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vacuum with non-vanishing vacuum-expectation values allowed for nontrivial 

operators. We include also some errata for the original paper. 
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This not,e is an extension of the discussion of our previous paper of the same title’ 

and is meant to be read in conjunction with that paper. We pointed out there that, 

using BPHZ subtraction prescriptions, one obtains a discrepancy between the operator 

product expansions for a scalar theory with a broken symmetry vacuum if one expands 

about the broken vacuum or if one expands about the asymmetric vacuum but allows 

nontrivial operators to have nonzero vacuum expectation values. (We refer the reader 

here to some errata for that paper’ which are listed as an appendix to this note.) In a 

note-added-in-proof we remarked on an apparent scheme-dependence of this result. 

The purpose of this note is to show that, when q2-dependence of operators is 

carefully defined, the results are scheme independent, and that there is a discrepancy 

between the two operator product expansions. 

It has been pointed out by U. Ellwanger and subsequently also by C. Taylor and B. 

McClain2 that, using any form of dimensional regularization and the equation 

- 
7i = -/la t?lZi f 

d/J 
i”m,q52, . . . 

gives to leading order in X 

L 

7m = f $2 = 7m . 

(A-1) 

(A.21 

Using this result one then finds no discrepancy between the two operator product 

expansions at this order. However, using BPHZ expansion of Feynman integrals we 

found 

,. 
7m = $2 = 0 (A-3) 

to leading order in X. As commented in our note added is proof this apparent scheme- 

dependence of the results is unsatisfactory and needs explanation. 

The explanation lies in the fact that Eq. (A.l) is incorrect unless the subtraction 

scheme used is mass-independent - which it is not in these theories. We define the 
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quantities +m and ;Y42 by the equations 

Let us first study corrections to the mass t.o leading order in X in the symmetric theory. 

The only diagram which contributes in Fig. 2(b), which clearly dyes not introduce any 

q2-dependence. Hence regardless of the subtraction prescription used the correct result 

is +m = 0. This does not imply A”, - 1 is nonzero, in fact there is a contribution to 
-2 

zm - 1 from this diagram of the form 

* 2 zm- 1 = [(X/32n2) ha (m2/p2) + constants] . V-5) 

Hence it is quite clear that Eqs. (A.l) and (A.2) are incompatible because of the mass- 

dependence of Zm. 

For the shifted theory there is a q2-dependence to the mass which arises from the 

second diagram of Fig. 2(a). This gives a contribution to Z& - 1 of the form (for 

q2 > 7n2) 

while the remaining two diagrams give 

fX 1 rn2 
- h - + constants 
16n2 p2 

(A*? 

where the two terms in (A.6) come from the remaining diagram of Fig. 2(a) and from 

Fig. 2(b) respectively. Thus one sees that, although p(a/ap) En Zm-is the same in 

the two theories to this order, the q2- dependence, which is the subject of our paper, is 

different. 

The situation is quite similar for ;Y42. The only diagram which contributes is shown 

in Fig. A.l. Once again the integral requires subtraction but is q2-independent, thus 
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again Eq. (A.l) is incompatible with the definition (A.4) of the quantity q42 because of 

the dependence of the subtraction on other scales such as p2 or m2 even in the limit of 

very large q. 

The discrepancy between Eqs. (A.l) and (A.4) is not peculiar to the unshifted 

theory. As can be seen from Eqs. (A.5) and (A.6) this discrepancy arises as well in the 

shifted theory. The result (A.2), which is obtained by using the incorrect Eq. (A.l) 

in both treatments, gives agreement between the two treatments but is not correct for 

either. Hence it must be regarded as a spurious result. It occurs because it must be true 

that the p-dependence of the Z’s have this relationship, in order that the well-known 

property that the subtractions of the symmetric theory are sufficient to render finite the 

shifted theory, but has no bearing on the q2-dependence in question. 

