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1. INTRODUCTION 

From considerations based on QCD one expects hadrons consisting only 

(or mainly) of g1ue.l The possibility of identifying as glueballs the 

states i(1240) and 8(1660) recently discovered in + + yX,2y3 has made it 

even more interesting to get precise predictions from QCD. Since one 

still cannot compute the hadron mass spectrum from first principles one 

must resort to phenomenological models keeping as many as possible of the 

properties of the full theory. In the case of glueballs, it is of special 

importance that the model can handle massless particles, and also treat 

gauge-invariance in a satisfactory way.4 One such model, and the one to 

be used here, is the MIT bag. The aim of this work, which is in essence 

technical, is to calculate to @(us) the spin-dependent energy shift due 

to gluon-gluon interactions in the bag. Several authors have already 

dealt with the properties of glueballs in the bag mode1,5-8 so we shall 

only briefly summarize the general results concerning the mass spectrum. 

Following the argument of Ref. 7, we will assume that spherical glue- 

balls exist in the bag model. Hence we can use the static spherical 

cavity approximation which has been successful in the case of low-lying 

mesons and baryons. The effective Hamiltonian in the n-gluon sector 

takes the formgs10 

H = 4nR3 + C c ems cas 
3 c 

niXi + H 
R int 

--+---- 
i R R (1) 

where H int has a nontrivial color and spin dependence. The first two 

terms (volume and kinetic energy) are well known, and the gluon-gluon 

interaction H int' which also includes self-energies, will be dealt with 

in detail below. The "center of mass" term (Ccms/R) can be estimated 
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using the method of Donoghue and Johnson,lO but it is still not clear 

whether the zero point or "Casimir" energy (C cas'R) is of importance. 

(In earlier works, g the two last terms in Eq. (1) were lumped together 

with the self-energy part of Hint in a purely phenomenological term Zo/R 

with Z 0 = -1.8.) 

In this paper we shall derive explicit expressions for the two-gluon 

interaction part of Hint in Eq. (1). However, a&will become clear later, 

we are at this stage not ready to give any detailed predictions for the 

mass spectrum. 

The next section outlines the calculation of the effective Hamiltonian 

leaving most of the technicalities to the appendices. In the last section 

we consider some special cases of phenomenological interest. 

II. @(as> GLUON-GLUON EFFECTIVE HAMILTONIAN 

The QCD interaction Hamiltonian density to @(g2) is in Coulomb gauge 

given by,ll 

x1 = ,:g 4g +X1 + 3r;Ou1 (2) 

abc =+gf Fa 1 2 jkA;Af;+p f abc fade Ab c Ad e 
j% j% 

1 
+p 

2 fabc fade b d 
FOk % DCoul FO1 A: 

where the operator DCoul is defined below. The bag model interaction 

Hamiltonian 

HI = $ d3x S?+(x) 
bag 

(3) 

operates on n-gluon cavity states 11,2,..., n>, which are direct products 

of one gluon "cavity modes" Ii> = la i,Ri,mi,xi> where a denotes color, 

(R,m) orbital angular momentum, and x radial quantum number as well as 
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TE or TM*(transverse electric or transverse magnetic). We shall consider 

the R = 1 modes only, for which la,R,m,x> f la,a,x>, where a is the polari- 

zation index. A general n-gluon state built from these modes is specified 

by wave functions 

I (RI (RI 
(S,M) = nal...aN (4) 

where (R) and (S,M) denotes color and spin respeckvely. The relevant 

cavity modes A are given in Appendix A. 

Now, write the effective interaction Hamiltonian Hint in Eq. (1) 

as,12 

H = int c Hmn + c Hzelf 
m<n m 

(5) 

Although we shall only compute the effect of the interaction terms Hmn 

shown in Fig. l(a) and (b), the self energies (Fig. l(c) and (d)) might' 

be important as will be briefly commented upon later. Using lowest order 

perturbation theory Eqs. (2) and (3) immediately yields, 

H = J.J3g + H4g + HCoul 
mn mn mn (6) 

d3x d3y <m1n'l%3g(~,t)G@3g($,0)Imn> 

+s J B bag 
d3x <m'n'/G%'4glmn> + SB f d3x <m'n'l ;YecoulImn> 

bag 

Here x = X' but in general a’ # a and ~1' p o. Thus Hmn is still an oper- 

ator in color and spin space although for notational simplicity we 

suppressed the corresponding indices (aN,aN,,aN, etc.). The Bose 

statistics factor is S B = l/2 for identical modes, and otherwise SB = 1. 
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The diagrams corresponding to the three terms are shown in Fig. 2. Now 

