
SLAC-PUB-2867 
January 1982 
(0 

GROUP THEORETIC APPROACHES TO NUCLEAR 

AND HADRONIC COLLECTIVE MOTION* 

L. C. Biedenharn+ 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

ABSTRACT 

Three approaches to nuclear and hadronic collective motion are 

reviewed, compared and contrasted: the standard symmetry approach as 

typified by the Interacting Boson Model, the kinematic symmetry group 

approach of Gell-Mann and Tomonaga, and the recent direct construction 

by Buck. 

(Invited paper presented at the Symposium on Group Theory and Its 
Applications in Physics, Cocoyoc, Morelos, Mexico, January 10-12, 1982.) 

* Work supported in part by the Department of Energy under contract 
DE-AC03-76SF00515 and by the National Science Foundation. 

t Permanent address: Duke University, Durham, N.C. 27706. 



-2- 

1. INTRODUCTION AND SUMMARY 

It is a pleasure to take part in this "Symposium on Group Theory and 

Its Applications in Physics" held in honor of Marcos Moshinsky on the 

occasion of his 60th birthday. The subject of the symposium is one to 

which Marcos, and many others of us here, have devoted much effort and 

interest, and a subject not as well appreciated, when we began many years 

ago, as it is today. This change is due not only to these combined 

research efforts, but also to the excellent organizational talents of the 

UNAM group under Marcos in arranging many successful colloquia over the 

years to proselytize and augment the group theoretic viewpoint. 

I would like to discuss today the applications of group theory -- 

and hence symmetry techniques -- to nuclear and hadronic collective 

motion. Much of what I will discuss will be a review, but not all, 

for I hope to present a few new results and special aspects. 

My introduction to symmetry techniques, like most of us here in- 

cluding Marcos, stemmed from the work of Wigner, beginning with angular 

momentum theory and leading, through Racah's work, into general Lie 

groups. The fact that the (orbital) harmonic oscillator shell model is 

SU(3) invariant became physically meaningful with the Elliott rotational 

model. One of the keys in elucidating this structure was the Bargmann- 

Moshinsky series1s2'3 on the group theory of harmonic oscillators in the 

early 60's. These papers brilliantly exploited techniques that have been 

used repeatedly in the years following. 

There are precisely two such techniques and they may be elegantly 

codified as (a) The Jordan-Schwinger Map,4r5 and (b) The Dirac Map.6 
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ad(a): The Jordan-Schwinger Map takes nxn matrices and maps them 

into bilinear products over n boson operators. To be precise let (ai,ai) 

denote boson operators (in Dirac's original notation) obeying: 

CGi,ajl = 6 ij 
with all other commutators zero. If Q(o) ) are a set of 

nxn matrices with numerical elements Aa ij, define the mapping J by: 

J: _Aa*&f - (a) = Aa a ; c 
ij ij ij ' (1.1) 

Then one has the elementary (but extraordinarily useful!) result: 

The map J preserves commutation relations: 

J(CA,BI) = CJ(A),J(B)l . (1.2) 

Expressed in words, the operators bf2 (a) } obey the same commutation 

relations as the numerical matrices {A (a)). G eneralized to n2 bosons 

(n independent copies of n bosons), this result is definitive for all 

irreps of the unitary group U(n) and can be extended easily to compact 

forms of the orthogonal group (as well as other Lie groups). 

ad(b): To define the Dirac mapping requires that in addition to 

the n-boson operators {ai, zi) we construct the lxn matrix 

(a 1 . ..a a nl . ..Zn) 5 A, its transpose x, and the matrix 6 Z 

where nn is the nxn unit matrix. 

The Dirac mapping of the 2nx 2n numerical matrix A is then defined 

by: 
2n 

1 D: A = (Aij) * 2 c hk Bki Aij Aj = $3 AA . (1.3) 
i,j,k=l 

If we restrict the matrices A,B,... to 2nx 2n numerical matrices of 

the form BM, where M is symmetric, then one finds: 



(1.4) 

For matrices of the restricted form, the Dirac operator mapping preserves 

commutation relations. The Dirac operator mapping thus has the same 

basic property as the Jordan-Schwinger boson operator mapping, but con- 

stitutes a generalization of the J-S map in that the matrices involved 

are larger (2nx 2n instead of nxn). The price one pays for this 

generalization is that the admissible matrices must have a restricted 

form. (For matrices not of the restricted form, the Dirac map yields 

a c-number and not an operator.) 

The Dirac map is especially adapted to the non-compact symplectic 

group Sp(2n,lR) and to its double covering, the metaplectic group. It 

may also be adapted to graded Lie algebras.7 

These two maps underlie a huge amount of the current group theoretical 

applications in physics (and lately even in mathematics); both maps are 

now used routinely without much notice or comment. Despite this famili- 

arity, I thought the present audience, especially, would enjoy seeing the 

structure codified in this elegant and easily comprehended way. (It is 

interesting to note that the maps have inverses.8) 

Let me turn now to my main theme, symmetry and collective motion. 

