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ABSTRACT 

We prove here that by taking the zero range limit of conventional 

nonrelativistic three-particle theories and restricting the two-particle 

amplitude in this limit to have no singularities at negative energy 
.-- 

o her than bound state poles, 
F 

we can derive unitary three particle 

equations depending only on two-particle physical observables. Phenom- . -.. - 

enological extensions of this theory suitable for data analysis of 

systems with three-particle final states and two and three-cluster 

reaction theories are briefly discussed. The extension of the theory 

to four-particle systems is sketched. Nonrelativistic and relativistic 

applications will be discussed in subsequent papers in this series. 
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1. Introduction 

The research program reported in this series of papers had its ori- 

gin in the obvious proposition that we can learn more about the dynamics 

of three-particle systems if we can "subtract" from the three-particle 

system the consequences of the scatterings and bound states of the two- 

particle subsystems in a way that preserves asymptotic probability flux 

and can be uniquely and unambiguously computed using only the probabili- 

ties that can be unambiguously determined (in the sense of the law of 

large numbers) from the statistics of two-particle scattering experiments. 

In this paper we assume in addition that all "particles" and 'bound states" 

considered can be characterized by unique finite mass values, or failing 

that in the limit of small mass differences, by parameters which are unam- 

assigned by the "detectors" implied in the reference to 
. .-. -_ - 
asymptotic states. 

Once launched, it became clear that this program-if successful- 

would also find application in elementary particle theory. Thanks to 

Faddeev it was already clear that the simplest route to asymptotic flux 

conservation ("unitarity" in the context of a nonrelativistic Hamiltonian 

theory) requires in the three-particle system the (unobservable for three 

free-particle states) separation of the wave function into "channels" 

_ referring to an "interacting pair" and a "spectator"-an "overcomplete" 

description. Once this is done using the Faddeev prescription a vertex 

which opens between two subsystems cannot again close until some novel 

component of the system has intervened. Hence the "self-energy diagrams" 

which are a major source of infinities in the quantum field theory 

approach to elementary particle physics cannot occur if one follows 

Faddeev's prescription. Further, if the theory is consistently formulated 
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in terms of "free particle" asymptotic states of specified finite mass, 

one has immediately available a covariant relativistic description of the 

observables simply by using covariant kinematics, and does not have to 

enter the vexed question of how the "interaction energy" transforms from 

one coordinate system to another or of how that quantity is to be "local- 

ized" in the laboratory in a manner consistent with the presupposed quan- 

tum theory.ly2 The success of James Lindesay in constructing a minimal 

relativistic three-particle dynamical theory3 has proved that these hopes 

were not illusory; consequences will be discussed in subsequent papers 

in this series.4 

Despite the simplicity of the physical ideas that launched the pro- 

4% it ran into technical difficulties, some of which are explored in 

'tlifs-paper. In the nonrelativistic context the naive approach is simply 

to replace the "fully off-shell" scattering amplitude t(q,G;z-z2) of the 

two-body subsystems,5 which contains the dynamical content of the Faddeev 

equations, by the "on-shell" (or zero range-see Sect. II) amplitude 

t(z -"p2>. However, conventional two-particle on-shell scattering ampli- 

tudes generated by an exponentially bounded "potential" or extracted by 

some prescription from a nonrelativistic limit of an elementary particle 

theory based on the Wick6-Yukawa7 model of finite mass hadronic quanta 

usually require singularities ("left-hand cuts" in the language of dis- 

persion theory) when the energy argument :20f the on-shell two-particle 

-2 amplitide r(q +iO+> is analytically continued to negative real values. 

Since the Faddeev formalism requires the spectator particle energy 52 to 

range over all positive values, the Faddeev equations become ambiguous in 

the zero range limit in the presence of "left-hand cuts" in the model used 

for the on-shell amplitude. 