introduce the current and charge density operators13 

ji = (-i) Aajk = g fabc(2 Fik Ai - Ai aj $) (74 

a 
P = (-i) hap = g fabc Fik < (7b) 

where A a is the a th color generator. The corresponding antisymmetrized 

matrix elements are given by 

hln = <ml5 

P mn = <mlp 

After some algebra and after carryi 

n> - <nlTlm> (84 

n> - <nlP Im> (8b) 

ng out the t-integration one gets 

H3g = -A; AT; SB 
f 

d3x d3y j&(z) D(g,%; w) j:,(G) (9) mn 
bag 

+ jznt) DC;,?; w> jtrnC;) 1 
HCoul = 

mn -A; A; Sb s 
3 3 d x d y 

bag 
P~( ) DCoul(k;; w) p,(q) (lo) x' 

+ pm(Z) DCoul 

where the "exchange" term j j is absent for identical modes. Here 
mn nm 

the "confined" propagators D and DCoul differ from the "free" ones by 

boundary terms.14,15 Instead of using explicit expressions for the 

cavity propagators, we follow the original MIT approach and directly 

calculate the potentials,gy16 

gmn(t) = -sd3y D(z,;; w) Jmn(t) 

$&) = - fd3y DCoul(~,~; w> p,(g) 

(114 

(lib) 

subject to the boundary conditions, 



-6- 

;.-=o 
dt on the surface 

f l $4 = 0 

We can then write Hmn as 

(12a) 

Wb) 

(12c) 

Hmn = -'rn 'n 'B jmm(z) l &$) + Tmn(z) l '(z) 1 (13) 

-'rn 'n 'B s d3x <mnl%4g(z,0) Imn> 
bag 

Since we consider the lowest TE and TM modes only, there are just 

three possible combinations (TE)(TE), (TE) (TM) and (TM)(TM). The wave 

functions (Ia) are given in Appendix A, the relevant current and charge 

densities (f and p) (as calculated in Appendix C) in Table I and the 

corresponding potentials (2 and 0) in Appendix D. Substituting all this 

in Eq. (13) we get (see Appendix E) for the spin-dependent parts in the 

three cases, 17 

i) (TE) (TB) 

HEE = - 2 AlA 
aEE ‘1 l '2 + bEE T12 1 

% 
aEE = aEE + aig z 0.263 

b bCoul 
EE = EE =. 0.041 

ii) (TB)(TM) 

Hm= - $ AlA 
‘1 l '2 + bEM T12 1 

(14a) 

(14b) 

(14c) 

(154 



b EM = b;; + b;;'" 0.000 

iii) (TM) (TM) 

%= - : AlA gl l 32 + bm T12 1 
+j- z 0.247 - 

bMM MM 
= bCoul = 0.007 

where a = g2/4, $ is the spin-operator and T12 a tensor operator 
S 

acting in spin space given by 

T12 
=2 (31'32)2-112 

c 1 +Z1*Z2 

(15b) 

(15c) 

(164 

(16b) 

(16~) 

(17) 

This tensor is convenient since it is the symmetric counterpart of 2, . g2 

(see Appendix B). The Eqs. (14) through (16) are the main results of 

this paper and we shall make some comments. 

As is clear from Appendix D, the contribution from the spin indepen- 

dent part of the Coulomb interaction is not uniquely defined by the 

boundary conditions Eq. (12). To understand this, note that the arbitrari- 

ness is due to the residual gauge freedom 4 + + + constant. Of course, 

the energy-shift to @(as) is gauge invariant, but that also includes the 

contributions from the self-energy diagrams (Fig. l(c) and (d)). These 

are of the same form (const. as/R) as the spin independent Coulomb con- 

tributions and have to be added to these in order to get a gauge invariant 

result. Without computing the self energy graphs (work in progress), we 

feel that nothing can be safely said about the size of the spin independent 

terms. Here we should mention that in Ref. 5 these contributions are 
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calculated by putting $ = 0 at infinity and neglecting the self-energies. 

We can see no compelling reason for this prescription. 

As explained in Appendix B., the general form of the effective 

Hamiltonian involves three linearly independent tensors in 2 particle 

spin-space. The above results expressed in the tensors zrn l zn and Tmn 

can easily be transformed to any other basis by using the formulae in 

Appendix B. 

