial state of definite qs changes its q5 value 

by 2nr we see that P(E) applied to the state liPtrial> can be written as 

P(E) I*triaI> = PO 1 expCi2ac(q5/2)1 I\PtriaI> (4.211 

It follows immediately from (4.211 that expCig(q5/2)1 applied to 

P(C)l9triaI> is simply the state P(C+B)l9triaI>. In other words, making 

a global rotation by the gauge non-invariant chiral charge q5 is 

equivalent to changing the parameter E appearing in the projection 

operator. This result has as its immediate corollary one of the 

properties of the exact solution to the Schwinger model; namely, that if 

one restricts the algebra of observables of the model to the set of 95 

conserving gauge invariant operators, then physics is independent of the 

value of the parameter E. 
- 

Up to this point we have identified one angle, #(E), of the continuum 

Schtiinger model and the truly conserved operator Q5, which has integer 

eigenvalues. However, continuum model is usually solved in terms of two 

angles and it is shown that the physics of the massless theory depends 

only upon the difference of these angles. In the next section of this 

paper we will introduce the second angle and how this continuum result 

comes about. 

5. MASS TERNS AND Q-PARAMETER IN HASSLESS FREE FERMION 
THEORY 

In order to understand the meaning of the second angle appearing in 

the solution to the continuum Schwinger model it is necessary to go back 

and discuss the physics of massless free fermion theories with a little 

more care. Recall that the Hamiltonian of the lattice Schwinger model 

can be written as 
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H = 1 k, ( nb(kp) - nd(k,)) 
P (5.1) 

where, in dimensionless units, k, = 2Vp/(2Ntl). We have already 

discussed the fact that in finite volume (ie., N finite) the groundstate 

of the theory corresponds to a half-filled sea. More precisely, we 

defined the groundstate of the theory to be the state 

I~vac>=~Cbt~-kp~dt~kp~llO>, where the product is taken over p=O,N. 

Actually, we should have noted that even for finite volume there is a 

two-fold ambiguity in the definition of the zero-charge state of lowest 

energyI since one does not change the energy of a state by adding or 

subtracting a zero-momentum pair. At first glance this would seem to be 

making much ado about nothing, but the situation becomes more 

interesting when one takes the limit L=a(2N+l)* with a held fixed. The 

reason for this is that the energy of the state I~>=b’(kp)d+!-kp)l~ve,) 

differs from the energy of the state I+vac> by 6&=2npa/L, which vanishes 

in the limit L-M with pa held fixed. Note that the since this state has 

one extra fermion pair, it has a QS value which differs from that of the 

state, lip vat>, by two. Generalizing this discussion we see that in the 

infinite volume limit one can add any finite number of these effectively 

zero energy pairs to the groundstate without changing its energy. 

Moreover, with each addition of a zero energy pair one obtains a state 

with a Qs value which has increased by two units. One could also 

subtract an arbitrary finite number of zero energy pairs from the 

groundstate IS vac> and produce a state whose 95 is is negative with 

respect to the groundstate by any multiple of two units. From this it 

follows that in the infinite volume limit there are an infinite number 

of degenerate states with different eigenvalues of the operator Q;. 
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This result suggests that we sum over a subset of these states to form 

states labelled by a parameter, 8, in the following manner: 

IO> = 1 exp(i0n) I*vac, Qs=2Xv,,+2n> 

= 1 expCi(0/2IQ51 I*v,C, Q5=2XV,,+2n> (5.2) 

uhere by 2XvpC we mean the eigenvalue of Qs for the massless free field 

vacuum state. Actually, this uay of introducing the states 10> is 

ambiguous since, for exactly the same reasons, there are an infinite 

number of states of a given Q5 which have the same energy as the state 

IS vat> in the limit L-*co. 

In order to achieve a better understanding of what is happening in 

the limit L* we will turn our attention to massive free fermion theory 

and study the limit in which the mass is taken to zero as the volume is 

taken to infinity. We uill see that these limits do not commute uith 

one another and this will allow us to make the definition in (5.2) more 

precise. 