I : 

_.s- ---f * 
-4- 

The naive answer to this technical difficulty is to confine our 

zero range theory to models that have no left hand cuts. The simplest 

such model-the scattering length model-has a long history, starting 

with the proof by L. H. Thomas that such a model in the case of attractive 

interactions would give infinite binding to the triton.8 Although subse- 

quent work has shown9 that it is possible to define "zero range" limits 

in this problem in such a way as to achieve finite results, our approach 

here differs. As has been shown by Brayshaw,lO if one uses relativistic 

kinematics and argues from the requirement that the "spectator" in a 

three particle problem should not affect the scattering of the pair, and 

hence must be represented by all momenta between zero and infinity when 

t 
P 

pair are in their own zero momentum system, then simply transforming 

..fh&e limits to the three particle zero momentum system one finds that 

the spectator momentum lies between zero and (M2- m2)/2M where M is the 

invariant four momentum and m the mass of the spectator. Thus by using 

relativistic kinematics the scattering length model becomes well defined 

without additional argument, and as Lindesay3 has shown yields precise 

quantitative results. Indeed as the scattering length goes to infinity 

he shows that the nonrelativistic Efimov accumulation of a logarithmically 

infinite spectrum of three particle bound states is obtained, in quantita- 

tive agreement in the appropriate region with nonrelativistic calculations 

based on separable potentials. For work in the nonrelativistic region, 

it suffices to simply use a fixed momentum cutoff by taking M = 3m (for 

equal masses) and use nonrelativistic kinematics. Calculations in this 

approximation for the three nucleon problem made by M. Orlowski will be 

presented in the third paper in this series.II But the objective of 
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this theory was not to give a new method of meeting the scattering length 

problem but rather to find a general on-shell theory that could use only 

empirical input. 

For the general case, the "no left hand cut" assumption forces us 

to part company both with potential theory and with the usual ideas about 

how particle exchanges are reflected in the analytic structure of on-shell 

two-particle amplitudes. One reason that this program has taken so long 

to reach definitive publication was that the author was extremely reluc- 

tant to take this step. However, once taken, the theory is at least well 

defined, and leads to interesting results in both the nonrelativistic'l 

_ and- relativistic3'4 applications already made. We therefore beg the 

s. ptical 
? reader to reserve judgment on the usefulness of this step 

.unril he has seen the reasoning that has forced us to it. 

Our first step in what follows is to define the zero range limit 

in both configuration and momentum space, and explicate why well under- 

stood physical principles force us to a restricted class of models when 

we take that limit, which is done in Sect. II. In Sect. III we derive 

three-particle equations by imposing a finite range boundary condition 

on the asymptotic form of the three-particle wave function in each 

Faddeev channel and taking the zero range limit. The resulting equations 

are identical to the on-shell limit of either the Faddeev or the Karlsson- 

Zeiger equations under our model assumption. In Sect. IV we show that 

the three-particle scattering amplitudes calculated from these equations 

satisfy three-particle "unitarity" on-shell (i.e., satisfy the physical 

requirements of asymptotic flux conservation and detailed balance). 

In Sect. V we show how to introduce "reduced widths" and zero range 
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"three-body forces" into the theory with an eye to data analysis. We 

sketch a three-cluster multichannel reaction theory. In particular we 

also show that if the two-particle subsystems contain only bound states 

and no scattering states, we can calculate asymptotically unitary "three- 

particle" amplitudes describing the elasticand rearrangement scattering 

of a particle and a two-particle cluster which never lead to breakup at 

any energy. This has obvious application to nuclear reaction theory using 

cluster models, and in the relativistic version of the theory4 to be devel- 

oped subsequently, to fully covariant "constituent" models. Thus we have 

found a practical way to implement the proposal of Fermi and Yang12 that 

the pion be considered to be a "bound state" of a nucleon and an antinuc- 

lean. In-Sect. VI we show that the same approach leads to well-defined 

F four-particle equations. Assuming that the covariant 4, 5, . . . particle . .-. -_ . 

equations follow as easily from the nonrelativistic combinatorics as do 

the three-particle equations, this will open up the exploration of phenom- 

enological covariant constituent quark models-that is asymptotic QCD 

without gluons, and also, we hope, with confined gluons. 