Thus we reiterate the conclusion reached in our paper, that the q2-dependence of 

next-to-leading-twist terms differs in the two procedures. This result is now understood 

to be subtraction scheme-independent when the q2-dependence is correctly calculated, 

without the use of Eq. (A.l) which is invalid because of the dependence of the counter- 

terms on other mass and/or momentum scales. 
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Figure Caption 

Fig. A.1. The leading order correction to N2(42) in the symmetric theory. 

4 



Appendix - Errata for Phys. Rev. D 26, SO1 (1982) 

1. Equation (2.2) should read: 

qSo = 21/2+ ; MO = Z,M ; X0 = ,?+,A . 

2. Eliminate the phrase: ‘and defining all Feynman integrals by dimensional continua- 

tion” . 

3. Replace Eq. (2.7) by the equation: 

2 rrn 
m(q2) = 42) !!- 0 - d 
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Fig. A.1 
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THE OPERATOR PRODUCT EXPANSION AND VACUUM INSTABILITY* 

Subhash Gupta and Helen R. Quinn 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

P* 4, after Eq. (2.2): "minimal" should read "BPHZ" 

P* 5, after Eq. (2.4): M2 = -2m* should read m2 = -2M2 

P* 5, change Eq. (2.5) to: 

L-z c.t. = 3 (z-1) (aupj2 - i$ (2,z* - z;zhJ 

-- i m2 -$ ZAZ2 - 
( 

+ z;z - 1 p2 - 
J 

mgfi 3, . (ZAZ2_l)P3 

- g (z,z2-l)P4 . . 

p. 6,- insert a sentence after Eq. (2.7): 

We note that (2.6) could also be derived-using the operator 

product expansion, with the usual Zimmermann3 prescription 

for N2(+2), which defines <N2($2)> = 0. 

P. f-5, change Eq. (2.9) to: 

Fb,q) = ;o(q2,1;12(q2)).n + ?2(q2,M2(q2))N2($2(x)) 

+ operators of dimension 1 4 . 

(2 -5) 

(2.9) 

where 8(q2) = M(q2)(q2/q2)Ym 0 0 l 

P. 6, change Eq. (2.10) to: 

D(q2) = 

+ higher order corrections . (2.10) 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
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P* 7, change first line and Eq. (2.11) to: 

In (2.10) we have defined 

c2(q2,M2(q2)) = 2 q4 ($~.2[+i-jy)] . (2.11) 

P* 9, change Eq. (3.5) to: 

F(x,q2) = C&12)'n + c1(q2) Nl(p(x)) 

+ c2 (s2) 
N2(P2(X)) + c; (s2) 

q2 q2 N2(X2 (4 

+ operators of dimension 3 and higher (3.5) 

P* 10, change Eq. (4.1) to: 
- 

G(q2) = J d4x eiq'X(k(j,,(x) j,(O)lk) . (4.1) 

P* 11, after Eq. (4.6): 

. . . y, # qrn and ?, = q = Y $2 P2 
= yx2 = y9+ = 0. 

P* 13, line 12: Reference to "5" should be to "4" 

References: 

Reference 5 should be Reference 1. 

Reference 4 should be Reference 3, deleting Reference to Gupta. 

Reference 1 should be Reference 4. 
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ABSTRACT 

This paper examines the operator product using the example of scalar 

field theories with unstable vacuua. We find that an operator product 

expansion about the unstable vacuum, with the additional assumption that 

non-trivial operators subtracted with respect to this vacuum have non- 

vanishing expectation value in the physical vacuum, does not reproduce 

the predictions of the operator product expansion about the stable vacuum, 

except for the leading-twist contribution. We discuss the implications 

of this for applications of the operator product expansion in QCD. 