Following the literature, I will distinguish two ways of exploiting 

symmetry and discuss each separately in succeeding sections (Sections II 

and III). In the course of doing so, I will review the currently 

interesting interacting boson model and its relation to the earlier 

Bohr-Mottelson models (Section IV). The direct approach to collective 

motion will be discussed in Section V, and the recent criticisms of Louck, 

concerning this construction, will be discussed in this concluding section. 
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II., THB STANDARD SYMMETRY APPROACH TO NUCLEAR COLLECTIVE MOTION 

By the standard symmetry approach, we mean the construction of a 

Hamiltonian which is invariant (or nearly so) under a group of symmetry 

transformations; group theory then allows one to construct basis states 

realizing the symmetry, and explicit matrix elements for physically 

interesting transition operators 3 (themselves classified by the syfmnetry). 

By "nearly invariant" we mean there may be small perturbations by non- 

invariant pieces of the Hamiltonian, Which pieces are again classified 

and explicated by the symmetry. This is certainly completely standard. 

a. The Bohr Model 

One of the first such nuclear models (for N and Z, even) is the Bohr 

treatmentg'10 of th e nucleus as a liquid drop. The radius of the drop is 

expanded as a Legendre series in YLEl and the expansion truncated to L=O 

and 2 only. (L=l is eliminated by the center-of-mass constraint.) Thus: 

r =-a+ x 
u 

9lJ Y2,11(eJ ' (2.1) 

* qp = qmp 3 (reality condition) . (2.2) 

The model focusses on the five quadrupolar variables, {q,,), and 

their conjugates, (llq}, and takes the Hamiltonian to be approximately 

that of a five-dimensional harmonic oscillator with a common frequency. 

The spectrum, in lowest order, thus agrees with the frequently 

observed nearly harmonic spectrum, near closed shells, which typify the 

anharmonic five-dimensional vibrator. 
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This model is heuristic and taken to be a realization, approximately, 

of incompressible quadrupolar flow defined by quadrupolar surface vibra- 

tions. 

Group theoretically the model is that of broken W(5) symmetry, and, 

in accord with this view, the dynamics were greatly extended by Greiner," 

among others,12 who used as the model Hamiltonian all possible SO(3) 

invariant interactions constructible with four or fewer bosons. 

The group theoretic classification of the states via the chain: 

SU(5)T SO(5) 3 SO(3) 1 SO(2) was discussed by many, notable contribu- 

tions13s14 being made by Moshinsky and his group, especially to the 

transformation coefficients defined by this subgroup decomposition. 

(The explicit quantum numbers defined by this chain are given below in 

Section II-c.) 

b. The Bohr-Mottelson Unified Model 

The liquid drop model of collective nuclear motion is characterized 

by irrotational flow and (as discussed below) small moments of inertia 

(‘~iq> l At the opposite extreme for collective nuclear motion is rigid 

body motion, which in the Bohr-Mottelson approachlO is modeled by a fixed 

nuclear wave function defined in the intrinsic frame of the rigid 

rotator. Thus one has a wave function of the form: 

J, = Dg('e,') Xintrinsic ' (2.3) 

which implies an adiabatic splitting of the internal motions (Xintrinsic) 

and the rotational rigid body motion (Dz) with a K-quantum number defined 

in the intrinsic frame. The adiabatic condition, on which then splitting 

is based, assumes that the rotational motion is very slow compared to the 

internal motions. 
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Because of the quantization of angular momentum an arbitrarily small 

rotational frequency cannot be assumed. It follows that the adiabatic 

splitting of the wave function cannot be a general property.15 An alter- 

native way to view the physics of this situation is to note that the 

adiabatic splitting implies that the relation between the body-fixed 

frame (the frame in which xint is defined) and the laboratory frame is 

well defined. But to define precisely the angular variables relating to 

the two (classical) frames implies by the uncertainty principle that 

unlimitedly large angular momenta are involved. That is to say, the 

intrinsic wave function is required to be essentially unchanged even for 

large rotational excitations. Using still other words, the adiabatic 

splitting necessarily implies that the rotational bands (effectively) 

do not terminate. 

Unlimitedly large (rotational) bands are characteristic of non- 

compact groups (and, accordingly, infinite-dimensional unitary repre- 

sentations). 

The group-theoretic structure that corresponds to the adiabatic 

Bohr-Mottelson unified model is the noncompact grouplR5@S0(3) as found 

by Ui,16 or more properly, the covering group lR5@SU(2) as found by 

Weaver et a1.17 This group has a rather elementary algebra consisting 

of a general angular momentum operator J (with J XJ = iJ) and a quadrupole 

operator Q with commuting components, CQ,,,Q,,l = 0, which transforms as 

a quadrupole under J, i.e., CJ,,Q,l = iC 212 
WI-I ' Q,V The irreps of this 

group include all known examples (of both integer and of half-integer) 

quadrupolar rotational bands, and these irreps automatically obey the 

discrete symmetry structure (D2) found earlier by Landau (molecular) and 
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by Bohr (nuclei). The K quantum number, as one might expect, is well- 

defined. 