II. The Zero Range Limit 

As mentioned in the Introduction, we restrict ourselves here to 

_ particles and "bound states" of finite mass. Although our focus in this 

paper is "nonrelativistic", our aim is to extend our treatment to all 

hadrons in a covariant way. Hence we will use freely general ideas that 

come from the broader context of the relativistic quantum mechanics of 

particles of finite mass. The basic mechanism for scattering is there- 

fore taken from Wick's discussion6 of Yukawa's meson theory of nuclear 

forces.7 If two systems are brought together within some distance r 



I 
: 

..s- ,--f c 
-7- 

where they can interact coherently during the time 6t when they are so 

localized, special relativity requires that r I cbt. By Heisenberg's 

uncertainty principle 6t M */GE. Assume that the interaction is in some 

sense due to the presence of some particle of mass 1-1 and 

relativity again) rest energy pc2. This can only happen 

ty in energy 6E 2 pc2. Hence 

Cli C-h +l rrc6t25y 5 - = - . 
PC2 

UC 

(from special 

if the uncertain- 

(2.1) 

Following Newton we assume that the total momentum of the system must be 

conserved, but this does not define the relative momentum between the two 

systems before and after they enter the region of dimension r; we conclude 

_ that they will "scatter" in some manner that will be connected to the way 

t&Y share momentum with u during the time interval 6t. Further, if the 

3nergy is high enough, the "hadronic quantum" of mass 1~ will appear, 

sometimes, in the final state. Our nonrelativistic restriction precludes 

this possibility in the discussion of this paper, and hence requires us 

to define the scattering process in such a way that the "range" r, and 

the corresponding degrees of freedom of the mass JJ, never enter our 

equations. This is the physics behind the zero range limit which we now 

define in the nonrelativistic context. 

One consequence of our approach is that we will, at least until the 

relativistic version of the theory is developed, always be able to restrict 

ourselves to a finite number of angular momentum states; we also ignore 

Coulomb effects. Since we end up with a result identical to the on-shell 

limit of the Faddeev or Karlsson-Zeiger13 equations, where the consequences 

of angular momentum conservation have been worked out in complete detail,5 

we will restrict ourselves throughout this paper to the state of zero 
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total angular momentum for three spinless particles scattering only in 

states with relative angular momentum zero, and with only one bound state 

in each two-particle channel; the generalization is immediate, and unin- 

teresting except for specific application. Hence the two-particle radial 

scattering wave function outside the Wick-Yukawa range r will be u,(y) = 

eyq sin(qy+ 6q)/q, and satisfies the boundary condition ul(r)/u,(r) = 

q ctn(qr+ 6q). Our zero range limit then consists simply of assuming that 

we can take the limit r = 0 in this equation, or that 

lim u' (r) 
r-+0+ * = q ctn 6 

4 q (2.2) 

_ For-finite-r this would be the boundary condition model first proposed 

b T -Breit and Bouricius14 and explored in detail by Feshbach and Lomon15 
. .-. -_ - 
and Brayshaw.16 Our approach differs for reasons discussed below. 

Conventional models require the wave function to depart from the 

asymptotic form inside the range r, and hence in momentum space introduce 

an "off-shell" momentum parameter k in addition to the asymptotic momen- 

tum q. It is easy to show17 that the momentum space wave function then 

has the form 
r'yq2+iO+ ( > 

qq(k) = 6(;; k, - 
f 2W 

q 1 
-2 -2 (2.3) 
k -q -iO+ 

where f 
q2 

(k) is real and T(:~+ iO+) is the on-shell two-particle 

scattering amplitude normalized to 
+i6 

+ -2 rq - ( > 
-2 -ie 

r.q +iO' ( > =---J-=L 
lTv JqGF 

(2.4) 
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Here P is the reduced mass m lm2/ (m,+m2) and q2 = 2pq2. Hence the "half 

off-shell" amplitude is17 

T  k;<2+iO+ ( > ( 
-2 + = Tq +iO 

q2 
(k) 

3 
(2.5) 

We note that in this momentum space formalism our zero range lim it is 

simply to take f 2(k) = 0. 
9 

According to the dispersion theory of two-particle scatterings gen- 

erated by the exchange of particles of mass greater than or equal to mx, 

the on-shell amplitude can always be represented by 

f -2 ( _. ‘F.-q + r2 
+ sv<2+c?i0 ( ) 

+ s co o!02)do2 (2 6) 
-2 -2 

m2x/4 0 +g kiO+ 
. 