Submitted to Physical Review D 
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1. INTRODUCTION 

The operator product expansion and its generalizations are a basic 

tool in the analysis of QCD effects. In such analyses it is assumed that 

whatever non-perturbative effects occur can be absorbed into operator 

matrix elements, and that the calculation of large Q behavior of coeffi- 

cients can be done using renormalization group improved perturbation 

the0ry.l It is also a widely held belief that the non-perturbative 

effects modify the vacuum -- that is to say that the physical vacuum 

differs significantly from the vacuum defined order by order in pertur- 

bation theory. One signal of this difference is that composite operators 

such as $(x)Jl(x) or Fuv(x)FPv(x) may acquire non-vanishing expectation 

values in the physical vacuum, even though their expectation values in 

the perturbative vacuum have been defined to zero via subtractions. The 

non-vanishing of <$(x)$(x)> has long been a feature of the PCAC under- 

standing of the pion mass via the relation: 

rni ff = m q GwJlw > . 

Non-vanishing vacuum expectation values for other operators have also 

been much discussed in recent literature.2 

The purpose of this paper is to investigate the question of whether 

these two viewpoints are mutually consistent. The operator product 

expansion involves subtracted operators and is made with reference to 

particular choice of vacuum. The question studied here is whether an 

operator product expansion about an unphysical vacuum can reproduce the 

results of an expansion about the correct vacuum simply by allowing non- 

trivial vacuum expectation values for the various operators of the theory. 
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By "results" we mean in particular the predictions for Q2 evolution of 

physical processes. 

We use the case of spontaneously broken scalar theories to investi- 

gate this point. In such theories, as is well known, one can perform a 

shift of variables and rewrite the Lagrangian in terms of variables which 

are fluctuations about the classical vacuum. If one performs an operator 

product expansion for this shifted theory one can evaluate the Q2-behavior 

of coefficients for any physical process. These results we consider the 

correct, or physical, answers for this theory. However one can also 

consider the operator product expansion in terms of the variables of the 

original unshifted theory. We compare these two expansions and show that, 

even when the operators appearing in the expansion of the unshifted theory 
- 

are allowed to acquire vacuum expectation values, the results for Q2- 

evolution of the nonleading-twist contributions differ. 'Mathematically 

the reason for this is quite clear. The process of shifting variables 

and the renormalization group improvement of the operator coefficients 

both involve summation of infinite sets of perturbation theory graphs. 

The reordering of these summation processes, together with the subtraction 

of divergent loop graphs, can certainly change the answer. 

Section II of this paper contains the details of these calculations 

for real scalar field theory. We show that the operator expansion about 

the unstable vacuum does not reproduce the results given by the shifted 

theory for the next-to-leading (or higher) twist terms. Section III 

contains a similar discussion for the case of the operator j(x)j(O) in 

a complex scalar field theory and in Section IV we examine the effect 

for matrix elements between states other than the vacuum state. In all 
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cases we find the two approaches do not agree beyond the leading twist 

term. 

In Section V we turn to a discussion of the implication of these 

results for the QCD case. We suggest that the problems observed in our 

example, for which the instability of the vacuum is observable even at 

the classical level, will also occur in a case where the instability is 

due to non-perturbative effects. However in this latter case we know of 

no way of performing the equivalent of the shifted scalar field calcula- 

tions, that is of defining a consistent expansion about the physical 

vacuum, so that we cannot directly check our suggestion. 

II. REAL SCALAR FIELD THEORY 
- 

We begin by analysing the propagator in a real scalar field theory 

with a negative M2 parameter. The Lagrangian is 

We will renormalize the theory by introducing the resealings 

$0 
= z+$ 

MO = ZmM xO = XUEZA 

(2.1) 

(2.2) 

and defining all Feynman integrals by dimensional continuation. The 

counter-terms will be fixed by minimal subtraction.3 

Let us first consider the usual treatment where we introduce a shift 

to the classically stable vacuum 

(I = v+p with $ xv2 = -M2 , (2.3) 
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The Lagrangian can then be written as 

L? = y+ (aFip)2 - + m2p2 - 4 grnAo3-~ 3, 
4!o +%t . . 

where we have introduced the notations 

2 m = 4’M2 ; A=g2 , 

and the counter-terms are given by 

23 c.t. = 4 (z-1)(8@2 - $ (Z,Z2 - z;z)P 

12 3 --m 2 ( 2 ZAZ2 - 3 z;z -1 J p2- $ ZAZ2 - . ( l)p3 

- $ (Z,Z2-l)p4 . . 

