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ABSTRACT 

The effective interaction between a static quark-antiquark pair 

is computed within the framework of (GE, Gy) # 0. Due to the static 

approximation the interaction takes the form of a potential, which is 

in striking agreement with phenomenological potentials. 
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A more fundamental understanding of the heavy quark-antiquark 

interaction in Quantum Chromodynamics (QCD) is-needed to fully utilize 

the wealth of data being accumulated on the properties of heavy quarkonia. 

While it is widely known that a simple potential form for the inter- 

actions intrinsically neglects the important nonlocality that arises 

through retardation and quark motion effects Cl], nonrelativistic potential 

models have met considerable success, particularly in spectroscopic 

calculations C21. For this reason, it is an interesting problem to 

investigate the static quark potential in QCD as perhaps a crude model 

of the relevant physics, although an extension to the full dynamics 

appears problematic. 

The static potential in QCD has a l/R behavior at short distances, 

as mediated by perturbative one gluon exchange. It remains to satis- 

factorily include the nonperturbative contributions which will dominate 

outside this Coulombic regime. This can be done systematically using the 

techniques of Shifman, Vainshtein and Zakharov [31. Their approach 

consists of parametrizing the present ignorance of the long wavelength 

nonperturbative structure of QCD with nonzero vacuum expectation values 

of certain gauge invariant field operators. Once incorporated into the 

theory, these parameters can be experimentally determined and used to 

make predictions for other processes. A set of remarkably successful 

charmonium sum rules [4] yields for the lowest dimensional purely gluonic 

operator 

with Ga 
lJV 

the gluon field strength tensor. 
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Determining the effective static potential generated by this non- 

perturbative vacuum gluon condensate is equivalent to solving for the 

induced interaction between a static quark-antiquark pair immersed in 

constant uniform color electric and magnetic fields. The contributions 

of higher dimensional and possibly nonuniform vacuum fields must also be 

considered, and either included or shown to be negligible for this 

process. The effect of this gluon condensate on the static potential 

can be evaluated quite simply using multipole techniques. The procedure 

can be justified as long as the size of the vacuum gluon fluctuations is 

larger than the QG separation, and the expansion parameter (&*JI) is a 

small number. Since the vacuum condensate is effectively spatially 

homogeneous, a lowest order multipole expansion is sufficient out to 

relatively large distances. Higher order multipoles which couple to 

gradients of the vacuum fields could contribute when deviations from the 

homogeneous approximation are incorporated. However, as will be pointed 

out, these are negligible out to a distance of roughly a fermi. 

The calculation consists of allowing a static Qo pair in an asymptotic 

color singlet state and interacting via a perturbative one gluon exchange 

potential to couple an arbitrary number of times to the vacuum field. 

As known from the one gluon exchange potential, the intermediate color 

octet Qo states are in a repulsive channel, and thus highly virtual with 

respect to the incident color singlet state. This forces the vacuum 

couplings to clump into short periods of octet propagation, separated by 

longer periods of on-shell color singlet propagation, as illustrated by 

fig. 1. What must be evaluated are these "octet clumps" of fig. 2, which 

when iterated on the singlet propagator give a corrected color singlet 



-4- 

static potential 
4c4 

V,(r) = - -$ + hi(r) . 

The expression for hi(r) is 

co 

hi(r) = c 
n=O 

(-i)2n'11dt2n+2 'j"2dt2n+l . . . rdt2 

0 0 0 

x e -it2n+2(VOg-VY) 3 Tr(HI(l) . . . HI(2n+2)) 

(2) 

(3) 

where Vy (Vi) is the one gluon exchange color singlet (octet) potential, 

and the trace is reflective of the color singlet nature of the external 

state. The form for HI, the vacuum gluon-Qo coupling, is of a multipole 

form and has been derived by several authors [51 

-QaA; + GaGa + za'Ea + . . . 1 
where 

Q, = g J- d3r yyoTaY 

d = 
-a g J- d3r _rTyoTaY 

(4) 