III. LEVEL SPLITTINGS IN LOW-LYING GLUEBALLS 

Using Eqs. (14) through (16) we can compute the spin-dependent energy- 

shifts for any given state consisting of the lowest lying R = 1 TE and/or 

TM modes. Some of the phenomenologically most relevant states are the 

color singlets, 

i) (TE)2, Jpc = O*, 2* 

ii) (TE)(TM), Jpc = O-+, 2-+ 

iii) (TM)2, Jpc = O*, 2* 

for which the expectation values of the operators AlA2, d,$, and T12 are 

listed in Table 2. Thus we have, 

(TE)~: AE 
0* 

= -2.07 + 

(18) 

AE 
2ft 

= 0.67 $ 
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(TEE): AE 
O-+ 

= -1.63 : 

(19) 

AE 
2-' 

= 0.82 % 

(TMj2: AEo++ = -1.57 > 

bE2ft = 0.72 % 
(20) 

The self-energy contributions are not included above, but will be dealt 

with in a subsequent paper.18 

cal labor similar calculations 

One example is the (TE)3 color 

With an increasing amount of group theoreti- 

can be performed for a general n-gluon state. 

singlet J PC = oft state where <AiAj> = -3/2 

and CC si 4 
> = -3 and thus 

icj j 

AE 
Off 

= -1.00 % (21) 

There are two dangers in obtaining the splittings among the physical 

glueball states by simply adding the above energy shift to the lowest 

order terms and then subtract. One is that there will be mixing between 

the listed states and the non-glueball states with the same quantum 

numbers. This mixing problem is probably most severe for the (TE) 2 o++ 

state, which is expected to mix strongly with the vacuum.lg The second 

uncertainty comes from the @(as/R) spin independent energy shifts and 

the self energies. The value of R, and hence the spin-dependent split- 

tings (Eq. (18)), depend on these contributions. Also, the self- 

energies are different for different gluon modes (most successful bag- 

calculations for quark based hadrons have quarks only in the lowest 
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state so' the mode dependence is often not mentioned). Glueballs contain- 

ing of gluons in the same mode have, of course, the same self-energies 

to the extent that the radii are the same. Thus one can for example 

predict 

a 
M -+ - MD+ = AE 

2 0 2-+ 
- AE -+ = 2.45 2 

0 
(22) 

We shall not list any further predictions here. 

Acknowledgement 

T.H.H. and C.P. have benefitted from fruitful discussions with 

K. Johnson. One of us (T.H.H.) acknowledges the kind hospitality of 

the Institute for Theoretical Physics, Santa Barbara, where part of 

this work was done. 



-11- 

APPENDIX A 

The wavefunctions for the lowest R = 1 TE and TM modes with P = + 

and P = -, respectively, are given by 

NE -iw t 
--j (xp) (C x Co) e E 

uE 1 E (A.la) 

+M -f N 
Aa(T,t) = $ 

M  
Ga 1 -iwMt 

e (A.lb) 

where 

2 3 1 
NE=s 42 

XE 

R jobE) xi- 2 

2 3 74 
NM=% 4 2 

R j, ($1 

(A.2a) 

(A.2b) 

also R is the bag radius, o 
E (Ml 

= x~(~)/R, xE = 2,744, xM = 4.493 and 

p = r/R. The spherical unit (or polarization) vectors are denoted by Ga 

and ; = ; l $ a a' The relation to spherical harmonics is 

(A-3) 

The corresponding magnetic fields, R -@CT) = v x F(T), are given by (t = 0) 

NE 2p) = xp 
E II 

2jl(xEP)GaG - $ (Pjl(xEp)) (G x (G x Gal) 1 (A.4a) 

s:(r) = -NMjl(y) (c x ga) (A.4b) 
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APPENDIX B 

In this appendix we define the various operators acting in spin- 

space and also give some useful relations. 

First consider operators @oB acting in one particle spin-space with 

(polarization) vectors Ga. In addition to the usual antisymmetric spin 

vector operator 

5 =-i&aXg 
aB B 

we also use the symmetric pseudovector 

(B.1) 

(B. 2) 

and the symmetric tensor operator 

U aB 
=;$ 

aB (B.3) 

Since / dS2 qa6 = 0 and 2 l 9 
aB 

= 0, we can conclude that TuB has purely 

R = 2 orbital angular momentum, and the same holds up for U a6' 
On the 

other hand, xae obviously has R = 0 only. A useful expression for FaB is 

+ 
a$ 

= (-i) C(G ’ 3,; x z+; x &; ’ $1 a6 

where the order of the spin operators is important. 