(2.4) 

(2.5) 
- 

Notice that the mass counter terms in this theory always occur in the 

combination given in Fig. 1 which contributes exactly (ZiZ - l)m2. 

The quantity Zi- 1 is thus given, to lowest order, from the diagrams 

of Fig. 2 (Z=l to this order). We notice that the diagrams of Fig. 2(a) 

occur only in the shifted theory and that their contribution to Z and m 

hence to y, in this theory is non-zero. Using the usual renormalization 

group arguments one can show that for large q2 the propagator to leading 

order in X has the form 

d(s2) = 1 

q2 - m2(q2) 

(2.6) 
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where ' 

2 a Y, = -1-I - 
au2 A~,E 

RnZm . (2.7) 

We note that (2.6) could also be derived using the operator product expan- 

sion, with the usual Zimmermann 4 prescription for N2($2), which defines 

<N2($2)> = 0. 

We consider the result (2.6) to be the correct result to this order. 

We now examine whether this same result is obtained if, instead of pro- 

ceeding directly to the shifted theory, we calculate d(q2) from the 

operator product expansion in the unshifted theory, but 

non-trivial operators to acquire a non-vanishing vacuum 

Thus we will study the quantity - F(x,q) = s d4< eiqs T[c$(~) 9(y)] . 

The usual operator product expansion for this quantity, 

then allow the 

expectation value. 

(2.8) 

using the 
3 

Lagrangian (2.1) and ignoring temporarily the negative value of M", is 

F(x,q) = :,(q2,fi2(q2))*n + c^2(q2,M2(q2))N2(92(x)) 

+ operators of dimension 2 4 . (2.9) 

where fi(q2) = M(qt)(q2/q$‘im. The quantity N($I~(x)) is (2.9) denotes a 

composite operator subtracted as an operator of dimension 2 with respect 

to the naive perturbative vacuum (that is in lowest order the state such 

that $1~) = 0). Now we take the physical vacuum expectation value of 

(2.9) to find the propagator, and again use a renormalization group 

improved analysis. This gives, to the same order as kept in (2.6), 



'2 
D(q > = 

+ higher order corrections . 

In (2.10) we have defined 

(2.10) 

?2(q2,M2(q2)) = Z q4 ($)'" [++y)] . (2.11) 

The quantity (?i- 1) comes from the diagram of Fig. 2(b) only, so 

that it is clear that $, # y,. Furthermore !i # qrn. Thus it is clear 

although the leading terms in (2.6) and (2.11) are the same, the q 
2 

that, 

evolution of the terms of next-to-leading twist is different. [Clearly 

these terms can be made to match at any one q; by a choice of <N2(+2(x))>.1 

This discrepancy obviously will not be improved by performing a higher 

order calculation. Similar discrepancies will also occur in the q2- 

evolution of all higher twist contributions. 

The discrepancies between (2.6) and (2.11) can be understood in a 

straightforward fashion. As shown in Fig. 3(a) the zeroth order propagator 

of the shifted theory corresponds to an infinite sum of diagrams, which 

contribute to all n-point functions in the unshifted theory. Similarly, 

as in the example shown in Fig. 2(b), any higher order diagram of the 

shifted theory can be related to an infinite sum of diagrams of the un- 

shifted theory. Thus the perturbation expansion of the shifted theory 

arises from summing terms like hnz (XI$~)~ in the unshifted theory. 