If one adds a term m 1 b(jIolrP(jl to the Hamiltonian (5.1) we obtain 

H = 1 [k,,(b+(k,)b(k,) - d+(k,)d(k,,)) 

+ m 1 (b’(k,,)d’(-k,) + d(-k,)b(k,))l 
(5.3) 

and so it is no longer true that the state liPv,t> is the lowest 

eigenstate of this Hamiltonian. In order to find the true eigenstates 

of the Hamiltonian one must observe that there is no mixing among 

operators corresponding to different values of Ik,l and so one must, for 

each value of ?k, diagonalize the sub-Hamiltonian 

(b+(k),b+(-k),d(k),d(-k)) M(k,-k) b(k) 
b(-k) I 1 d+(k) 
d+(-k) (5.4) 

where the matrix M(k,-k) is the quadratic form 
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k 0 0 m 
0 -k m 0 
0 m k 0 
m 0 0 -k 1 (5.51 

Clearly the eigenvalues of this matrix are ?(k2+m211/2 and the ground 

state of the theory is obtained by filling the negative energy sea. In 

this case that amounts to forming the appropriate linear combinations of 

b(k) and d+(-k) corresponding to the eigenvalues -(k2+m2)1/2 and 

operating uith the creation operators associated uith these combinations 

upon the state IO>‘, uhich is the state annihilated by the new 

operators. The resulting state will not be an eigenstate of the 

operator Qg and therefore will have a projection 

lip vpc,Qs=2Xva,+2n> .EN~dBexpCie(Q5-2X,,,-2n)/21 lihvBc>R 
(5.6) 

where 19vac>m stands for the vacuum state of the theory with mass m, and 

Nn is a normalization factor. It will be these states which we will use 

in the (5.2) in the limit m-+0. 

It should be noted at this point that one will obtain different 

answers for IOvac>m in the limit m-+0 depending upon whether one has 

taken the limit L-%a first. If one holds L (ie., NJ fixed and takes m-+0 

one gets a linear combination of the two degenerate the groundstates of 

definite Qs=2Xvac and 45=2X,,,- 2, which we have already discussed for 

the massless theory. This is because, in this case the momenta k 

appearing in the matrix M(k, -k), except for the single value k = 0, have 

non-vanishing values 2i~p/L and so for m small on the scale of these 

values the effect of m is purely perturbative and vanishes as m+O. 

However, if one takes the limit L-*00 first, then for any m, no matter hou 

small, there are an infinity of small k-values for which the effects of 
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the mass term dominate. This is the non-uniformity of limits which ye 

alluded to before. 

With this discussion behind us, ue introduce 8 as in (5.21, defining 

the states l*vlc,Qs=2X vpc+2n> as the rn+O limit of the states 

19vacrQs=2Xvac+2n>+++, where the limit L-ceo has been taken first. Note, an 

equivalent definition of the state IS> is to define it as the limit as 

m-*0 of the groundstate of the theory for which the mass term has been 

chosen to be of the form 

H mass(e) = m 1 C cos(8)Q+(j)a~*(j) + isin(e)~(j)(-iot)B(j) 1 
(5.7) 

(5.8) 

Another way of uriting H,,,,(0) is 

H *ass(e) = exp(ieQs/21 H . ...(O) exp(-i0Qs/2) 

uhich explains the factor of 812 which appears in our definitions. 

Having managed to introduced the parameter 8 as the dual .to the 

integer eigenvalues of the operator 45, we can now use it to construct 

trial wave functions which depend upon both e and '3 as follous; 

1*t riel) E P(e) I$ ,,",,>XlfJ> (5.91 

It only remains for us to show that physics can only depend upon the 

difference of these two parameters. 

5.1 THE RELATIONSHIP BETWEEN THE ANOMALOUS AND CONSERVED CHIRAL 
CHARGES 

At this point in our discussion it is relatively easy to understand 

uhy only the difference of the angles 9 E 2rre and B matters in the 

continuum Schwinger model, even when the algebra of observables is 

enlarged to include chirality changing gauge invariant operators. The 

crux of the matter lies in the fact that the states appearing in lo> 
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(ie.,C5.2)1, and therefore in the trial state (5.91, differ from one 

another by the addition of zero momentum pairs. For each such pair the 

eigenvalue of 4s is increased (or decreased) by two units. It nou pays 

to ask uhat happens to the value of qs(y+O) uhen one adds a lou momentum 

pair to a state? Since the definition of qs(ra2+0) only affects the 

counting of infinite momentum pairs one sees immediately that the 

addition of a low momentum pair to a state also increases qs(ra2+01 by 

two units. From this it follows that, up to a possible overall phase 

factor uhich has to do uith the 4s value of the state we started with, 

applying the transformation U E exp(-i+q5/2) to the state 

P(E)l+ga”ge >xl0> changes both e and 8 by the same amount. We have 

already seen the under this transformation E + E-+, and since the - 

difference in Qs and q5 between the states appearing in the definition 

of 10) are the same, both operators rotate the S-variable in the same 

way too. Hence, we see that since in the limit of volume and cutoff 

going to infinity qs(r=O) commutes with the Hamiltonian, one sees that 

computing expectation values in the states 12nc,8>, 12~e-S,0> and 

IO,&2116) must give the same results for the appropriately transformed 

operators. 