Next consider scalar (?-independent) operators d (ay>, (B6) 
acting on 

the direct product spin space with vectors e g 
a 6' 

There are three linearly 

independent operators of this type, namely 6 aB6y6 ' 6 6 ay 66 
and S acS6yB' 

A more convenient basis is 

(B.5a) 

(B.5b) 

T12 =6 6 
a.6 By +6 6 

a-t B6 
(B.5c) 
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where Iii is the unit operator, while T 12 can be expressed as, 

T12 = 2C($ l Z2)2 - 1121 + z1 l 3, 03.6) 

One can, of course, use other basis than Eq. (B.4). If we, e.g., use the 

"quadrupole-quadrupole" tensor 

& _ .+ &ij, 
2 

= Gl l X2)2 - ; 112 03.7) 

we have 

a; 1* g; + bTii + c = (a+b) 2 ys, + 2b - 4 1 +c++b 

03.8) 

where I 12 is understood in the constant terms. In Appendix E we also need 

the angular integral 

(B.9) 
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APPENDIX C 

TEE Here we calculate the current and charge densities -J , PEE, etc. 

The current operator in Eq. (7a) can be written as 

f = ig[Ix%- (d&x] (C.1) 

The antisymmetrical expectation value of j [cf., Eq. (811 which is an 

operator in spin space, takes the form 

i) The TE-TE Current 

2N;R 
z--j? 2 

2 

Xv p 
(Sx Ga)x G,- (Gx G8)x Gr,] 

N;R 
=- 2i - .$ A 

x; P 
Jl rxZ a$ 

(C.2) 

cc.31 

where the last step follows from Eq. (B.2) and we introduced the notation 

jl(xEd9 Jl 'M = jl(x,p) etc. 

jT2 VX (Gx$ ) 
N;R 

x (;X eB) = -i 2 jT2 ;A 
a a6 

pxE 
(c-4) 

So for the current TEE we get (suppressing polarization indices) 

-J"E .E2 cx; 
Jl 

ii) The TM-TM Current 

'IiR .M2 ~ -tM -tM -+M = -2i - AaxB +B xB 
B a B T-Z ‘1 

;A a@ 

(C.5) 

(c-6) 
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(C-7) 

where f(p) and g(p) are defined as 

f(P) = $ jF(*jz- j$ 

g(P) = +f (kit- jt >* - 

The current J %lM is then given by 

L 
?MM 
J = g !Yf$ (4jy2- jy2) ; x 3 

xMp 

iii) The TE-TM Current 

(C.8a) 

(C.Sb) 

(C.9) 

(C.10) 

where we used the definitions Eq. (B.l), (B.3) and (B.6) and 

al (PI = j; j: + j! jg - j; zi; (C.l*a) 

a,(p) = jz jt - j; $j (C.i2b) 

a,(p) = - $ (4jE, jt - 2jE j$ - 2jF jt + j: j:) (C.12c) 

NN 
sax% = -%!! R* 

xExM 
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For the current jEM we thus get 

-VM TEM = -g - 
XEXM 

where 

1 
f*(P) = FXE 

.E.M - .E.M 
- J2J2 - *J2J0 

EM sjljl + 2xEjEji - .E.M 
XEJ2J2 

15) 

iv) The TE-TE charge 

3 

P EE = 
a$ 

XE XE -% 
gR 01 

.A = 
$R 

13 - 2g - *6 
XE 

af3 - -3 aB 

(C.16a) 

(C.16b) 

(C. 16~) 

(C.17) 

where U aP is defined in Eq. (B.3). 

v> The TI-TM charge 

vi) The TE-TM charge 

P EM = XE+XM xE .zM 
XE+X 

M  

cl6 g R 
=igN N R (C.19) 

01 B EM 3xExM 
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APPENDIX D 

In this section we calculate the potentials 2 and @. 