A group-theoretic model for terminating band structure was found 

considerably earlier by Elliott:18 this is the compact group generated 

by the orbital angular momentum L and a quadrupole operator Q, obeying 

the SU(3) algebra: 

LxL=iL ; CL,,Q,l = iC212 Q 
wu' u' 

and (2.4) 

CQ,yQ,rl = iC~~~m Lm . 

Let us remark that these group-theoretic state classification problems 

are by no means always straightforward! The labeling induced by 

SU(3) 1 SO(3) is a classic example of the difficulties that can occur. 

This problem was given a definitive discussion a few years ago by the 

combined efforts of the Montreal and Moshinsky UNAM groups in a paper 19 

fittingly entitled 'Everything You Always Wanted to Know About 

SU(3) 3 SO(3)." 

Racah showed very early that an (orthonormal) labeling by a polynomial 

operator in the SU(3) generators was not possible. Nevertheless Elliott 

gave a (non-orthogonal and approximate labeling in terms of a "K-quantum 

number," equivalent to the heuristic basis: 

0 I K < min(p,p-q) , K = even integer 

cp q 03 3 K I L s max(p,p-q) , (2.5) 

If K=O , then L = even integer only . 

The bands in the Elliott model must terminate, since the group is compact 

(and hence the unirreps are finite dimensional). Accordingly the values 
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of the available angular momenta are limited in size; it follows that the 

. 

K-quantum number is necessarily ill-defined physically. 

This is the physical reason20y21 behind the difficulty of the labeling 

problem for the subgroup chain: SU(3) 3 SO(3). 

C. The Interacting Boson Model22 

The Interacting Boson Model' (IBM) for even-even nuclei has a com- 

pletely different physical'motivation. The underlying physical structure 

is the shell model, and attention is focussed on the (2N) nucleons outside 

closed shells. (For shells more than half-filled, one uses nucleon holes.) 

These nucleons are then assumed to form pairs (NN or PP pairs of unit 

isospin) having either L=O ("s-bosons") or L=2 ("d-bosons"). These 

"bosons" -- N in number and of six types (‘l-s,5-d's) -- are assumed to 

interact as true bosons forgetting their origin as fermion pairs. 

The Hamiltonian is taken to be rotationally invariant and to have 

all possible terms constructible from four or fewer bosons. There are 

nine possible terms and this general Hamiltonian reads:24 

+ Bo[($x_d)' (s s) + hoc. 1 0 

+ B2[(dx_d) 1 0 
x (z s) + h.c. 

+ c~[(S)~ (s12] + c2 [(W XZS lo - (2.6) 

+ Actually there are two models: IBM-l and IBM-2. In the former23 no 
distinction is made between proton and neutron pairs whereas in IBM-2 
the two types of pair are distinguished. Only IBM-l enters in the 
sequel, but it is easy to extend the considerations to IBM-2. 
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Group theoretically the interacting boson model is a realization of 

broken SU(6) symmetry. Accordingly we must select a subgroup chain for 

the breaking pattern, and then use standard methods to label states and 

construct matrix elements. 

SU(6) symmetry is unusually rich in subgroup chains and there are 

three chains of important physical interest: 

(4 

6) 

(4 

Anharmonic vibrator: 

SU(6) 1 SU(5) 2 SO(5) 1 SO(3) 1 SO(2) , 

Axisynrmetric rotor: 

SU(6) 1 SU(3) 3> SO(3) 1 SO(2) 

y-unstable rotor:25 

SU(6) 1 SU(4) = SO(6) 3 SO(5)r) SO(3) 3 SO(2) . 

For each of these chains, the general Hamiltonian of Eq. (2.6) may 

be specialized, such that a closed form results in terms of the linear 

and quadratic (Casimir) invariants of the subgroups in the chain.24 

The labeling of the states in each chain may be given explicitly, 

but the most convenient labeling yields non-orthogonal statesI such as 

encountered first in the Elliott model. (The group theoretic technique 

of "traceless bosons" is useful here.26) 

It is important to note that not only is a closed form available for 

the energies, and a complete labeling of the states, but analytic 

expressions can be given for matrix elements of transition operators.27 

This makes it possible to survey large quantities of data extensively 

for trends in the parameters of the Hamiltonian (which depend on N and Z). 

The labeling of all states defined by the three subgroup chains 

above are given in the following diagram: 
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Su(6) 
irrep: [N 61, 

SU(5) 
irrep: Cn, 61, 

nd = N,N-I,...,0 

\ 

/ \ 
t 

SU(4) 
irrep: Ca u 0 01 

u = N,N-2,...,0 or 1 

/ 

SU(3) 
Cp q rl"= [p-r q-r 01 

p,q,r are all parti- 
tions of 2N into 
lexical triples of 
even integers. 