6. LOCAL CHIRAL TRANSFORMATIONS AND THE SEIZING OF THE 
VACUUM 

The next question uhich we uill discuss relates to the issue of uhy 

the Schwinger model doesn’t have a Goldstone boson, even though it has a 

spontaneously broken global Qs which is generated by a local, 

gauge-invariant, charge density ps(j)E(nb(j) + nd(jl). The answer, 

first proposed by Kogut and Susskind5 is that the vacuum of the theory 
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seizes. BY seizing, they meant that although a global chiral rotation 

could be performed on the system, any local chiral transformation costs 

infinite energy (or at least energy on the order of the cutoff A). What 

ue uish to do in this section of the paper is to show that one can 

easily understand the mechanism underlying this process. 

Let us begin by considering an unprojected trial state 

1*t riol) = I*gauge)Xl+fernion> (6.11 

where the gauge field state is arbitrary and, for the sake of argument, 

the fermionic state Idfernian> is the finite volume zero mass 

groundstate defined in (4.81 . The problem of interest relates to uhat 

happens to the expectation value of the Hamiltonian in the state 

I$‘> = exp(i&s(j)R(j>) I$triaI> (6.2) - 

for the case S(j) = 2npj/(2N+ll. In particular we will be interested in 
. 

the-case p=l since in the limit L* (N*) this should generate the 

longest wavelength Goldstone excitation. This can be analyzed in the 

same way as we did for the case of a gauge transformation, since under 

this transformation the operator O(j) goes to exp(iR(j)os)9(j). Since 

IS(j) = Kj Fourier transforming this result tells us that 

b(k)+b(k+x) 

and 

d(k)+d(k+a) (6.3) 

Hence, the fermionic state 

I* ,.=c) = fl b+(-kn)d+(kn)lO> 

goes over to the transformed state 

I+‘> = 1 b+(-k,+2~~L~dt(k,+2a/L)10) (6.4) 
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uhich one can readily convince oneself creates a charged pair at lou 

momentum and a balancing oppositely charged pair at k 0: A>. This is 

exactly the same sort of thing which ue discussed uhen ue analyzed uhat 

happened under the gauge transformations Un, except that it is charge 

and not qs uhich has changes at low momentum balanced by pairs at high 

momentum. It follows, as it must, from (6.4) that the operators Qs and 

qs are left unchanged by this transformation. What then is different 

about this case? 

The important point about this transformation is that it is not a 

qauqe transformation. In the preceding discussion we were dealing with 

gauge transformations and so although the qs(y) properties of the states 

appearing in the gauge projected trial state changed, the expectation - 

value of the Hamiltonian in any one of these transformed states uas 

always the same. That, in fact, was the justification for superimposing 

these states in order to form a trial state. If one kept the cutoff 

fixed, one could in fact show that the cross terms between the different 

terms in the sum lowered the energy of the state e=O. The reason why 

the expectation value of the Hamiltonian was the same in both the 

transformed and untransformed state was because the part of the trial 

wavefunction involving the gauge field transformed in such a uay as to 

cancel the effects on-the fermionic part of the trial state. Returning 

to the case at hand we see the significance of the fact that the local 

chiral rotation is not a gauge transformation; namely, that it does not 

cause any transformation of the gauge field part of the uavefunction and 

so under the local chiral rotation the expectation value of the 

Hamiltonian of the transformed state is changed. It is easy to estimate 
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this change for the case of very small g, since it uill simply be the 

expectation value of the free fermion Hamiltonian in a state uhich has 

tuo extra high momentum excitations. The difference in energy betueen 

the expectation value for the transformed state and the original state 

is on the order of the cutoff A. Hence, in the limit of A-roe we see that 

except for the case K=O, the energy of any long wavelength excitation 

created by the local chiral current density is infinite and so the 

vacuum seizes. 

