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ABSTRACT 

We prove that the zero range four particle equations are one 

variable equations of the same form as the three particle equations 

with the two particle amplitudes replaced by the appropriate analytic 

continuation of the on shell three particle amplitude. Thanks to the 

Faddeev-Yakubovsky combinatorics we believe that.the N particle zero 

range equations can be written in terms of N-l particle amplitudes in 

the same way. 
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We'have shown1 that by applying the conventional two particle zero 

range boundary condition kctnd = X(k2) for each pair to the asymptotic 

form of the three particle wave function we can derive three particle 

equations of the Faddeev form2s3 with t(q,:;z-t2) replaced by T(z-?;~) 

where the on shell two particle amplitude is 

- 

(1) 

"k2 = k2/2u ; u = mlm2/b1+ m2> 

and E is the two particle binding energy. For consistency with time 

reversal invariance and on shell three particle unitarity A(k2) must be 
n 

chosen so that-r has no singularities for negative kL other than bound 

state poles, as will be true for example of a class of Castillejo-Dalitz- 

Dyson4 solutions of the Low equation. By following the same procedure 

we derive in this communication the corresponding four particle equations, 

and indicate the generalization to N particle equations using the Faddeev- 

Yakubovsky5 combinatorics. 

Karlsson and Zeiger6 have shown that if the conventional three parti- 

cle theory is formulated using interacting two particle states rather than 

plane waves as a basis that the equations for any finite number of partial 

waves contain only the half on shell amplitudes tR(k;:2+iO+) = 

~i(:~)[(k/q)'+ (%2-:2) f 
q2 

(k) 1. Here f 
q2 

(k) is a real function7 measuring 

the departure of the wave function from the asymptotic form at short dis- 

tance and the factored form holds for any short range interaction for any 

finite angular momentum R. In what follows we will confine ourselves to 

R=O since the generalization to any finite number of partial waves is 
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immediate. KZ factor out the Jost function rather than 'CR. If we look 

at the Faddeev amplitudes Mab(pa,qa;pb,qb;z) on shell, that is with 

;2 = z- :2 , it follows immediately that for any three particle system 

generated by two particle short range interactions, this amplitude will 

always have the form 

Mab(pa,P@ = Ta(Z-i$ 6ab 6(p,-pb)/papb + Ta(z-“p~)Zab(Pa,Pb;Z)Tb(Z-;;~) 

(2) 

If we take the zero range limit of the KZ equations,' we find a one 

variable integral equation for Zab depending only on two particle observa- 

bles, andby invoking a dispersion-theoretic representation for r(z-i2> 

can transform it9 into the once iterated Faddeev form 

zab(pa,~,,;z) = -Rab(Pa,P,,;Z) - u- c=a+ 
p;dpcgac(pa,pc;z) zcb(pc,pb;z) 

0 

= -~ab(pa,pb;Z) - c/ c=a+ 
p~dpcZac(pa.pc;z) Rcb(pcrpb;z) 

0 

(3) 
with 

1 

ii,, = $ Xab 
/[ P~/2~b+p~/2~a+papbS/mc-z 1 

-1 
dS ; zab = l-6ab (4) 

. 
-1 

Here we have dropped the factors ra and ~~ with which the equation must 

be clothed to restore the once iterated Faddeev form. Since we will 

derive a similar equation below, we do not provide here the direct deri- 

vation of this equation from the zero range boundary conditions in the 

three particle space. Thanks to Eqs. (1) and (2) by comparison with OB 

Eqs. (IV.7) and (IV.8) we find that the physical elastic scattering and 
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rearrangement amplitudesXab = NaZabNb and that the physical breakup 

amplitude is 

(0) 
(0) c%Ob(Pa.qa;Pb ;z) = ~qa(z-i$Za&a3P~o) ) b - ;z N NiZab(Pa'Pb ;z N > b 

a 
-2 
Pa-sa-z 

(5) 

Hence the cross sections for the physical processes can immediately be 

obtained from OB Eqs. (111.8), (111.15), (IV.37) and (IV.39). 