SO(5) 

irrep: (v,O) 

v = nd,nd-2,..., 0 or 1 

v = u,u-1 ,***, 0 

\ 
sot31 

irrep: a) 

SO(5) Chain SU(3) Chain 

partition v = 3A+X 0 -< K I min(q,p-q) 
For each possible K= even integer. 
partition, 
L= 2X,2X-2,2X-3,...,X 

K I L -< max(q,p-q) 

(L = 2X-1 does not occur) If K=O, only 
L = even integer. 
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d. How are the Bohr Model and the Interacting Boson Model Related? 

This question is both interesting and topical -- a session of the 

APS meeting in Baltimore (April 20-24, 1981) was devoted to answering it. 

(Iachello and Arima in noting the existence of the anharmonic vibrator 

chain took the essential equivalence of the models as a truism from the 

beginning.) The analyses at the APS meeting showed no clear consensus. 

Klein, Li and VallierGs, for example, assert28 that the two models are 

"completely equivalent" whereas, by contrast, Gilmore and Feng insist2' 

that "the two models are demonstrably not equivalent." 

The existence of such'contradictory positions reflects the fact that 

there is no common view as to precisely what cons,titutes each of the two 

models. Klein et al. (disavowing totally the liquid drop origins of the 

Bohr model) define their "Bohr model" to allow arbitrary non-polynomial 

boson interactions and, more importantly, restrict the Hilbert space to 

a finite basis (fixed for a given nucleus). The relation between this 

"Bohr model" and a "generalized IBM" (also allowing arbitrary interactions) 

is shown by an equivalence of bases, realized by means of a nonlinear 

(Holstein-Primakoff) boson mapping (see below). 

By contrast the Gilmore-Feng assertion is based on the fact that 

the Bohr model has an unbounded spectrum, in clear contrast to that of 

the IBM. This view points to a valid physical distinction: the quadru- 

polar quanta of the original Bohr model are unlimited, whereas the SU(6) 

quanta of the IBM are fixed for a given nucleus by the number of valence 

pairs. 

But mathematically, the two models show very close relationships. 

Gilmore and Feng point out that the ansatz, Eq. (2.1), does not in fact 
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. 

conserve volume, so that to conserve volume a dynamical L=O term must 

(in this view) be adjoined as a physical variable [equivalent to adjoining 

an s-boson; this then leads (non-linearly) to the IBM]. Technically this 

is correct [taking Eq. (2.1 ) as exact] but -- as we show in Section III 

-- is a misreading of the physics! Actually the ansatz given by Eq. (2.1) 

is simply a poor approximation for incompressible irrotational flow with 

large deformations; the s-boson in fact enters -- as we show later -- to 

allow the possibility of volume-changing monopole deformations! 

If one simply adjoins an L=O dynamical variable, s, and imposes a 

conservation condition on the (total) number of bosons [this is a basis 

(or wave function) constraint] then we are led at once to a nonlinear 

realization of U(6) symmetry (and the IBM) involving explicitly only the 

five d-bosons: 

U(5) generators: td,, avl 

additional U(6) generators: 

r 5 - 

. , 

c d ;i cr IJ 1 . 1 112 . , 
5 = 1 l/2 

d; a * 
1 lJ lJ !J ' 

).l,v = 1,...,5 (2.7a) 

(2.7b) p 1,...,5 = 

)I 1,...,5 = (2.7~) 

r 5 1 

s s + LN - T du au] (constraint on basis) . (2.7d) 

One sees in this procedure the origins of (and the reasons for) the 

assumptions underlying the Klein et al. analysis. The existence of this 

nonlinear mapping relating the two models has been noted by many.30'33 
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It is not surprising that this extension of the Bohr model yields 

the IBM; in fact, Janssen, Jolos and D&au30 used precisely this path to 

develop the "IBM" in 1974, prior to the Iachello-Arima introduction of 

their model! 

The relationship between these two models was analyzed by several 

authors34-36 by the method of coherent states to yield the classical limit 

of the IBM in the form of a potential energy surface (involving the 

intrinsic shape variables); comparison with the Bohr model potential 

energy can then be made directly, including all syrmnetry limits of the 

IBM. The method of coherent states is an important group-theoretic 

technique2g for analyzing symmetry structures but it would carry us too 

far afield to discuss it here. 

In the final analysis the equivalence or not of the two models is 

a matter of definition (and personal taste). Suffice it to say, both 

models are useful and reflect quite different physical viewpoints. 
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111. THE KINEMATIC SYMMETRY APPROACH TO COLLECTIVE MOTION 

The Bohr Model and the Interacting Boson Model have both been 

discussed as instances of the standard symmetry approach to collective 

motion in the preceding section. There is, however, an entirely different 

approach for exploiting symmetry. One begins by focussing attention on 
I 

certain physically important operators (observables) which generate the 

symmetry. The Hamiltonian is assumed to be a function of these operators, 

but it need not be an invariant. This assumption alone suffices to ensure 

that any multiplet, characteristic of the symmetry, will at worst be 

split by the Hamiltonian, but not mixed with other multiplets. 