F  
-where E is the binding energy of the (single) two-particle bound state. 

In this dispersion relation the "left-hand cut" specified by p(02) must 

be consistent with the "two-particle unitarity" relation 

(2.7) 

The conventional Faddeev treatment requires us to know instead the 

"fully off-shell" amplitude t(q,y;z-F2) from  which the half off-shell 

amplitude t{q,C2p(z- s2)1’;z-N2 p 1 and the on-shell amplitude r(z- p2) can 

- be obtained. In order that the three particle amplitudes calculated from  

this driving term  satisfy three-particle on-shell unitarity, t must satis- 

fy full off-shell unitarity and in order that they satisfy time reversal 

invariance (detailed balance), t(q,<;z-s2) = t(<,q;z-F2). We have 

shown18 that these requirements can be met knowning only the half on-shell 

amplitude by invoking the completeness relation or Low equation 
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co 
-2 

t 'qZz-P t ) = B(q,:) - 
I 

dkk2t+(q;k2) t-(&i') @,(q)@,(s) . (2 8) 
-2 -2 

G2 
. 

0 p +k --z --E-Z 

The bound state wave functions can be represented in terms of the on-shell 

normalization and real half off-shell functions fc(q), and easily retained, 

but we omit them below for simplicity in presenting the algebra. The 

unknown function B(q,i), which must equal B(q,q) in order to satisfy time 

reversal invariance, can be eliminated by putting either q or c on-shell 

in Eq.(2.8) anti subtracting the two equations to obtain a constraint which 

must be satisfied if we are to preserve time reversal invariance. After 

some algebra, this constraint is, in our current notation 
.-- 

m 

p cr2 da2 ( > 
-2 -2 - fq2Gi) 

poda _ f 
-2 -2 

(q) 7 p(u2> du2 
-2 

-2 : . ( u +;;2 I( CJ +E2 > 
mz/4 

CJ +q i2 (5 +g2 
mx74 m:/4 

= j k2,=(k2),dkrk2(';;-f;:i" + fk2(q);2,;:,) + fk2(q) fk2(ii . (2.9) 

0 

The constraint so obtained represents the same physics as is dis- 

cussed by Baranger, Giraud, Mukhopadhyay and Sauer,l' but because we have 

explicitly introduced the dispersion relation (2.6), we obtain a single, 

nonsingular condition. As such, we hope it may prove of use in the con- 

struction of "phase equivalent potentials", but this application will not 
. 

be pursued here. What is important to us is that if we take the zero 

range limit in this equation (f = 0), we are left with the requirement 

that an integral over the left-hand cut weight function vanish, which 

cannot be met unless p = 0. Thus we are led back to the naive require- 

ment that the r(z- g2) which we obtain in the zero range limit of the 



-ll- 

Faddeev equations have no singularities for negative arguments other 

than bound state poles. The physics behind this is that since we are 

using asymptotic states with the spectator momentum p referring to a 

free particle, the on-shell requirement c2 = W-t2, where W is the three- 

particle energy in the c.m. system normalized to zero at three-particle 

breakup threshold, forces the energy G2 of the scattering pair to negative 

values. Consequently our boundary condition (2.2) becomes ambiguous if 

r(z- g2) has singularities in this region. One might think that by using 

the Karlsson-Zeiger equations13 which refer only to on-shell phase shifts 

6 2 
4' 

with q 10 in the zero range limit, " this difficulty might be avoid- 

ed. That this is not the case will be demonstrated in the next section. ._- 

i 
Further insight into the problem is provided by noting that if we 

accept the restriction p = 0, and have satisfied the constraint on f 

given by the vanishing of the right-hand side of Eq. 2.9, we can then 

construct the "interaction" term B(q,q) which occurs in the Low equation. 