In order to extend our treatment to the four particle case we define 

the (3,l) configurations with r= 1,2,3,4 and the (2,2) configurations with 

r=5,6,7 geometrically in Fig. 1 and algebraically in Table I. We see 

that, analogous to the treatment by Yakubovsky, we must consider 18 

initial and 18.final configurations and construct our theory in terms of 

the amplitudes F rt ab where the symbols are only defined when a C r and 

b C t. Starting from a state of four free particles, we project out the 

state in which all angular momenta are zero and obtain the radial wave 

function 

u(x;,Y;, zr) = 

r(Olxr sin pa a sin qa r(Olyr 
a sin sr(0)zr 

r(O) 
'a 

r(O) 
qa 

p> 
r 

L L 

(6) 
F r't r' r' r' 

( 
X 

a'b Patrqat,sa,;E > 
*r'2 
P ar +qaf rT -E-m+ 

-r'2+;2 

X 

/ 

dL! 
sin pf;:f;(n)xz 

P 

sin s r'r'r 

S r,rm 
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In order to apply our zero range boundary condition to this wave 

function, we must first reduce the spatial dependence to the coordinate 

yi of the distinguished pair, which can be done by Fourier transformation 

yielding 

r(O) (y> 
U 

'Zsr 
(YZ) = 

sin q, qp; - Pr;(O,> qs, - s:“‘) 

qlf (0) r(O) srP 
6 6 

pipa 
ab rt 

a 

aa 

- 71'4: Fr-L(pE,kz,sr;E) e 
ik,y, 

- k c ~aa,$p;:2dp:: j&2+:: j;,dsr’ ,.,2 “,” 
r'=l a'Cr' p +';i2+:2-E 

6(s, - Srtr(Q)) 

; s s r r,r(fi> 

'aa' = l-6aa' (7) 

where we have kept only the asymptotic form of the amplitude corresponding 

to the distinguished pair, consistent with our zero range assumption, and 

used the on shell value for qi defined in Table I. Applying our zero 

range boundary condition U'/U = kzctn6a in the limit y', + O+ we find by 

invoking Eq. (1) that 

F rt -r2 -2 
ab = ',(E-pa -sr) 5 c ",,,j-Rz;: F;:;] (8) 

r'=l a'Cr' 

Since this equation still contains disconnected scattering processes 

when r=r' , we move these to the left hand side of the equation and obtain 
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(9) 

By examination of this equation on the left for the (3,l) configurations, 

we find that this is simply the zero range Faddeev equation M=t(l-J%l) 

clothed with the momentum conserving 6(sr-sr (O)) /srsiO) of the four parti- 

cle spectator and with the energy W replaced by E-2:. But, as noted 

above, this equation also holds in the time reversed form M=(l-JM@t 

obtained by applying the boundary condition to the first scattering rather 

than the last. Hence (1 -JM@(l+J@M = M providing an algebraic inver- 

sion of the operator on the left in Eq. (9) which when applied makes the 

driving term in the equation for FzL into Mr ab(E -2)6(sr - sr (O)) /srsy . 

For the (2,2) configurations, the only terms which couple are F',_, 

and F? , -r2 -2 establishing immediately that Fia = ta(E-pa -sr)6(pr- 

aa 6 (Sr - sr The coupled terms appear to give a problem 

since neither component of either pair scatters from the other, the 

spectator momentum factors out, and we anticipate a factored form. The 

factored solution is immediate in the Schroedinger equation in configura- 

tion space, but in the integral equation we get contributions in the 

iterations to any finite order in the multiple scattering series. 

Blankenbecler'O has pointed out to the author that the same problem occurs 

in the conventional theory; it is mentioned by Mitra, Gillespie, Sugar 

and Panchapakesan.'l However, if we iterate the two pair equation once 

we find that 
"* 



-7- 

M'ab pa'pa ( 
'r r(0) 

;E-SE) = 6ab t,(E-;;i'-;;) 6(p',-p~(o))/pf;p;(o) 

-r2 -CO)2 t,(E-P, -sr -to12 )tb(E-;E2-sr ) 

y-2 -r(0)2+;(0)2 _ E EM ; 

a +'b r 

r C 5,6,7 (10) 

Here we have used the fact that in this configuration pi = q', as can be 

seen immediately from Fig. 1. But E = ~~(")2+~~(o)2+~~o)2 showing that 

there is an on shell singularity in the first iterate. Hence we can 

multiply Eq. (10) through by this singularity and remove the unwanted 

multiple scattering term Ji?M. In configuration space this singularity 

does lead to the factored form tatbe ikzyz eik@< as expected. 

we see that for these configurations we also have Eq. (2) with 

Further, 

Z -r2 
ab = --GZb(P, -Pa 

-r(0)2-i0+)-1 . Thus we have the Faddeev form for the 

equations and the algebraic inversion proceeds just as in the (3,l) case. 