One thus starts with a set of operators that obey (equal time) 

commutation relations characteristic of some algebra. These operators 

are identified with physical transition operators which, acting on a 

given state, use up most of their strength-in transitions to a few nearby 

states. The algebra may be such that (because of dynamics) the stationary, 

or quasi-stationary, states fall into a few (unitary) irreducible repre- 

sentations of the group. This approach, which is largely attributed now 

to Gell-Mann had been partly developed earlier by Lipkin and Gosheny3' 

and even earlier by Tomonaga.38 

The focus upon transition operators as generators of the symmetry 

has one aspect that deserves emphasis: commutation relations are 

kinematical statements, so that the algebraic structure is preserved 

independently of the dynamics of symmetry breaking. 

Following the model by which the weak and electromagnetic currents 

were exploited, Dothan, Gell-Mann, and Ne'eman considered the~(symmetric) 

energy-momentum tensor, which couples to gravity, and showed that,3g in 
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the quark model, the time-derivative of the quadrupole moment of the 

zero-zero component of this tensor and the orbital angular momentum close 

on the algebra of sR(3,1R) . This is the group of volume preserving 

deformations and rotations of three-space. 

For nuclear and hadronic collective motion it is intuitively clear 

that the quadrupole moments are important operators, and a crucial point 

is how to treat properly these deformational degrees of freedom. The way 

to proceed has already been made clear in condensed matter physics where 

quanta1 treatments of collective phenomena such as sound waves, plasma 

oscillations, and the.like are important. One identifies the appropriate 

flow pattern of the desired collective motion and constructs the corres- 

ponding generator.4op41 

Consider for the moment two dimensions. Using the velocity potential 

(4 =- ; (x2- y2) one obtains a volume preserving irrotational flow. (The 

flow changes a region bounded by a circle into an elliptic boundary.) 

The generator for this flow is the operator: II 5 [(V$)*V + h.c.1 which 

has the form: II = xp 
X 

- yp . Y 
To apply this to nuclear collective motion (in three dimensions) we 

observe that I$ is none other than a quadrupole operator, so we consider 

the total quadrupole moment generated by the nucleons (relative to the 

center-of-mass): 
N 

Q, = c qp' 
n=l 

, (3.1) 

and construct the corresponding flow generator: 

+ h.c. . 1 (3.2) 

i=1...3 
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The five operators TIP generate, under commutation, the Lie algebra 

sR(3,lN, which contains, in addition to the ~five II lJ the three angular 

momentum operators ,L. The corresponding non-compact Lie group is the 

group of volume-preserving rotations and shearing deformations of three- 

space: precisely the collective motions one would associate with nuclei 

or hadrons if composed of incompressible fluid matter. 

Let us make a series of remarks in place of an extended discussion:20 

Remark 1: 

collective 

Tomonaga showed that in a Taylor series approach to a general 

Hamiltonian it was always possible to ensure that 

H -T collective ,Q, 1 = 0 , (3.3) 

where T collective is the collective kinetic energy and Q the collective lJ 
coordinate. 

This is equivalent20 to the Gell-Mann "anti-contraction" postulate: 

II IJ - $-[H,Q,] , (3.4) 

which defines the deformation generators as time derivatives of quadrupole 

collective coordinates. 

Remark 2: The Gell-Mann -- Tomonaga result CEqs. (3.2), (3.3) and (3.4)1 

is not an arbitrary choice but is in fact essential for a physically 

meaningful result! This can be seen group theoretically in this way: 

consider the quadrupole operators Q IJ and rotation operators ,L as genera- 

tors of a group having the algebra A2. 

If the group is compact CSU(3)l then L*L + Q:Q is an invariant, so 

that the matrix elements of Q necessarily decrease, and finally cutoff, 

in any given irrep, as L increases. 
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If the group is non-compact, then L*L - Q:Q is invariant and the 

matrix elements of Q increase without limit as L increases! Since the 

(mass) quadrupole Q is proportional to the charge quadrupole, such an 

increase [in BE(2) values with Ll would be in flat contradiction to 

experiment. 

Note how the Gell-Mann -- Tomonaga prescription neatly avoids the 

dilemma: the quadrupole group generator II is not Q but rather +CH,Q~ 

and hence has for matrix elements: 

<l-I> = (hE) CQ> . (3.5) 

Thus the rise in <II> with L is opposed by the increase in AE with L, and 

the resulting competition can conform to experiment. (The rigid body 

limit can be obtained precisely for example.) 

Remark 3: It would be reasonable to add to the algebra of sR(3,1R) 

generated by {L,III) the operators Q, also, but this won't work! [Group 

theoretically one sees this from the'fact that sR(3,lR) has no (non- 

unitary) five dimensional irrep.] One must adjoin the element 

Q, - $ c (x?))~, (the trace of Q), to obtain a closed algebra. n,i 
This yields the collective motion group, CM(3), introduced by Cusson. 

Since Q, is a scalar under rotations, we see that we are forced 

purely group theoretically to generalize20 from "d-bosons" (Q,) by adding 

monopolar (Q,) "s-bosons." 

