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ABSTRACT 

We present the results of an analytic calculation of the corrections 

of relative order a2(me/mll) to the muonium ground state hyperfine 

splitting due to exchanged photons. We compare theory and experiment, 

taking into account these corrections and some radiative-recoil contri- 

butions described in an accompanying paper. 
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The comparison of the measured hyperfine splitting (hfs)' in the 

muonium ground state with the quantum electrodynamics (QED) prediction2 

currently provides the most stringent test of relativistic two-body bound 

state theory. This paper describes the calculation of the recoil correc- 

tions (excluding radiative corrections) of relative order a2(me/mP). 

(Here a is the fine structure constant and me and mu are the electron and 

muon masses.) The Rn c1 -1 terms in order a2(me/mP) have been calculated 

previously3y4 and the Rn(mu/me) terms have been shown to vanish.5 We 

present here the results of an analytic calculation of the remaining non- 

logarithmic contributions. The so-called radiative-recoil corrections 

are described in an accompanying paper. 6 

In the Bethe-Salpeter approach, the energy levels of a two-particle 

bound state are given by the positions of the poles in the four point 

function. Since the Coulomb potential dominates the QED bound state 

problem, we start with an analysis of the Coulomb ladder. Each loop of 

the ladder is separated into two pieces. One piece, which we call the 

"nonrelativistic loop", is treated exactly and leads to a three-dimensional 

wave equation whose solution yields the lowest order wave functions and 

energy levels, The other piece, which we call the "remainder loop," is 

treated perturbatively along with the various two-particle irreducible 

parts of the four-point graphs. There are infinitely many ways to partition 

the Coulomb ladder loops into a lowest order part and a perturbative part 

and, indeed, a variety of approaches have been presented in the literature.' 

In general, one must include at least the Coulomb-Schrodinger part of 

each loop in lowest order, since this part is essentially non-perturbative 

in nature. 
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For muonium, it is convenient to take advantage of the small mass 

ratio (me/m IJ << 1) to incorporate more physics~into the lowest order 

problem. By requiring the muon to be on its positive energy mass shell, 

and setting aside some terms involving m -1 
1J 

, one arrives at the Gross 

equation8 for the bound state wave functions 

(He +%h, = E; $, , (1) 

where H = e z,*G + Beme is the Dirac Hamiltonian, "v is an effective 

potential,g +, includes a factor of k(l+BU), and E' is related to the 

total energy E through E' = (E2-mi+mz)/2E. Obviously, Eq. (1) incorpo- 

rates the relativistic properties of the electron, while most of the 

dynamics of the muon have been suppressed except for effects associated 

with the reduced mass. 

The shifts in the energy levels can be calculated from standard 

perturbation theory, which through second order in the perturbation 

yields (see, e.g., Ref. 4) 

As a consequence of the reduction to the three-dimensional wave equation, 

the four-dimensional kernels z are terminated by Coulomb interactions at 

each end. In carrying out the calculation, one finds that the precise 

decomposition of contributions between first and second order in "K is some- 

what artificial, since a given ?? does not correspond to a definite power 

of a. In fact, it is sometimes convenient to remove certain pieces of 

the first order terms and combine them with second order terms to obtain 

an expression that is simpler to evaluate. Here we shall describe the 

main lines of the calculation without attempting to detail these refinements. 
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First we discuss the first order in "K. Any given kernel contains 

many orders in c1 and me/m u; but in general, as~the number of loops 

excluding "nonrelativistic loops" increases, the least order in c1 increases. 

For the present work, it turns out that we need up to two such loops. We 

can use the propagator decomposition described earlier and the Gross 

equation to rearrange the kernels. In this way we organize the kernels 

so that there are no more than two loops and no "remainder loops". The 

final set of kernels is shown in Fig. 1. Note that the subtracted one- 

100~ kernels have the effect of removing lower-order contributions that 

are over-counted in the two-loop kernels. For example, each of the kernels 

in the first line of Fig. 1 contains leading order (Fermi splitting) 

contributions; altogether, the leading order appears exactly once. 