But then it is easy to see that B = 0 in the zero range limit. In other 

words we are restricted to solutions of the Low equation which persist in 

the absence of "interactions"- a class of Castillejo-Dalitz-Dyson solu- 

tions.21 These are of course a useful representation of elementary parti- 

cle scattering amplitudes, which tells us that by sticking to the particu- 

late degrees of freedom which occur asymptotically, we are dealing with a 

_ nonrelativistic limit of some elementary particle phenomenology. Thus we 

accept this restriction as consistent with our overall approach. 



At first sight we might invoke the well known boundary condition 

,,de114t15916 to avoid the left-hand cut in r(z- G2). Unfortunately the 

left-hand cut for such amplitudes is replaced by an essential singularity 

at infinity. As was pointed out to the author by M. Orlowski, this pre- 

vents representation of the amplitude by the usual dispersion-theoretic 

formula [Eq. (2.6)l with p= 0, which is required in our treatment below. 

This creates a serious difficulty in applying our theory to nuclear force 

problems since the effective range formula and similar simple descriptions 

of the nucleon-nucleon S wave amplitudes predict an "interaction pole" at 

about -20 MeV. To avoid this catastrophy we can uselI the modified 

effective range formula 
.-- 

i 
q ctn 6 = 

[ 
a+ gq2+eq8 I[ 1-q2/q;]-l [ l+Aq4]-1 

'--her& q2 
0 is chosen to reproduce the zero in the S-phases at around 250 MeV. 

The results, which will be discussed in the third paper in this series," 

show that the behavior of the phase shifts in the physical region do not 

greatly modify the results obtained using a scattering length model with 

the realtivistic cutoff discussed in the introduction. This model is not 

a good first approximation since it binds the triton with about 36 MeV 

rather than the observed 8.48 MeV showing that the short distance on-shell 

scatterings in the region where we expect mesonic degrees of freedom to 

play a significant role give too much attraction. However, if we simply 

lower the momentum cutoff to exclude scatterings for momenta above meson 

production threshold, good results are obtained. It appears to us this 

is a reasonable phenomenological proceedure for nuclear physics. 
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III. Derivation of the Three Particle Zero Range Equations 

We have shown elsewhere that if we accept free particle wave func- 

tions and make the postulate that there are no hidden variables we can 

derive the conventional Goldberger-Watson form of the n-particle scatter- 

ing wave functions22 with the important generalization that the scattering 

amplitudes so defined can describe any conceivable scattering process with 

NA free, massive particles in and NB free, massive particles out. That 

is we have supplied a kinematics for this part of the S-matrix theory 

which is independent of the dynamics. Since the amplitudes so defined are 

not the "matrix elements of an interaction", any dynamics used to compute 
.-- 

them must be proven to satisfy the physical requirements of flux conserva- 
F 

tion and detailed balance. We derive the dynamical equations for our ._ .._ _ 

special case in this section and prove that they predict unitary three- 

particle amplitudes in the next section 

We start from an initial state of three free particles scattering 

only in s-waves and project out the J = 0 wave function. We will see 

below that this approach will allow us to calculate the equations for 

elastic scattering, rearrangement, breakup, and coalescence as well as 

3-3 scattering without additional effort. The resulting radial wave 

function, expressed in terms of the coordinate xa of the spectator rela- 

tive to the c.m, of the scattering pair whose relative coordinate is y, 

is (with zac = l- B,,) 
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'(xa,Ya) = 
sinp")x sinqi"y 

a p(:) (0) 
a 'a 

a 'ab - j Pz dPa 1 4: dqa 
0 0 

M ;z 
) 

sinpaxa sinqaya 
X 

( 
-2 -2 -W-iO+) 'aqa 

- C xac JP; dpc Jq: dqc 

pa+9 C 
a 

c 
(o);z 

> 
1 

M cb 'c"b 1 sinpo(S siwca(S)Ya 
X -2 -2 

PC+ qc 
+ 2 -W-i0 J 

dS 

-1 PO(S) q,,(S) I 

(3.1) 

where the on-shell condition 
.-- pw 
p pi012 + qiO)2 = w; "pL"j2 = (ma+mb+mc)2m C\+m-, (3.2) 

1 a C 
._ -_ . 

is implied, and our restriction to the asymptotic form is expressed by 

requiring the amplitudes M to depend only on the spectator momenta p 

and not on the internal momenta of the scattering pairs q. 