Remark 4: The collective flow corresponding to Q, is radial; the 

associated generator is the dilation operator: 

N 
II0 = 

n=l 

(3.6) 
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Thus, step-by-step, symmetry techniques force one to consider a 

15-parameter collective motion group, lR6 @  GL(3,1R), as sketched in the 

following diagram: 

Gell-Mann 
Tomonaga commutation 

action on -( 1 QO 
Gell-Mann 
Tomonaga 

Q.. 

The operators ~QO,Q,,llu,lIo~ generate lR6 @  GL(3,JR). 

Remark 5: Let us omit the dilations and consider the 14 generators of 

cM(3) E d @  SL(3,lR). There are two invariants of CM(3): a 

(volume):! 5 A and a vortex-spin v. [These invariants are analogs of 

the (mass) 2 and intrinsic spin s of the Poincari group.1 

What is the physical meaning of the vortex-spin? 

To answer this,-let us note that the SL(3,IR) group is realized by 

the set of all 3 x3 real unimodular matrices under matrix multiplication. 

A generic element M of the group may be written as: 

M= RAS , (3.7) 

where R and S are real 3x 3 rotation matrices (5 = R -1 N , S = S-l) and A 

is 3x 3, diagonal and unimodular. (This form implies that M is unimodular.) 

Space-fixed rotations, generated by the angular momentum operators I.,, 

correspond to multiplication of M on the left by the matrices R. Body- 

fixed rotations correspond to multiplication on the right by S; the vortex- 

spin operators g are the generators of these rotations. 
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Clearly the transformations generated by I,, and by g , commute; 

moreover each obeys the commutation relations~ of an angular momentum 

(possibly with reversed sign). 

Operationally the vortex-spin eigenvalue v is generated (in analogy 

with the intrinsic spin of the Poincarg group) by rotating to the intrinsic 

frame, deforming to sphericity, and measuring the angular momentum (v) in 

the resulting analog to the rest frame. 

Remark 6: The smallest simple group containing the group lR6@ GL(3,lR) 

is the symplectic group SP(6,lR) (or better its covering, the metaplectic 

group) of canonical transformations43 in three-space. This is the group 

studied in the collective motion context by Rowe and Rosensteel, by 

Stemberg, and by Gulshani and Volkow.46 
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IV. RELATIONSHIP BETWEEN THE TWO SYMMETRY APPROACHES 

At first glance, it might appear that the two symmetry approaches 

are completely unrelated, for the symmetry group in the standard approach 

is compact whereas in the kinematic approach the group is non-compact. 

Yet on closer analysis, there are some relationships. 

The relation between the Bohr Model and the Collective motion group 

CM(3) has been discussed by Tomonaga3* (in two dimensions) and by 

Weaver et al.2o more generally. This relationship is that of group 

contraction. In the limit in which the shear generators become large, 

and the operator Q, as well, one finds that: (1) Q, commutes with 

everything; and (2) the operators II Thus 1-I and Q,/Q, become conjugates. 

we have recovered the known result: a contraction limit of CM(3) yields 

quadrupole bosons ("d-bosons"), and their conjugates, which are the basis 

of the Bohr model. 

What is the relation to the Interacting Boson Model? Here we must 

obtain some new results. 

Let us recall that in CM(3) we were forced to adjoin Q, to the five 

quadrupole operators, Q,. Correspondingly the flow associated with the 

operator Q, forced the adjunction of the generator JIo, the dilation 

operator (volume changes) so that one obtained the algebra lR6 @  GL(3,lR). 

It is not quite straightforward to find the contraction limit now. 

First we must take Ilo to be large (NE: -1 >. Secondly, (taking a hint from 

the non-relativistic limit of PO in the Poincarg algebra) we must take 

the limit of Q, in the form: Q, = E -lCo + ES, where 5, is a c-number, 

s is an operator, and E + 0 in the limit. 
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The operator Ilo commutes with the sR(3,lR) algebra, so these 

commutation relations are unchanged in the limit. Thus only the com- 

mutation relations with the Q,, Q, are at issue. For these we have: 

[no, e] = ihs , m = 0,1,...,5 . (4.1) 

Multiplying by E (for m=1,...,5) and by 1 (for m=O) we obtain in the 

limit: 

[no,Qu] = 0 9 (4.2) 

[no,s] = itiC l (4.3) 

(It is crucial to note the [II~,E-~c~] = 0 for 5, a c-number.) 

Thus we obtain, in the limit, six bosons and their conjugates. 

O'$ and Q,,/Co) -- d-bosons and (II0 and s/So) -- the s-boson. 

We conclude: a contraction limit of the collective motion group 

with dilations (lR6 @I GL+(3,W) yields precisely the s and d boson 

operators of the IBM. 

This is an interesting -- even if not unexpected! -- result for it 

shows that the interacting boson model simply relaxes the incompressi- 

bility condition in the original Bohr-Mottelson treatment of collective 

nuclear flow. 