I. The z-potentials -- 

Generally one has 

(D.1) 
bag 

We use the free Green's functions and impose the boundary conditions 

later. The currents jEE and jm have no time-dependence and hence the 

appropriate expression for D(z,T; w) in Eq. (D.l) is 

R 
1 r< D&T; w) = c ~ - 2!?,+1 rL+1 yR m(n) y; mm'> 0.2) , , 

R,m > 

whereas in the TE-TM case one has 

D&f; w) = 
c j$w,) nib,) YL ,W Y: ,(Q'> 

, ' 9 
R,m 

where wR = x = %-XE 

i> The TE-TE Case 

From Eqs. (C.S), (D.l) and (D.2) we get 

J;(p) + PNT(P) Gxz 1 
w-here 

P 

J;(P) = 2 .2 
dc 5 J1(xE6) 

CD.31 

(D.4) 

(D.5a) 
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1 

NT(p) = a: + 
/ 

dS $ jf(xES) 

P 

(D.5b) 

The constant a: is determined by the boundary condition Eq. (12) and 

found to be 

where 

E 
al = 3 J;(l) 

ii) The TM-TM Case 

From Eq. (C.9>, (D.l) and (D.2) we get 

+MM a 

J:(P) = 1 d5<2[4jf(xMc) - jz(xM5)] 
0 

W;(p) = a? f 4 ji (x,S) - jiCxMS) 1 
The boundary condition [Eq. (12)1 gives 

M 
al = + J:(l) 

CD.61 

(D.7) 

(D.8a) 

(D.8b) 

(D-9) 

iii) The TE-TM Case 

*EM Here we face the complication that J is not transverse (? l TEM # 0). 

+EM 
Care must be taken because in the Coulomb gauge the vector potential aT 

satisfies the equation 

Note that 

-?m + EM 
JL =iaRV@ (D.lla) 
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where wE4 = xM -X E and $EM is given in Eq. (D.22) below. Also 

f l 
*EM 
JL = 0 

on the bag surface. 

(D.llb) 

EM Rather than calculating aT +-EM 
directly we first compute a defined by 

(D.12a) 

+EM and then obtain a T from 

+EM +EM +EM 
aT =a 

-$L$.a +EM -f 1 

V2 
=a +V- w2 ? l gEM + +? (pEM . (D.12b) 

(This procedure is equivalent to first calculating the vector potential in 

Lorentz gauge and then returning to Coulomb gauge using a gauge transforma- 

tion.) 

We get 

-ml XNENM R3 
aT = g xEs { [j2hP) E?(P) + n2hp) Y?(P)] $ (D.13a) 

+ [j2(xp) GEM(p) + n2(xp) ZiEM(p) + -$- (f f*(p) + fo(o))]((; l S) g-t z) 
X 

12 
+ 4 [jo(xp) fiEM(p) + n2(xp) jEM(p> + - 

( 
- f (PI + fg(P))] 3 + $b” 

2x3 3 * 
1 

where 

(D.13b) 

(D.13~) 

jEM(p) = I,” G 5* [$ j2hS) f,(S) + jobE) fo(S)] (D.13d) 

iEM = gEM + /’ dS 5* [$ n,(xS) f2(t) + nob9 f,tG] . (D.13e) 
P 



-2o- 

-EM &EM The constants a2 and a are determined by 

-EM = n,(x) + xn;(x> 
a2 - j,(x) + xj;(x> 

Eq. (12) and given by 

JF(l) 

^EM qx) AJQq 
a = -j(x>J (1) 

1 

II. The $-potentials 

Generally one has 

0 & = / d3y DCoul(&h P 6 (D.14) 

(D.13f) 

(D. 1%) 

bag 

i) The TE-TE Case 

Here both the R = 2 and R = 0 waves in Eq. (D.14) contribute and 

we get 

N2R3 
9 = *g E L GE(p)+~*H;(p) 

P3 * 
$ G;(p)+H;(p) (D.15) 

XE 

where 
P 

G;(P) = 
/ 

4 .2 dC5 J1(x~s) (D.16a) 

0 

1 

H;(p) = s; + 1 .* dS T J,(x,c) 

P 

G;(P) = 
2 .* 

dS 5 Jl(XES) 

1 

X$(P) = so” + dS 5 jf(xES) 

(D.16b) 

(D.16~) 

(D.16d) 

P 

E 
Following the same procedure as above the constants so and SF should be 

determined by the boundary condition [Eq. (12)]. 

-+ 
v(l = 0 for p = 1 (D.17) 
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This equation gives for the "tensor" contribution to $ 

E 
s2 

= $ G;(l) (D.18) 

For the unit tensor term in 0, the condition (D.17) is however identically 

fulfilled, which means that the constant si remains undetermined. This is 

related to a residual gauge freedom as discussed in the main text. 

ii) The TM-TM Case 

Using Eqs. (C.9), (D.l) and (D.2) we get 

L GM(p)+ p*H;(p)U- + G;(p)+ H;(p) 
P3 * 

1 1 
I 

(D.19) 

where 1 

G;(p) = d5c4 g(x& 

H;(p) = s; + dS + g(x,S) 