In the three particle equation we can see explicitly from Eq. (4) 

that the factorization of t allows the reduction of the equation to one 

variable with a geometrical kernel involving an integration over the angle 

cos-16 between 6, and 4a. All that happens for higher angular momentum 

states is that we acquire additional rotation matrices as functions of 

this angle and additional indices which are given explicitly in BO. The 

reduction occurs because of the &-function for the spectator which puts 

the two body scatterings in the three particle space. In the four body 

case we have an extra integration in momentum, but also an extra 

d-function, so the same reduction occurs. Hence we obtain by inverting 

the left hand side of Eq. (9) (as discussed above) the one variable 
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equations for the zero range four particle problem 

c4jMrt (pr pt.E) I c3) r 
ab a' b' Mab(P;,P;;E) $&+;("))/srs~o' 

- c c /dpf;: "'g;;:(~;,~;';E) (4)Mi:;(p$p;;E) 
r' a'Cr' 

0 1 
where 

(11) 

(4)nrr' 
aa~ (P;,P;:;E) = $+xaa, J""/"qf;:sdsr,(;;~:2+~~:2+~~, -E -iO+>-l 

0 0 

r'2 r'2 2 
x Pa' qal -q Pa ( r-P;:~cn,>s(sr- Sr'r("))/P~Pf;~~(0)srsr'r(n) (12) 

and we have replaced the Frt ab which refer explicitly to the four particle 

case by (41Mrt 
ab with an eye to generalization to the N particle case. Just 

as in the three particle case, we could obtain an alternative equation by 

applying our boundary condition to the first scattering rather than the 

last; that is, we also have the equation c4)M = (1 -f4)M c4)E) c344. 

We also have the generalization of Eq. (2), namely 

c4jMrt = (31Mr 
ab ab 6rt6ab 

+ (31Mr 
ab 

(41zrt (31Mt 
ab ab (13) 

Hence by one iteration of Eq. (11) we can obtain an integral equation 

for the smooth function (4) Z in which the primary singularities have been 

factored out. Thus knowing Z we can immediately recover all the physical 

four particle cross sections in a manner strictly analogous to the three 

particle case discussed in OB. We are grateful to V. Vanzani for showing12 

that the form of our four particle equations is identical to the form of 
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one set' of such equations he has developed in the conventional theory,13 

except that the off shell behavior in his equations requires a convolu- 

tion over (3) M which prevents the factorization we have found in the zero 

range theory. 

Since our theory does not rest on a Hamiltonian model for the inter- 

actions; we are required14 to prove that the resulting equations are 

unitary. In the three particle case the unitarity condition Mab-Mzb = 

- c Ma& - R;P'4;b follows immediately from the form of the Faddeev 
cd 

equations and the two particle on shell unitarity condition ta-t* = a 

-ta(RO-R;)?, as was pointed out by Friedman, Lovelace and Namyslowski" 

and discovered independently by Kowalski.16 Using a matrix notation, the 

proof is simple: 

-c 
cd Mac(RO -R;)M;b = -~~ac-~Mac'R(-,Bc'c)(t,-t;)(Sa,,- ~'&~R$$~,,) 

C’ C” 

-z 
cd 'cb Mac 'R. - $1 Mib 

Ma$$-&ct; 6c,, - c 
C” 

;SccuR&,tb 

-c 
cd %d Mac (J$, - R;'Mib (14) 

where the first line diagonal term is obtained by using the Faddeev 

equations in appropriate order and the two particle unitarity condition 

(which is on shell thanks to the d-function implied by RO -Rt); the 

unwanted terms in the last equation vanish by a second application of 

the Faddeev equations. In order to convince those who find this somewhat 
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symboPic proof inadequate, the proof has been carried through using the 

explicit integral expressions and including the bound state poles1 and 

checked by Erwin Alt.17 But, since the four particle equations depend 

now only on factored three particle input, which has just been shown to 

satisfy three particle on shell unitarity, the same steps immediately 

establish the unitarity of our four particle equations. Just as in the 

three particle case, the two forms of the equation lead to time reversal 

invariance. 

We claim that the generalization to the N-particle case is now trans- 

parent. We write our N-particle equation in configuration space using the 

full Faddeev-Yakubovsky combinatorial decomposition and reduce this to a 

one variable equation in the distinguished coordinate. Applying our zero 

range boundary condition as before, the two particle amplitude factors 

out. Transferring the appropriate configurations to the left hand side 

we obtain spectator problems in reduced spaces which can be inverted in 

the same way that we demonstrated explicitly for the (3,l) and (2,2) con- 

figurations above. The driving term on the right now has N-2 b-functions 

rather than 2 before the inversion, and N-3 d-functions after the 

inversion. Hence, just as before, we can obtain one variable equations 

driven by the appropriate analytic continuation of the N-l particle 

amplitudes. The integral equations that provide these continuations have 

no singularities other than bound state poles provided only the two parti- 

cle amplitudes themselves have no such singularities, as already required. 

Time reversal invariance follows from two forms of the equations as before. 

Unitarity is immediate from an obvious generalization of the FLN proof. 