Let us conclude this section with two remarks: 

Remark 1: The symmetry group of the Bohr-Mottelson unified model (rigid 

rotation, adiabatic model) is a subgroup of the collective motion group 

m(3) = lR6 @  SL(3,W), that is, to say, the group lR5 @  SU(2) is con- 

tained as a subgroup. (The adjundtion or not of dilations isof no 

concern for the rigid body limit.) 



Remark 2: There is a quite different way to find a relationship between 

the two symmetry approaches, this time in terms of the spectrum. The 

condition that (in the kinematic approach) the Hamiltonian split but not 

mix the states means, in effect, that both approaches deal with the same 

set of states but organize the spectrum differently. Consider SU(3) 

symmetry vs the kinematic SL(3,lR) symmetry. Both symmetries deal with 

the same abstract set of angular momentum states: in the harmonic 

oscillator SU(3) shell model these are the familiar SU(3) > SO(3) states 

for Cn 0 01. SL(3,IR) acting on these same states, organizes them 

"vertically": all L=O states are made into coherent states, similarly 

for L=2, L=4,... . This yields an SL(3,lR) irrep: the band 0,2,4,... 

with a continuous quadrupole (invariant labeling) parameter. The odd 

angular momenta became the irrep: 1,3,5,... . This relationship between 

Elliott SU(3) and kinematic SL(3,R) shows how the interacting boson model 

is to be related to the kinematic symmetry approach of Sp(6,lR): both 

approaches are based on the harmonic oscillator shell model states, the 

IBM using compact SU(6) symmetry, while the kinematic approach embeds 

Sp(6,lR) as a subgroup in the non-compact SU(3,3) group. Note that the 

covering group is spinorial in the latter approach so that half-integer 

excitations are obtainable as well. 
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V. THE DIRECT APPROACH TO COLLECTIVE MOTION 

The direct approach to nuclear collective motion attempts to intro- 

duce collective coordinates into the nuclear Hamiltonian via a (possibly 

implicit) coordinate transformation. The prototype for this is the 

transformation to center-of-mass coordinates. 

A very elegant realization of this approach was developed by Brian 

Buck in the early 70's, but was not published' until 1979. We will 

sketch these developments in order to show, first, how nicely they accord 

with'the symmetry approaches of Sections II and III and, second, how the 

concept of vortex-spin clarifies the problem of the moment of inertia. 

The key to Buck's development is to regard the coordinates of N 

particles in three-space as a rectangular 3 XN matrix: M = (Miu) = (ri (Ld) 

that is, .th the matrix element (Miu) is the 1 coordinate of the particle p. 

Such a matrix allows one to define two "quadrupoles": (a) Q : M "M and 

(b) 2 = "M M. 

The 3 x3 matrix Q is precisely the usual quadrupole array (whose 

elements are sums over the N particles) with tr Q = Q, as defined earlier. 

The N xN matrix 9 is a "quadrupole" matrix in "particle label space." 

(The matrix elements of % are sums over the three spatial coordinates.) 

As real, symmetric, matrices both Q and gcan be brought to diagonal 

form by a real similarity transformation. The three eigenvalues of Q are 

just the three quadrupole moments {Xo} defined in the intrinsic frame. 

The eigenvalues of gare surprisingly simple! They are just the three 

eigenvalues of Q  with all other eigenvalues zero. We orient particle- 

§ The vortex-spin concept was developed and added in the interim. 
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label space so that the three non-zero eigenvalue axes coincide with the 

three intrinsic axes of Q. 

The new coordinates are now seen to be: 

(a) The three eigen-moments, {ho}. It is convenient to use* 

+(A,) l/2 - p as the actual variables. a 
(b) The three Euler angles defined by the rotation into the body-fixed 

(intrinsic) frame of Q. The generators for this rotation are ,L. 

(c) The 3(N-2) angles that specify the coordinates of particle label 

space relative to the intrinsic frame. 

The six coordinates, (a) and (b), are collective; the former explicit, 

the latter (Euler angles) implicit. 

At this point, we note that we have neglected the three center-of- 

mass collective coordinates. These are easily taken into account by 

using relative vectors (2 b-4 -&) in the matrix M. This replaces (c) 

by 3(N-3) angles. 

The 3(N-3) internal angular coordinates correspond to rotation of 

the N-l dimensional label space (one dimension is removed by the center- 

of-mass collective coordinates) relative to the three orthonormal vectors 

defining the intrinsic frame. Thus we have [(N-l)(N-2)1/2 angles 

specifying a general orientation of label space from which we subtract 

C(N-4)(N-5)1/2 angles corresponding to the irrelevant orientation of the 

(N-4) dimensions defined by null eigenvalues of L%?. This yields 3(N- 3) 

angles. 

Group-theoretically this structure is that of a coset space of the 

rotation group SO(N-1) with respect to the subgroup SO(N-4), that is, 

SO(N-l)/SO(N-4). Motion in this space is generated by the 3(N-3) 

operators: 
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5 = ~a~=-~8a , (a,B,Y = 1,2,3 and cyclic) 

Lx?? 
CCK = -Lz,, , (a = 1,2,3 ; K = 4,5,...,N-1). (5.2) 

[Acting on the coset space the remaining operators gKK, of SO(N-1) 

vanish. 1 

The three operators 9 
Y 

are distinguished since they generate 

rotations of the three dimensions singled out by non-vanishing eigen- 

values of&??. 