P 

1 

G;(P) = 
I 

dS 5* h(x& 
0 

1 

H;(p) = s; + 
I dS 5 h(xMS) 

P 

(D.20a) 

(D.*Ob) 

(D.20~) 

(D.20d) 

and 

sb.&) = j,$+> j2(xM5) + 4job& 1 (D.20e) 

I 
(D.2Of) 

.M Again only s2 can be determined by the boundary conditions 

[see Eq. (D.17)1. One finds 

M 
s2 

= ; G:(l) (D.21) 
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iii) The TE-TM Case 

From Eqs. (C.18), (D.2) and (D.14) we get 

x +x 
+EM=igNN LR3 ' M 

3 EM3 
XEXM 

GT”(p) + H:“(p) i l -i 1 (D.22) 

where 

GEM(p) = 1 ] dCt3 jlbES) [ *jo(xMC> - j 2 (x,C> 1 
0 

HE"(p) = SEM + 1 1 i dC jl(xES) [ *jo(x@ - j,(x,O 1 P 
aTM is determined by Eq. (12) to be 

SEM 1 = 2GEM(1) 1 

(D.23a) 

(D.23b) 

(D.24) 
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APPENDIX E 

Here we calculate the quantities a and b occurring in Eqs. (14)-(16). 

In general, a and b get contributions from three sources: the 3-gluon, 

4-gluon and Coulomb terms, 

a=a 23 + a4g +acl _ 

b = b3g + b4g + bcl 

i> TE-TE 

(E.la) 

(E.lb) 

From Eqs. (13), (C.5) and (D.4) one obtains 

24 
HEE = -v2 / 

d3x FE. $E = @.*I 
bag 

where 

1 
33 9 

aEE = 7 YE 
s 

dp jf(x,P) f J:(P) + P*NT(P) 
I 

w 0.341 
0 

with 

YE = 

(E.3a) 

(E.3b) 

The Bose factor SB = % was cancelled in Eq. (E.2) because of the two 

identical terms in Eq. (9). 4g The 4-gluon contribution HEE is given by 

4; = --AlA 2 J d 3 +E-+ x a,(x) . q(g) = -AlA2 $ ;,g $0 z2 (E.4) 

bag 

where 

(E-5) 
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and g 
1 

k3 aEE 3 = - -4- ‘E J dP 2 P J1(xEP) .4 a - 0.078 
0 

(E.6) 

For the Coulomb part one gets 

Cl 
SE = AlA 

1 
3 

dXP 
EE 

a 
l $ 

EE = 
-*lA2 f 

bc 
EE l T12 + ‘:; 52 1 03.7) 

where 

1 
bcl = - ;i?s YE$ J- 

2 .* 
EE dp p Jl(XEP) -+ G;(P) + H;(P) 1 = - 0.041 (E.8) 

0 P 

The constant cc1 ' EE 1s not determined by the boundary condition CEq. (12)1, 

as described in the text. 

ii) TM-TM 

As above, one gets 

H3g MM =- AlA 1 
d3x j+'%p = 

a 
'AlA $ a3g S l 2 

MM1 2 
bag 

(E.9) 

where 

1 
33 1 

aMM = 7 YM 1 dP [ 4+xMp) 
.* 

- J2(xMp) I[ $ J:(P) + P*$?P) 1 = 0.328 
0 

(E.lOa) 
with 

also 

YM = 

4g %M = -AlA 2 s d3x ;a’MM . p = a 
12 - *I*2 R MM 

2 a4g -g 
1”2 

bag 

(E.lOb) 

(E.ll) 
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with 

q%) = 2 AixA; (E.12) 

One obtains 

4g aMM = -&TM fi P2 (2 jo(xMp) - j2kxMp))2 
0 

(E.13) 

' 
.2 

4 JobMP) + 4 io(xMd j,(x,p> + 3 j~(xGpl fr - 0.081 

For the Coulomb part one obtains 

Hcl = 
MM 1 3 MMMM 

a 

*1 l *2 dxp l $ = -AlA f Cl 
bMM T12 + cg 112 (E.14) 

bag 
1 

where 

bcl = MM - -& I,:,) dp P* [j,b,p) (j2(xMp) + 4 jo(xMp))] 

0 (E.15) 

X 1 

p3 
G;(P) + P* H;(p) 1 = - 0.007 

Again the constant ci is not determined by the boundary conditions. 