7. ANOMALY CANCELLATION AND GAUGING ANOMALOUS CURRENTS 

In the previous sections of the paper ue discussed the lattice 

version of the ordinary Schwinger model and showed how one could - 

understand the properties of the continuum theory from general 
. 

arguments. We will conclude our discussion uith a brief treatment of 

what happens if one attempts to gauge a variant of this model uherein 

the current one gauges is anomalous. This happens, for example, if one 

gauges the current whose charge density is p+(j) 

p+(j) Z CC’Y*Cj1,Cl+7s1PI 
2 (7.1) 

where we have, for the sake of generality, assumed that the the field Y 

has charge c. Such a theory can be obtained from the Schwinger model if 

one rewrites the Hamiltonian as 

6’(j-1) 
H=l (b*(jlb(l)exp(icC’A~) - d+(j)d(l)) + !- 1 E(j12 

i 2 (7.2) 

In this case, only the operators b(k) transform under a large gauge 

transformation and they transform as before, ie., 

U,+ b(k) Ul = b(k+2cn/L) (7.31 

- 32 - 



It follows immediately from (7.31 that the transformation Ul creates c 

lou momentum particles (not pairs in this case), and therefore from 

(7.1) we see that bq+(ra2~0) is ct. Hence, unlike the case of the 

Schwinger model the current which has for its time component the 

fermionic part of the generator of local gauge transformations is 

anomalous, and can only give rise to a conserved charge if one allows 

infinite momentum states to compensate for low momentum states under 

large gauge transformations. 

Obviously, this model can be made back into a Schwinger model by 

adding to it a field which transforms with the same charge c, but which 

has a Hamiltonian 

b’(j-1) - 
Hz = -1 (B’(j)B(l)exp(ic~~Ay) - D’Cj>DCl>) . 

i (7.4) 
. 

From the point of vieu of gauge transformations the operators d(j) and 

D(j) are window-dressing and can be ignored. The minus sign in front of 

Hz is significant, in that it requires that the neqative energy sea for 

the B’s must be filled for positive instead of negative km. There is, 

however, another way to achieve cancellation of the anomaly. That is to 

introduce c2 fields of unit charge. In that event the change in the 

total charge of the system under a U1 transformation will be +c2, coming 

from the fields hip and -1 coming from each of the fields of unit 

charge. Hence, it takes c2 of the unit charge fields to cancel the 

anomaly produced by the charge c field. This is of course a Mel1 known 

result for the continuum theory. 

The question uhich arises at this point is what happens if one does 

not cancel the anomaly in the (l+rs) current by either of these two 
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The obvious conjecture is that for theories where one has gauged an 

anomalous current the connection between the behavior of states at 

infinite momentum and zero momentum is made so strong by the requirement 

that one consider gauge invariant states, that the Lorentz invariance 

properties of the continuum limit cannot come out correct. 

Unfortunately, there is no simple way to make this argument. There is, 

however, one observation about the relationship of gauge invariance and 

the space-t ime properties of the Green’s functions of the theory which 

can be made . Suppose one considers, for the case of.L=m, or the case of 

a periodic lattice, the unitary transformation Ta which translates all 

operators by one lattice unit. In other words, for an arbitrary 

operator O(j) 

Tilt O(j) T;, = O(j+l) (7.5) 

Let us then consider the state Ply>, for an arbitrary translation 

invariant wavefunction I*>. What is the state T,P(e)I*>? 

Recalling that P(E) is 

2nnj 
P(E) = SO 1 exp(iC - G(j) I 

n j L (7.6) 

ue see that T,P(e)I*) is equal to 

2nnj 
T,P(e) lip> = SO 1 exp(iC - G(j+lJ) lip> 

L 

= exp(i): G(j)) P(E) I*> 

= exp(iQ+) P(c) IQ>. (7.7) 
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perfectly uell defined. Is there any clue as to uhy it might not have a 

satisfactory continuum limit? After all, no one said that ue had to 

consider regulated charges. 



Hence, ue see that in order for the gauge projected state to be 

translation invariant (up to a phase) the charge Q+ must be conserved. 

If the gauged charge is anomalous, no regulated version of can be used 

to generate translations. This is because the conservation of the 

anomalous charge requires a detailed cancellation between momenta at the 

scale of the cutoff and zero momentum. On the other hand, if one 

cancels out the anomalies by either of the mechanisms discussed in this 

section, then the conservation of the non-anomalous charge comes from 

cancellations which are local in momentum space. Hence, simultaneous 

gauge and translation invariance no longer requires a relationship 

between the highest and lowest momenta in the theory. In this case one 

expects that one can proceed as in perturbation theory and remove the 

effects of the high momentum states with impunity. 

At present I know of no stronger result which I can state which 

relates the Lorentz properties of the lattice gauge model, gauge 

invariance of the wavefunction and anomalies which does not require a 

detailed calculation to support this contention. However, this is an 

interesting question which merits further study. 