It is interesting that one arrives at the set of kernels shown in 

Fig. 1 regardless of the choice of wave equation. 10 Different choices 

of wave function manifest themselves as different decompositions into 

lowest and second order contributions in Eq. (2). That is, any feature 

not incorporated in the wave function is restored in the second order 

terms. The use of the Gross equation means that the relativistic pro- 

perties of the electron and certain recoil corrections are in the wave 

function rather than in the sum over states. 

In carrying out the evaluation of the first-order perturbation theory 

matrix elements, it is useful to have covariant denominators for all of 

the photon propagators, rather than the awkward noncovariant denominators 

contained in the Coulomb photon exchanges C and the transverse photon 

exchanges T. In order to accomplish this, we carry out a transformation 

within the kernels to the covariant Feynman gauge. It is still convenient 

to distinguish photons with spatial indices (denoted by V) from those with 
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temporal indices (denoted by 8). The net effect of the gauge transforma- 

tion on the kernels is that T + V and C +d for the set shown in Fig. 1. 

There are, in addition, residual gauge terms associated with the external 

fermion lines. Those associated with the muon line vanish because the 

muon is on mass shell in the Gross equation. Those associated with the 

electron line give contributions that tend to be smaller than the order 

of interest , partly because of cancellations between the two-loop and one- 

loop kernels. Gauge terms arising from the graphs labeled (TCT) do con- 

tribute in relative order aL(me/mP). However, these contributions are 

precisely cancelled by terms that arise from the second order perturbation 

expressions. 

At this stage we wish to expand the first order energy shifts in 

powers of me/m . 
v 

Thus, it is tempting simply to expand the muon factor 

of each graph in powers of l/m . 
1-I 

However, the presence of previously 

calculated terms of relative order cr(m,/m,) Rn (m,/m,) shows that this 

is not possible.ll We organize the calculation so that these terms as well 

as the leading order contributions, can be identified and extracted at 

the start. We also note that individual graphs contain spurious non- 

recoil contributions. These are eliminated before integration by combining 

kernels generated by permuting photon connections on the muon leg (denoted 

by a brace in Fig. I). This procedure also eliminates spurious 

a2(me/mP)Rn (m,/me) terms.12 Thus, we are finally able to make a direct 

-1 m 
1-I 

expansion before integration. 

Having carried out these procedures, we find that in the two-loop 

contributions the muon factor always contains at least one B-function of 

the time component of momentum. For most of the contributions we can, 

in the order of interest, neglect the dependence of the kernels on the 
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momentum variables of the wave function. Then we are left with certain 

seven-dimensional integrals to evaluate. We treat these by combining 

denominators using Feynman parameters and carrying out the momentum 

integrations. We are then able to construct six-dimensional integrals 

involving only non-relativistic propagators that lead to identical 

parameter integrals. These six-dimensional integrals can be evaluated easily 

by Fourier transforming to coordinate space. There are some cases in 

which we must retain the wave function momentum dependence in the kernels. 

However, it is then legitimate to make non-relativistic approximations, 

which eliminate the time-components of the momentum integrations. The 

nine-dimensional integrals that arise in this way are relatively straight- 

forward to evaluate using complex integration. The twelve-dimensional 

integral associated with the kernel VOV can be computed by using a 

variant of the method of Dalgarno and Lewis. 13 

Finally, let us discuss the calculation of the second-order energy 

shifts. In second order in "K at least one of the kernels must involve 

the hyperfine interaction, but one may be spin independent. A spin 

independent contribution does arise from R between Coulomb potentials 

and from the convection part of a transverse photon interaction. Because 

of the structure of c, the contribution where the hyperfine interaction 

is taken twice in the sum over states has two or more Coulomb interactions 

between hyperfine interactions. It can be worked out easily by using the 

Dalgarno-Lewis method. The result, including contributions from the 

a"K/aE' term in Eq. (2), agrees with a calculation of Caswell and Lepage.14 

The contributions involving a spin independent factor combine naturally 

with certain terms from the first order contribution; this procedure will 
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not be 'detailed here. The resulting sum over states is also evaluated by 