iii) TE-TM 

From Eqs. (13), (C.15) and (D.lO) one obtains 

a 
= -AlA2 $ ai; sl l z2 + b3g T EM 12 

1 
l 

Here notice the equality 

(E.16a) 
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J 
' d3x fEM . zrn = 3 

bag 
T T s dxj +EM . ;EDl 

bag 
T 

s 3 -ml = dxj l 

:EM -f 1 +EM 

bag 

+V-;i$*a (E.16b) 

w  

4 3 dxp EM EM l $ . 
bag 

We recognize the last term in Eq. (E.16b) as the-Coulomb (or longitudinal 

electric) energy. In this case it would be simpler to directly calculate 

the sum of magnetic and electric energies. For consistency we quote the 

results separately as in the other cases. Also in this case the 3g-energy 

shift has a transverse electric contribution in contrast to the (TE)" and 

(TM) * cases. 

% 32 The various contributions to aEM and bElvI are given by 

38 aEM = -Ym xL1 dp p'{i f*(p) [j,(q) iEM + n2(xp) iEM 

+$ 

X 
4 f*(P) + fo(P))] 

+ n,(xp> jEM(p) + 

(E.17a) 

+ 3 
z YEM 1 

1 

0 
do + P* N;(P) I 

= 0.442 

and 

b3g = -?- 1 
1 

EM lox 0 
dp P* T,(P) [j2(xp) E?(P) 

(E.17b) 

+ n2(xp) J?(p) 1 w -0.003 
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'EM = 

For the 4g-interaction one has 

H4g = 
a 

EM -AlA -f z?(x) x?(x) + x;(x) q(x) I 
a 

= -AlA f 4g + aEM S1 l x2 + b;; T12 ; c;; 112] 

where 

and 

4g aEM = -YEM s dp P* j:(x,p) 
[ ( 

5 *jo(sp) - j,(Q))" 

+ $ j2(xMp) (4jo(sp) + j,(sp))]=-0.025 

b4g = - 
EM YEM s 

dP P* jfCxEp) -$j j2(xMp) 

l 

( 

4jo(x.& + j2$p) 

) 

z  -0.001 

For the Coulomb part we get 

HC1 
J c 

3 MM 
EM = AlA dx P 

. $EE + pEM . (jEM 

bag 
1 

where 

a 
= -AlA -f [ c1 3 aEM Cl 1 l 

'2 + bEM T12 + ' 
Cl 
EM I12 1 

Cl 
aEM = - & YEM(XE +s) 

2 l 

J 0 
dp jl(XEP) *jo(xMp) - j,$p) 

EM 
x 

3 EM 
G1 (P> + P H1 (P> 

3 
= -0.146 

(E.17~) 

(E.18) 

(E.19) 

(E.20a) 

(E.20b) 

(E.21) 

(E.22a) 
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bcl =: 
EM 

1 
25 'EM XE %I / 

1 

0 
dp + j,$@) 

(E.22b) 

-I- p4 H;(P) 1 a -0.002 

Cl Again cm is undetermined. 
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Table I. Current and charge densities jmn and p, for R=l gluon modes. 

TE-TE 

TM-TM 

TE-TM 

f 
3 

NiR 2 
3g - j (x p) CxZ 

PX2 l E E 

N2 
g- 

Px; 
[ 

4j:(x,p) 

- jz(x,P) 1 3 
, 

I ( f2(P) ;(; l -6) 

-- : 3 +T2(p)?+ f&$ > 1 

P 

N;R 
-2g - 

XE - 
jf(x,)[u- $ I] 

N2 
g A -Fj j2(xMp) j,(x,P) + 4jo(xMP) u 

xM [ 1 
+$ 

[ 
ji(xMp) + 2j~(xMp) 1 1 

ig 
N,N,R (xE + xM) 

3 XEXM 
j 1 (XEP > 

r 
+ 1 2jo(xMp) - j2(xMp) 1 i! l z- 
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Table II. Expectation values for 

the operators A1A2, 6,*3, and T12 for 

the lowest lying glueball states. 

V2 
;,.;, 

T12 

,m+ -3 -2 4 

2 m+ -3 1 1 
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FIGURE CAPTIONS 

Fig. 1. Gluon-gluon interactions to @(a,). 