This concludes our discussion of the way in which a chirally 

invariant form of the lattice Schwinger model can be used to derive 

properties of the continuum theory. Although we have focused on 

questions related to taking cutoffs to infinity, we hope that the reader 

has realized that this tias because this limit is useful for explicitly 

evaluating certain expressions; the physics of the theory changed 

smoothly as one removed all cutoffs. In particular, the question of the 

l and 8 parameters had nothing to do uith taking the ultra-violet 
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cutoffs to infinity It is also true that the massive photon is a 

property of the lattice theory with cutoffs in place, although it 

achieves a truly relativistic energy spectrum only in the limit A*. It 

is my hope that the simplicity and straightforward nature of this 

discussion will make it clear that not only is the physics of the chiral 

anomaly alive and well in the chirally symmetric theories formulated by 

means of the DWY-derivative, but that it can be highly illuminating to 

study such questions in this way. 

8. WHAT ABOUT NO-GO THEOREMS? 

We noted in the introduction to the paper that many authors have 

claimed to prove no-go theorems about the possibility of introducing 

fermions onto a lattice in such a way as to preserve the continuous 

chiral symmetries of the massless theory and the physics of the chiral 

anomaly. We hope that the discussion up to this point convinces the 

reader that, if one adopts the DWY-prescription for introducing 

fermions, then these claims are not true. The simplest of the arguments 

put forth to support these claims says that since the theory formulated 

using the DWY-derivative possesses an exactly conserved chiral charge, 

the physics of the Adler anomaly cannot be correctly obtained by taking 

the continuum limit of the theory. As ue have shown, the anomaly is not 

a property of the operator, Q5, which has no continuum limit; b;t 

rather, of the regulated and subtracted operator, q5(ra2+0), which does. 

What about the relevance of what we have referred to as technically 

correct no-go theorems?. These discussions prove a theorem which says 

that chirally symmetric fermionic Hamiltonians with only nearest neigbor 
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(or more generally, finite range) couplings aluays exhibit spectrum 

doubl ing. While one cannot take exception to this result, the 

assumption that one should restrict attention to theories with only 

nearest neighbor, or finite range, couplings is an unnecessary one. It 

has already been shown6 that there exists a natural transcription of 

free fermion theories to a lattice, making use of a fermionic gradient 

term uhich introduces long range couplings. This procedure allopls one 

to avoid spectrum doubling and preserve the continuous chiral symmetries 

of the massless theory. Furthermore, it is easy to show that by 

exploiting the techniques introduced by Drell, Weinstein and 

Yankielowicz6 one can do the same for fermions coupled to scalar and 

pseudo-scalar fields. In particular, it is possible to transcribe 

continuum theories which allow for spontaneous breaking of chiral 

symmetries, such as the SU(2) sigma model, to the lattice in such a uay 

as to preserve the usual perturbation theory expansion. The only issue 

not discussed in Ref.6 was the question of how this prescription works 

for lattice gauge theories. 

The work of Karsten and Smitz claiming that the DWY-derivatives 

causes problems when used for lattice quantum electrodynamics, has 

generated a great deal of confusion about the question of introducing 

fermions into lattice gauge theories. It has led many people to believe 

that there are grave problems uhere in fact none exist. In a recent 

paper RabinlO discussed the computations of Karsten and Smit2 and shoued 

that the troubles they encountered come from making the expansion, 

exp(igL)=l+igL+,.., (where L stands for the linear dimension of the 

lattice in question) and then keeping only the first two terms, uhich is 
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an obviously incorrect procedure in the limit Lw. Although Rabin does 

not discuss the point in detail, the interested reader can quickly 

convince himself that it is possible to define an infinite number of 

lattice gauge theories using the DWY-prescription which preserve the 

structure of ueak coupling perturbation theory. This set of 

counterexamples are sufficient to show that no-go theorems about the use 

of the OWY-derivative are not possible. Moreover, they show that the 

problem has to do uith the uay in which couplings to transverse photons 

are introduced, and not the way in which the fermionic gradient terms 

are handled. Rabin does discuss the more intricate question of how one 

can redefine the expansion of Karsten and Smit so that it is valid. He 

shows that by normal ordering the Hamiltonian and adding a set of gauge - 

invariant counter-terms, of the same form as were already present in the 

original Hamiltonian, one can develop a convergent perturbation 

expansion which does agree with that of the continuum theory in the 

limit of zero lattice spacing. (The reader is referred to his paper for 

details.) 

The situation can therefore be summarized as follows: since the 

DWY-derivative involves infinite range couplings in the Hamiltonian, it 

avoids the no-go theorems based upon the assumption that one only has 

finite range couplings in the Hamiltonian (or Lagrangian); and in 

addition, the criticism of Karsten and Smit based upon perturbation 

theory arguments is not relevant, since the perturbation expansion which 

they used can be trivially seen to be incorrect. 
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