using the Dalgarno-Lewis method.15 

The contributions from the kernels 

Av = EF 
i 

1+&2-3cL 
2 

% 'n(mp'me) + 
Tr m -m 

P e 

+ @(a, he/m,> ) ] 

of Fig. 1 are 

a2 “R m,+m 2Rncl -'-8Rn2+3$ 
1-I 

(3) 

where mR = mem,/(me+mll) and EF = (8/3)u4</m m 3 2 
eu 

= (16/3)a2cR_(mR/mem,). 

This expression includes all terms previously calculated that do not 

involve radiative corrections, and a new contribution, which is underlined. 

-1 Because we have expanded in powers of m 
1-i ' 

the new term is not applicable 

to positronium. Its contribution to muonium is -2.2 kHz. Other new con- 

tributions arising from radiative corrections are given in an accompanying 

paper. They have a net value +l.l kHz (uncertainty guessed to be -0.5 

kHz). With this plus other known contributions,2 the theoretical value 

of the muonium hfs is 

Av(theory) = 4 463 303.3(1.7)(3.0) kHz . (W 

Here we have use the ac Josephson value for ~1. The 1.7 kHz uncertainty 

comes from combining a 1.4 kHz uncertainty in m 
lJ 

(the muon magnetic 

moment)l with a 1.0 kHz uncertainty in the ac Josephson value for a. 

The bulk of the 3.0 kHz theoretical uncertainty (reduced from 5.0 kHz by 

the work reported here) is due to a refined binding correction to the 

electron anomalous moment.16 This value is in good agreement with the 

experimental result 

Av(experiment) = 4 463 302.88(.16) kHz . (4b) 
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Since the theory prediction uses as input the value of the fine 

structure constant a, one can regard the measurement of the muonium hfs 

as a means for determining a. Recent refinements in the theory of the 

electron anomalous magnetic moment have resulted in greater precision in 

the determination of a from pure elementary particle physics.17 Comparison 

of these results could, when the theoretical uncertainties in the muonium 

hfs are reduced further , give bounds on the scales of internal electron 

structure purely from particle physics measurements.17 Comparison of a 

from the muonium hfs with condensed matter determinations provides an 

important test of the internal consistency of QED, as well as of our 

understanding of the theory of the condensed matter measurements. We 

list below the values of a determined from the muonium hfs, the electron 

anomalous moment,17 the ac Josephson effect,18 the quantum Hall effect," 

and a combination of the quantum Hall and ac Josephson measurements:l' 

-1 a (muonium hfs) = 137.035969(21)(46) 

-1 a (anomalous moment) = 137.035993(5)(g) 

a-l (ac Josephson) = 137.035963(15)(?) (5) 

a-l (q uantum Hall) = 137.035968(23)(?) 

a -' (ac-J. and q.H.) = 137.035965(12)(?) . 

The first errors listed are experimental and the second theoretical. The 

question mark in the condensed matter determinations indicates that the 

theoretical uncertainties are unknown; they are possibly very small in 

comparison to the experimental ones. The agreement is satisfactory, but 

further reductions in the errors and a better theoretical understanding 

of the condensed matter measurements are clearly desirable. 
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FIGURE CAPTION 

Fig. 1. Kernels contributing to the muonium hfs to the order of interest. 

Dashed lines represent Coulomb interactions (C) and wavy lines 

represent transverse photons (T). The brace indicates that photon 

lines are to be inserted in the muon leg in all possible ways. 

The labeling in parentheses indicates the order of attachment of 

the photon lines to the electron leg. 
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