Fig.' 2. Two-gluon interaction diagrams in Coulomb gauge: 

a) one-gluon exchange, b) four-gluon interaction 

and c) Coulomb interaction. 
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ADDENDUM 

For states consisting of more than two gluons there is an extra 

contribution to the @(as)-energy shift for gluon pairs in color octet 

spin one state. One part comes from the four-gluon interaction [Fig. l(b)] 

and is easily calculated. Another piece comes from the annihilation 

diagrams [Fig. l(c)1 which is simply related to the gluon exchange graph 

[Fig. l(d)] via s-t channel crossing. We only deal with the (TE)L and 

cases. The calculations are contained in Appendix F and here we 

just quote the results 

HAN = _ 2 co1 
mn R '8 

dEE = d3g 4g EE + 3aEE M -0.529 

dm = d3g+3G = -0.555 

(1) 

(24 

(2b) 

where P co1 
8 is the color projection operator on a color octet state and 

Psp 1 is the spin projection operator on a spin one state. 
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APPENDIX F 

In this Appendix we calculate the contribution to Hmn due to the 

2 s-channel annihilation graphs Figs. 2(d) and 2(e) for the (TE) - and 

(TM) 2 -cases. These are related to the t-u-channel graphs 2(a) and 2(c) 

by crossing. More explicitly we get the contribution of the annihilation 

diagram from the corresponding exchange graph by-making the following 

changes: 

(A) Use the relation 

(~I.~II)t-ch = -[21 - $*Z2 -(81.62)2]s-ch = -2PSP ) (F-1) 

which can easily be derived using the formulae in Appendix B, to express 

the spin operators in terms of s-channel invariants. As expected we get 

the projection operator Psp on spin one states. 

(B) Do the same for color, i.e., use 

("I*xII)t~ch = - 3p;ol CF.21 

where P co1 
8 is the projection operator on color octet states. (As in the 

spin case there is an explicit, though more complicated, formula giving 

co1 
'8 in terms of s-channel invariants, i.e., the quadratic and cubic 

SU(3) Casimir operators.) 

(C) Note that the gluon exchange graphs [Figs. 2(a) and 2(c)] are 

the sum of t- and u-channel contributions. To get the s-channel results 

by crossing we must use only the t-channel piece. (For the (TE>L- and 

(TM) 2 -cases, the t- and u-channel contributions are equal so we can simply 

divide the old expressions by 2.) 



(D) The energies of the propagators are for the (TE)2- and (TM)2- 

cases given by 2uE and 2% respectively instead of 0 in the exchange case. 

(E) For the Coulomb diagram it is easy to see that the charge 

densities vanish identically for the (TE)2- and (TM)2-cases. With these 

changes, the calculations proceed exactly as in Appendices C-E and we get 

the results: 

d d3g 4g EE = EE + 3"~~ = -0.296 - 0.234 = -0.529 

& = G + 3G = -0.312 - 0.243 = -0.555 

(F.3) 

(F.4a) 

(F.4b) 

where we also added an' extra term which comes from the four-gluon inter- 

action in Fig. l(b). Although formally not an annihilation contribution 

this is included here for formal convenience. As usual we neglected a 

spin independent constant term. Note that the diagram l(c) gives a 

positive energy shift as expected from mixing with a lower lying (in 

this case dominantly the lowest one-gluon mode) state. 
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ERRATA 

The results for the TE-TM-mode are applicable only to the 2-gluon 

system, where all the TE-TM pairs are in color and spin syrmnetric states. 

In Eqs. (9), (10) and (13) the u-channel graphs (containing terms 

-jmnjnm) should carry an overall k sign where + refers to the color 

symmetric (1,8s,27) and - to the antisymmetric representation (8A,10,10). 

p. 5: The sentence "where the exchange term . .." should be deleted. 

p. 6: Eq. (14~) shall read: 

bEE = bEE 
cou1 N -0 041 . . 

p. 9: Eq. (21) shall read: 

EO* 
= 0.59 $ . 

p. 18: Eq. (D.lla) shall read: 

*EM +-EM 
JL = iuV$ . 

p. 26: Eq. (E.17a) shall read: 

32 
aEM = 'EM l ** 

Eq. (E.17b) shall read: 

b3g = 
EM l ** = 0.003 . 
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FIGURE CAPTIONS 

Fig. 1. Gluon-gluon interactions to @(us). 

Fig. 2. Two-gluon interaction diagrams in Coulomb gauge: 

(a) one-gluon exchange, (b) four-gluon tnteraction, 

(c) Coulomb interaction, (d) and (e) gluon-gluon 

annihilation into a transverse and Coulomb gluon 

respectively. 



a b C 

4-82 Cd) (e) 4259Al 

Fig. 1 



(a) 

Cd) 
4-82 

(b) 

w 
4259A2 

Fig. 2 