A surprising, and important, result47 is that the three operators 

gY are precisely the vortex-spin operators found in the kinematic 

symmetry approach to collective motion in Section III. 

In order to see the importance of this result let us record the 

form of the classical Hamiltonian expressed in terms of the new variables: 

P2 H==+ 

xa + A 
+ 

xa + x 8 2 
8 

a<B 2M(X,-AS) 2 LaB + 

c 

a<B 2M(h,-AS) 2 4s 

+ 4Pa'f3 2 LaBgaB + V(C) 
l 

a<f? 2M(A,-hS) 
(5.3) 

[Here g is the C.M. momentum operator, :a the conjugate operator to u, 

and V(s) denotes the potential expressed in terms of the new coordinates.] 

The quanta1 Hamiltonian corresponding to Eq. (5.3) is given in Ref. 47. 

One notes that only the vortex-spin operators{ZZY} are coupled via 

the Hamiltonian to the angular momentum, {LY}. This fact (and the vortex- 

spin itself) are crucial47 to the "moment of inertia problem": If 22$+0 
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(this is a condition.of the space of states) then the moments of inertia 

take on the "liquid" value: 

+q = 
M(X a - $I2 

Y , (af3-f cyclic) . (5.4) 
Aa + h 

B 

This condition is responsible for the liquid moments of inertia that 

necessarily arise in the Bohr model. 

By contrast the rigid body moments arise47 if the velocities con- 

jugate to the {sy) are set to zero: (iy = 0) => I = Itigid = M(Aa+hS), 

(af3y cyclic). Setting velocities to zero is a dynamical condition, and 

one sees that the moment of inertia problem cannot be resolved without 

an understanding of the nuclear potential. (Indeed it is an empirical 

fact that atoms do not possess rotational spectra whereas many nuclei do: 

the long-range character of the Coulomb interaction accounts for this 

difference.) 

The explicit introduction of collective coordinates, in terms of 

which the work of Buck et al. is just the beginning, is an important 

task to which the UNAM group is now making contributions.48 

The angular momentum operators, { Ly), and the vortex-spin operators, 

WyL are common both to the kinematic symmetry approach and the direct 

approach, and, as mentioned, are the key to the problem of moments of 

inertia. Let us discuss these operators further, especially since the 

vortex-spin operator has recently been re-investigated critically by 

Louck.4g 

The commutation relations obeyed by these operators are: 
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[ La4 ]= B -ie aBy Ly ' (aBy = 123 cyclic) (5.5) 

[I La 9-q = 0 , (5.6) 

[y&dQ= -iEaBY2zy , (ai3v = 123 cyclic) . (5.7) 

(The minus sign results from the fact that these operators are 

referred to the intrinsic frame, by projection with the unit vectors a 
of the intrinsic frame.) 

A local definition of the angular momentum can be given in the form: 

L XL = 
Y aB 

$ [(sa -_I(~))($~ l go) - ($ +))(ia +)]. (5.8) 

A rather similar appearing form for the vortex-spin operators can 

also be given: 

(5.9) 

This form for the vortex-spin shows two important features: 

(I) The vortex-spin is a non-local quantity (since the pa's depend 

on the instantaneous positions of all particles). 

(2) For a system classically constrained to have pa = u B the vortex-spin 

Y? aB becomes numerically -LaB. The existence of a distinct vortex- 

spin operator is thus intimately connected with deformations. 

Quantum-mechanically, because of fluctuations, pa never equals ug; 

vortex-spin is always distinct from angular momentum. 

Louck4g has recently criticized the commutation relation, Eq. (5.7), 

for vortex-spin; he finds the right hand side to be multiplied by: 

f f If a8 Y’ 
where f a = (~g+~a)/21JB~y. 
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One can verify, however, from the SL(3,lR) realization of the 

vortex-spin -- as given by Eq. (3.7) -- that Eq. (5.7) is correct. What 

goes wrong is apparently that the internal angular momentum calculated 

by Louck is not the vortex-spin; the internal angular momentum defined 

"in the intrinsic frame" (as opposed to "referred to" the intrinsic 

frame) has complicated commutation relations, and no relation to the 

vortex-spin. 

Let us make one remark on the moment of inertia problem. The 

difficulty, as discussed by Buck, is not only dynamical, but closely 

related to implementing the Pauli principle. Recently RobsonS has shed 

new light on the problem, for nuclei, by explicitly introducing quark 

degrees of freedom, which make the nucleus look far more like a rigid 

body rotationally. It is interesting to note that not only does the bag 

model of individual hadrons clearly involve SL(3,lR) degrees of freedom, 

but the bag model applied to nuclei suggests a sort of "pomegranate" 

structure (of many deformed bags with domain-like walls) which might 

verify Robson's concept of a tetrahedrally deformed alpha particle sub- 

structure as important in nuclei! 
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