The integral over 5 arises from the projection onto the J = 0 state 

and the kinematic channel relations5 

m a 
P = - p 1q ; c = a+ 
-ca m+m- -c -c a a+ 

M = ml -!- m2 + m3 

(3.3) 
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and the convenient identity 

P 
-C l Xca(Xa’Za) + 4c ’ yCa(Xa9Ya) = Pca(E~~Yc) l zf, + $a(Pc9$) ’ x, (3*4) 

which defines the corresponding relations in coordinate space. 

If we now replace the dependence on xa by a dependence on p 
a by 

defining 

using 

m 
sinp x 

u Y, = 7 dx 
'a ( ) 

2 
/ a P aa a U(xa'Ya> 
0 

a, 

2 
/ 

sinpaxasinp mx 

-rr dxa - a a = $'a - 'Lo)) - 

0 

(3.5) 

(3.6) 

o$ two-particle boundary condition Eq. (2.1) in the three-particle space 

beeofnes 
U' 

lim p (Yaj 

y+o+ u 
i 

a 

a P ('a) a 
a )I 

(3.7) 

where, because of our asymptotic condition, ka is the on-shell value of 

q, defined by 

ka= /2e, . 

Using in addition the fact that for y, > 0 

(3.8) 

00 

J 
dqaqa siw Y aa ik y aa 

-2 -2 -W-iO+ 
= vu e a 

0 pa+qa 
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we find in this way that 

ka ctn kar+ 6k 
sinkar _ rPaMab(P p(O) ) ikar 

ab k a, b ;' e 
a a 

dS '(zapp;.a;')) 

a ca 

sinqca (0 r 
X  = "(pa-p(o)) 6 

s,,(S) 1 ab 
cask r a- ikaruMab(p p(');z) eikar a' b 

. ._ -_ - 
x cosqca(S>r (3.10) 

which, by solving for M  ab 
and taking the r = 0 lim it gives us immediately 

that 

M  pa,p;');z) - ~~(z-"Pi)6~~ "p;;p$;) = -ra(z+f)z i pzdpc 
c=a+ 0 

m  
M  d(P,- P,,(S)) 

X  +qc 
0 

PaPca(S) 0 
(3.11) 

_ This is precisely the zero range lim it of the Faddeev equations in the 

usual theory, as can be seen by perform ing the integral over the 

d-function and comparing with BO, Eq. (3.7) for the J= 0= R= 0= X case. 

Hence we have derived our basic equation directly from  free particle wave 

functions and the usual scattering boundary condition by simply imposing 



the two-particle boundary condition at y, = 0 + 
. We emphasize that 

nowhere in the theory have we used the concept of "interaction", having 

replaced it by the two-particle on-shell scattering amplitude as observed, 

appropriately extended to negative energies. 

If we had applied the boundary condition on yb rather than y,, we 

would have found a different equation for M ab proportional to ~~ rather 

than T a* 
To show that these define‘the same function, it is convenient 

to define a more symmetric amplitude Z a,,(pa'P,,;z) by 

M -"pi) 6,b 6(p;;;' = ',(Z-Pf) Za&a,p,,;z) ,$('-b;) 

_. .-- (3.12) 

an+' iterate the equations once to obtain 
._ ._ . 

Z a&a’+,,;z) + E~b(Pad)b;z > 

= - +pc E~c(p,.pc;z) Tc zc,,(Pc,Pb;z 
c 0 

= - c/ +pc Zac(~ar~,;z ) TC(' - ;'C) E~b(Pc'Pb;Z) 

C 

where 
2 

(- - 
Pi 'b 'apb 

'ab +2u +-x--Z 
= 2p Rn 21-rb C 

ab P2 
2" . 

a+ 
P,, P,Pb 

-------z 
2vb 2wa m 

C 

(3.13) 

(3.14) 

Using the symmetry thus established it is easy to prove by iteration that 

these two equations do indeed define the same function, establishing at 

this level the consistency of our boundary condition approach at zero 

range. The existence of these two forms is critical for our proof of the 
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unitarity of M ab' They obviously immediately establish the time reversal 

invariance. 