This resumming of an infinite number of graphs which are higher order in 

X in the unshifted theory can clearly change which diagrams are identified 

as leading logarithmic corrections in the two cases. Thus the differences 

between the various y's are understandable. The collection of diagrams 
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summed by the inclusion of anomalous dimension effects is simply different 

in the two cases. Furthermore discrepancies can arise because many 

diagrams which are unsubtracted in the unshifted theory are first summed 

in the shifted theory and then the summed graph is subtracted. Our point 

here is that our results should not be regarded as peculiar, mathematically 

they are not unexpected. They indicate that simply allowing non-trivial 

operators to acquire vacuum expectation values does not achieve all the 

resummations necessary to turn the unshifted theory into the shifted 

theory. 

III. COMFLEX SCALAR FIELD THEORY 

The phenomenon discovered for the propagator in the previous section - 

persists for other Green's functions. Let us consider a slightly more 

interesting theory, the complex scalar field theory 

again with M2 < 0. In theory we can define a current 

(3.1) 

(3.2) 

which is conserved for M2 > 0 but not in the broken theory. However 

since the breaking is soft the anomalous dimension associated with this 
n 

current is zero even in the ML < 0 case. Now let us consider the operator 

product expansion of the quantity 

F(q,x) = J d4< eiqs ju(T) jv(y) . (3.3) 
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As,before we can introduce shifted fields 

4 = v-tp+ix 
fi 

(3.4) 

with 

and then, as before, define the shifted Lagrangian. [Renormalization is 

dealt with as in the previous example.1 The operator product expansion 

for the product of two currents then takes the form 

whereas for 

F(x,q2) = co(q2) l I f c1(q2) N@x)) 

+ 
c2 (s2> 

N,(P~W) + 
c; (s2) 

q2 q2 
N2(x2 (4) 

+ operators of dimension 3 and higher 

the unshifted theory we have 

(3.5) 

9(q2,x) 
; 

= ~0(q2).It+ 2 N ( * (x)) q2 2@$ 

+ operators of dimension 4 and higher (3.6) 

As in the previous example we allow <N($"$(x))> to be non-zero for the 

unshifted theory. We obtain 

Ws2 ,x>> = a+ 

for the shifted theory, whereas for the unshifted theory we find 

<+(q2,x)> = a + 
G2(q;, 

q2 (N2(+*4’(X))) 

(3.7) 

+ higher order corrections . (3.8) 
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The constants a, b, i and c2 in (3.7) and (3.8) are numbers calculated 

in perturbation theory in the usual way; their values need not concern 

us here. The essential point is that the leading twist contributions to 

(3.7) and (3.8) are the same, but as before the quantities y, and q are m 
different and q 42 = 0 to order A. Hence again the q2-evolution of the 

non-leading twist terms obtained in the two calculations are different. 

IV. OTHER MATRIX ELEMENTS 

The operator product expansion is valuable precisely because of the 

fact that the coefficients are independent of the matrix elements, and 

hence the q2 -evolution of different processes can be related, So far we 

have discussed the vacuum-to-vacuum matrix elements. Let us now discuss - 

some external particle states to see whether these fare any better. 

Consider for example a single particle state of momentum k, which 

we will denote by Ik>. Consider the connected Green's function 

G(q2) = s d4x eiq'X(kljll(x) jv(0)lk) . 

For large q2, in the shifted theory one finds G(q2) dominated by the terms 

G(q2> = c2(q2) (k/N2(p2(0)>Ik) + "112) (klN2(x2)lk) 
q2 (4.2) 

+ terms suppressed by further powers of q2 and @(X2) . 

In the unshifted theory the same matrix element of a product of two 

currents is given, to this order in l/q2 by 
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6 = G* GA*> 
q* 

(klN2(4*O(o)) 1 k) 

+ terms suppressed by further powers of q* . (4.3) 

To leading order (4.2) and (4.3) give the same answer for G. (Note to 

this order q $2 = Yp2 = Y 
X2 

= 0.) Once again discrepancies appear when 

we look at the next-to-leading contributions. Contributions which in the 

shifted theory come from higher order terms in c2 or c ; involving three 

point vertices, e.g., Fig. 4(a) will give terms of order 

m* (4$ ( Y,+Y 
) 