(5) 

m = -a gJd3r $(~x?~T~P) 

with Y the Qq "wave function", r the Qq separation, and Ta the generators 

of SUc(3). Restricting for the moment to color electric dipole coupling, 

rotating to Euclidean space, and doing the trivial time integrations, one 

finds 
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co co 

hL(r) = - 4 
v- 

2n 

dT 

- v;-vy)T ( 

n=O 0 

is&-g 
a1 

Et:-g 
a2n+2 

X 
a2 

2 . . . 2 . ..D a2n+l 

ala2n+2 
(6) 

where (Da)bc 2 dabc, which is defined in the standard way from the anti- 

commutators of the group generators. The origin of the product of 

D-matrices can be easily understood by evaluating an isolated coupling 

of a vacuum field to an octet projected Qq state as in fig. 3 

( figure 3 > - Tr ((T, 7 Ta,l Tn) N daim - bai>,n * (7) 

Equation (1) and Lorentz invariance of the vacuum C61 demand <ET Ei> -f 

b '3 Lab IgZi, ij 8 and thus the free indices of the product of D-matrices 

are pair-wise contracted. If the contractions are restricted to "planar" 

configurations the leading behavior in (l/NC) is obtained, and the 

product of matrices collapses to trivial form. The only nontrivial point 

is to determine the number of distinct planar pair-wise contractions of 

2n vertices. The combinatoric factor is easily found to be (2n)! 
(n+l)!n! 

c71. Equation (6) for hi(r) becomes 

g2r2/EIII m 
hi(r) = 18 s 

dT e 
-(Vi-Vy)r co 

c 
1 

n=O n! (n+l>? 
0 

(8) 

Defining 



-6- 

it is noted that the sum over n in eq. (8) can be explicitly evaluated 

as J1(25~)/E~, where J1 is the first Bessel function. The integral over 

r can then be analytically done giving 

hi(r) = f(jm - (vi-$)) . (gal 
Putting in one gluon exchange expressions for Vy 8, and using 

, 

IgF?/ = STEM: from eq. (l), yields 

(9b) 

for the effective color singlet. static potential in the presence of non- 

zero <G2>. Note that for small r, V N -(4as/3r) + O(r3), as shown 

previous1 y CSI, and for r 2 0.5 f 

V 
2rrM; 

l(r) -+ 3 
f f- r + (0.144 GeV2)r . 

This compares very favorably with static potentials used to fit the 

upsilon spectrum [51 which have V(r) 
2 -t (0.155 GeV )r, and those used to 

give a Regge slope of 0.9 GeV -2 which have V(r) -t (0.14 GeV2)r. In 

fig. 4, the potential of eq. (9b) is compared with conjectured phenomeno- 

logically successful static potentials. 

The effect of the vacuum magnetic field on the static potential can 

also be computed to leading order in (l/M ) 2 
Q giving an effective 

"hyperfine interaction" 

VHF(r) = _ $ ( 1 _ ‘(‘3+l) - ) TT J$-q7 (lo) 
where S is the spin of the Qa pair. 
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Finally, the physical relevance of these results must be addressed 

both philosophically and numerically. As stated previously, we calculated 

a static potential with complete neglect of quark motion, which explicitly 

ignores the unavoidable retardation effects well known in bound state 

problems. Thus, the applicability of the derived potential to bound 

state problems is neither direct nor assured, but is hopefully an approxi- 

mation to the relevant physics. Also, it is straightforward to estimate 

the contributions from neglected higher order multipoles to our process 

using one simple assumption. It is conjectured that because the scale 

of the vacuum fluctuations of Ga Gpv is MO, 
w a 

higher dimensional operators 

that occur in the expansion by increasing the number of derivatives or 

fields differ only by their power of MO. Using the next order term of 

the interaction Hamiltonian, eq. (4), the first nonleading term is 

suppressed by a factor of roughly (1/3!)(rMo/2)2. For r 5 1 fermi, 

this is less than a 10% correction. Therefore, the calculation is 

technically limited to a distance of less than a fermi. This should 

be adequate for attempted applications to heavy quarkonia. 
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FIGURE CAPTIONS 

Fig. 1. QG pair interacting via one gluon exchange and coupling to the 

vacuum fields. 

Fig. 2. "Octet clump" of Q&gluon condensate coupling. 

Fig. 3. Vacuum gluon coupling to a Qg pair in a projected color octet 

state. T,/& is the normalized color octet projection operator. 

Fig. 4. Derived potential compared to two successful phenomenological 

potentials. The numbers refer to the following references: 

(1) this work; (2) A. Martin, Phys. Lett. 93B (1980) 338; and 

(3) Cornell group, Ref. [2]. We use os = 0.4. 
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