It is instructive at this point to ask what would have happened if 

we had not gone to the zero range limit, but applied the boundary condi- 

tion at finite r. As we might expect, the driving term is unaltered, but 

the kernel acquires the additional factor 

cosq 
1+ 

acr sin(k,r + 6) -1 kasinqacr cos(kar+ 6) 

sin6 sin6 I 
(3.15) 

where we have grouped the terms to make the r = 0 limit transparent. 

Thus the equation remains well-defined, but the added term removes the 

symmetry we needed above to prove the time-reversal invariance of the 
.-- 

amp- itude. 
i 

Hence additional work is needed before we can make a consis- 

tent finite range boundary condition model out of this approach. That .-. -_ 

such a program works has been amply demonstrated by Brayshaw using a 

different approach in both the nonrelativistic and the relativistic23 

cases, so we do not pursue this question further in this paper. 

The factorization of the on-shell amplitude Mab occurs naturally in 

the Karlsson-Zeiger equations13thanks to Eq. (2.4) even in the convention- 

al theory for the off-shell amplitudes since they start from the half-off 

shell t matrices, with the trivial difference that we have factored out 

~<"s~) while they factor out the Jost function. From the fact13that the 

amplitudes they define are identical to the Faddeev amplitudes for all 

physically observable (i.e., three-particle on-shell) three-particle pro- 

cesses, it follows immediately that even the conventional theory can al- 

ways rigorously be cast into the form of Eq. (3.12) no matter what theory 

is used to compute Mab(pa,qa;pb,qb;z), although of course Zab will have 

another significance and will not be given by Eq. (3.13). As has been 
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pointed out previously24 this fact could have considerable importance for 

data analysis, since the rapid variation of the two-particle amplitudes 

(e.g., resonances) has been factored out leaving only the more smoothly 

varying function Z ab to be determined from theory or phenomenological fits 

to the data. This has an advantage over "isobar models" for three-particle 

final states in that the interference terms between overlapping resonances 

have an unambiguously defined phase relation and hence can yield informa- 

tion difficult to obtain from simpler models. We intend to exploit this 

fact in subsequent papers in this series. 

Having reached this point it should be obvious why we did not have 

to include the bound state terms in our treatment explicitly. These terms .-- 

arpcontained, so far as the primary singularities go, simply by noting 

.&ha-i -if r(~-%~) contains the correct bound state poles, these primary 

singularities are correctly given by Eq. (3.11), and for any explicit 

representation for r, the elastic scattering, rearrangement, breakup, and 

coalescence amplitudes can be read out of this equation immediately simply 

by specifying the appropriate arguments in Zab. 

The route by which Eq. (3.13) for Zab was originally derived was to 

take the zero range limit of the Karlsson-Zeiger equations.20 At first 

sight this gives a very different result since the Zab so defined turns 

out to be 

_ 
Z ab(Padj,;z) + ‘fb (p,,p,,;z) 

= - c xac + i dS j p;dpc ,ri);cb(Ti>;" (3.16) 

c=a?r -1 0 + EC PC-cc-z ac 

) 

-x 

T:(q:)~---(qi:)) Zcb(Pc'Pc;z) 

c=a? -1 0 
;2 + ;;2 

-z 
0 c c 
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where 

pf 11;2 
( > 

ii6 
k 

z2 - c2 * iO+ = e 
6 (;; q> + 29’ sindk 

IT q2- k2 1 
and 2 

q(2)2 = p2 + ma 
ac a 

( ) 
ma+m- 

2 + 2papa& 
pa+ ma+m 5 l 

a+ ai 

(3.17) 

(3.18) 

This is puzzling, since we are presumably dealing with the same theory as 

before, yet the kernel now depends exclusively on binding energies, 

reduced widths and two-particle phase shifts in the region where they are 

physically observed or observable. Hence, once this form is adopted we 

- would seem-to have avoided the problem posed by the left-hand cuts in the 

Fa& eev form. 
._ ~._ _ 

However, if we use the dispersion relation Eq. (2.6) retaining the 

left-hand cut and perform a sequence of not completely transparent, 

though simple, algebraic steps,25 we find that the tc(z- FE) in Eq. (3.12) 

becomes replaced by 

KZ T 

- which indeed has no singularities and leaves the resulting equation well 

defined for p # 0. However, as was pointed out by Bengt Karlsson,2' 