AG a 
cl4 

p2 (klN2(p2)1k) ; or (P + x> (4.4) 

whereas in the unshifted theory such terms will arise only as part of the 
- 

coefficient of the N4((4*$)*) operator as in Fig. 4(b) and hence will 

appear as 

Also at this order there will be terms such as M2(q$(klN2($*$)lk) s4 
(4.5) 

(4.6) 

To the order of accuracy of these expressions (y to order A only) 

y, # qrn and ? = y = y ($2 p2 x2 = $4 = OS Thus we are once again led to 

conclude that the two series can only match for the leading term in the 

expansion, with the q* -evolution for all q* -suppressed contributions 

differing in the two cases. 
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v. COMMENTS AND CONCLUSIONS 

The preceding calculations show that, for the case of spontaneously 

broken symmetry, one does not obtain correct results by making an operator 

product expansion of the theory about the unstable vacuum and then 

allowing the physical vacuum matrix elements of the operators thus 

defined to be non-zero. The leading-twist term is given correctly but 

not the higher twist terms. 

We have identified the source of this difference in the infinite 

graph resummation involved in going to the shifted theory. The problem 

arises partly because the vacuum values of an operator can be of order 

of an inverse coupling constant. This can destroy the perturbative power 

counting for the unshifted theory, and mean that terms which are naviely 

highly suppressed by powers of coupling constant are actually relevant 

contributions to the correct result. The fact that the propagator itself 

is modified means that contributions which in the expansion are regarded 

as suppressed by many powers of qL can contribute at next-to-leading 

twist to an effective shift of a mass scale, and to a change in the 

anomalous dimension associated with that mass. 

Both these effects are relevant to the QCD case. It is clear that 

non-trivial values for any composite operators will modify the two-point 

Green's function. Furthermore it is commonly assumed that the quantity 

olFF acquires a finite vacuum expectation value. This means that the 

vacuum-value of the operator FF is assumed to be of order l/cl and thus 

that the kinds of problems encountered in our example are relevant to 

this case. It is of course clear that our example has not dealt with 

non-perturbative effects in any way. However we feel that a method which 
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fails to achieve results which we know are just a resummation of pertur- 

bative graphs will not fare any better when the instability of the vacuum 

arises from non-perturbative effects. 

If one believes that the operator product expansion in QCD cannot be 

trusted except for the leading twist terms what results are changed? 

The entire perturbative QCD program is based on a proof of factorization 

which explicitly use the operator product appr0ach.l Our analysis does 

not indicate any problem for this approach, since the discrepancies we 

find would not invalidate the factorization. Thus the majority of QCD 

perturbative calculations, which discuss only leading-twist effects, are 

unaffected by this discussion. However we would suggest that attempts to 

extract nonleading-twist effects from perturbative QCD calculations5 may 

be subject to the diseases found here for the scalar theory. 

Finally this paper would not be complete without some comment on 

the work of Shifman, Vainshtein, and Zakharov who have led the effort to 

incorporate the effects of a non-trivial vacuum in QCD calculations. In 

their work the quantity aFF is assumed to have a vacuum value. However 

this leads to the problem discussed above that contributions, which 

naively are suppressed by additional powers of q and additional factors 

of a may resum to alter results. 
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FIGURE CAPTIONS 

Fig. 1. The combination of counter-terms which always appear together 

as a mass counter-term. 

Fig. 2. (a) Lowest order diagrams which contribute to the mass counter- 

term and contain three-point interactions. 

(b) Lowest order diagram which contributes to the mass counter- 

term and has no three-point interactions. 

Fig. 3. (a) Expansion of shifted zeroth order propagator in terms of 

diagrams of unshifted theory. 

_ (b) Expansion of shifted one loop graph in terms of diagrams 

of unshifted theory. 

Fig. 4. (a) Contribution to the coefficient of p* (or x2) which contains 

three-point interactions (p and x lines are not distinguished). 

(b) Similar diagrams appear as a part of N4(# 4 ) coefficient in 

unshifted theory. 
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