The reduction of the kernel to one variable follows from standard appli- 

cations of angular momentum techniques, which of course become increasingly 
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tedious'as the number of particles increases, but which have to be faced 

in any exact N-particle theory. We therefore claim to have 

the N-particle zero range equations are always one variable 

the form 

(N)MC(N)C' (N) = (N-l)MC(N) 
C(N-l)... C(N-I)... 

I- m n 

proved that 

equations of 

and in reverse order. Finally, the essential singularities can always be 

factored out by an obvious generalization of Eq. (13). 

The physics lying behind the remarkably simple result we have obtained 

is simply thatby sticking to two particle on shell scatterings of the 

pairs as the driving mechanism and making the angular momentum reduction, 

the only variable content left on which these amplitudes can depend, thanks 

to momentum conservation, is the appropriate analytic continuation to 

negative energies required by the uncertainty principle. The factorization 

is quite general for short range interactions as was proved long ago.7 

The simplification was conjectured a decade ago,14 but could not be proved 

because of the reluctance of this author to abandon "left hand cuts" in 

the two particle input, which turns out to be the key to success. In the 

relativistic generalization of this approach, which we claim to be 

immediate and which has been shown to work in the three particle case,1*y1g 

this assumption turns out to be analogous to the "locality" assumption of 

quantum field theory. Our theory differs in that it can be kept con- 

sistently to sectors in which only a finite number of particles enter by 

using particle functions rather than field functions as the basis. The 

basic trick in the relativistic generalization is simply to assume that 
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"particle" and "quantum" bind to make a state with the same mass and 

quantum numbers as the "particle". As in the~non-relativistic theory 

presented in this communication, unitarity and time reversal invariance 

are immediate. "Crossing" and relativistic spin are under investigation. 

As already noted, confidence in the four particle approach was gained 

thanks to detailed study an earlier version of the equations by V. Vanzani. 

Conversations with W. Sandhas, H. Haberzettl, and E. Alt were also helpful. 

Recent discussions with R. Blankenbecler, L. Biedenharn, and M. Orlowski 

were instrumental in bringing this work to completion. The author is 

grateful to the Humboldt Stiftung for an award and to E. Schmid and the 

University of TGbingen for hospitality during the first pass at the four 

particle zero range equations. 

This work was also supported by the Department of Energy, contract 

DE-AC03-76SF00515. 
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TABLE I 

Four Particle Coordinates 

M= 

r C 1,2,3,4 

Mr =M-m 
r4 

; M"r = Mrmr 
4 

r. = 
1 

r-1+4i 

a,b,c C r 

2 mi = 2 mr 
i=l i=l i 

r C 5,6,7 

Mvr = (mrl+mr )(m, +mr ) 
2 3 4 

r. = 1 r-5+3i 

S2 r = 2v z2 rr 

; c =mm (m+m) 
I 5 r2 rl r2 

a = (r1,r2) ; b = (r2,r3) 

Mrnz=mr(mr+m ) 
3 1 r2 

; 6:) 2 = 2nz(pil 2 

Mrnbr = mr2(mr +mr ) 
; (';;f) 

2 r2 = 3 1 2$(pb) 

MrnZ = mrl(mr +mr ) 2 3 
; GE)' = 2nf(pzj2 

. , c= (r3,rl) 

a = (r3,r4); 6 = (r1,r4); 

C = (r2,r4) 

-r 
ua =mm (m 

I 
+m 

'3 r4 r3 r4 
), etc. 

(Tz)2 = ~G:(P~)~, etc. 

If the four particle c.m. energy normalized to zero at four particle 

breakup threshold is called E, then the on shell condition E = :2+i2+22 

is configuration and channel invariant. The on shell momentum for the 

-r2 -2 S distinguished pair is defined as kr = [Zvi(E-p -sr)l . The spatial a a 

coordinates corresponding to -~'a, CJ~ and gr are x -$ zi and gr respectively. 

In order to express the four particle wave function in terms of a single 

set of coordinates we will need to know the geometrical connections 
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I I rr' x~(~~,,y~,,~~,) E zaaI, etc. which are readily 

obtained from Fig. 1. If we take out the dependence on the orientation 

of the configurations in space, which can be done by an appropriate appli- 

cation of rotation matrices analogous to that done with care for the three 

particle case in OB, these transformations will depend on the three direc- 

tion cosines @a=::), (ci*G,), (4:. gr) which we symbolize collectively by 

i-2. The reduction of the plane wave basis exp i(p*x+q*y+s*z) to the -- -- -- 

scalar form used in the text is greatly facilitated by the identity 

t-c 1,2,3,4 

‘i =r-l+4 i 

I-82 

'2 4 

rc 5,6,7 
ri =r-5+3 i 

425OAl 

Fig. 1. Geometrical definition of the four particle coordinates used 

in this study for the (3,l) and (2,2) configurations. Algebraic 

details are given in Table I. 