(2) if we use the equation in the second form q,, becomes replaced by qb;) 

and the two different forms of the equation no longer define the same 

function, thus once again destroying the time reversal invariance of 

the theory. The models with no left hand cut are time reversal invariant 

thanks to the fact13that ~f+~~~)' = Gi+G:k)' = pi/2ub+pt/2ua+papb</mc. 
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At first glance this approach gets us little farther than the bald 

restriction that we found necessary in Sect. II, namely that the theory is 

consistent only if -c(z- -2 p  > has no left-hand cut. But if we think a  little 

about Eq. (3.15), and realize that the kernel does indeed depend only on  

the phase shifts in the physical region, regardless of how they are compu- 

ted, we see that we have, in a  practical sense, reached our goal. As al- 

ready remarked, if our theory depends in a  critical way on the behavior of 

the phase shifts at relativistic energies, neither our approach nor the 

conventional approach makes any sense in the first place. So all we need 

insure is that our fitting procedure in using Eqs. (2.9) and (2.10) gives 

just as good a  fit to the phase shifts in the physical region as any con- 

ventional-model with a  left-hand cut, and our zero-range equations will be  

F  just as good a  representation of the zero-range dynamics of the convention- 
--. -_ - 
al mode l as for our own choice of amp litude. O f course it would be more 

satisfactory from a  mathematical point of view if we could define our zero 

range lim it in the presence of a  left-hand cut and then compute the off- 

shell effects as a  perturbation. It was hoped that the so-called Kowalski- 

Noyes representation27 would provide such a  theory, but this suffers from 

the left-hand cut disease once the nonseparable term is dropped even before 

the zero-range lim it is taken, as has been pointed out by Oryu.28 Never- 

theless, we claim that this would be more of a  mathematical nicety than a  

practical matter, and that either Eq. (3,10), Eq. (3.12) or Eq. (3.15) can 

be used for our zero-range theory provided only that some reasonable fit in 

the region of interest can be made by using Eqs. (2.9) and (2.10). O f 

course for the rigorous proof of unitarity in the next section, we will 

have to rely on  Eq. (3.10). That, quantitatively, this mode l is not a  

good first approximation for the three-nucleon system has interesting 

implications, discussed in our third paper in this series." 
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IV. Unitarity of the Three-Particle Zero-Range Equations 

As was discussed at the beginning of the last section, any theory 

such as ours which has no "interactions" but relies instead on observed 

asymptotic two particle scattering amplitudes with appropriate analytic 

continuations in the three particle space requires a separate proof of 

unitarity based explicitly on the dynamical equations used to compute 

the three-particle amplitudes. Fortunately, as was shown by Freedman, 

Lovelace andNamyslowski2q and discovered independently by Kowalski,30 

if the Faddeev equations hold in both orders, the algebraic form of the 

equations guarantees three-particle on-shell unitarity provided only the 

_ tworparticle amplitudes themselves are unitary. As was pointed out some 

ti$e ago,31 the energy conserving d-function in the three-particle unitar- 

'iXy relation insures that for the on-shell Faddeev equations only the two 

particle unitarity in the physical region is required for the proof. In 

the reference given31 the "on-shell Faddeev equations" used t(G2) rather 

than t(z-;2), and do not even define three-particle bound states properly, 

as was pointed out at the time by Lambrecht Kok.32 As we now know, this 

criticism was correct, and as can be seen from the discussion in the last 

two sections, the arbitrary prescription used in Ref. 31 does not even 

guarantee time-reversal invariance. However, the formal algebraic proof 

of unitarity given there is still valid for Eq. (3.11) and its time- 

_ reversed partner. Since this statement has been questioned, in particular 

by.Erwin Alt,33 we provide here an explicit version of the FLN proof2' 

using the integral equations rather than a symbolic representation of them. 
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Since the wave functions we consider are of the form 

ui(x,Y) = 
sinpix sink.y 

p 
i 

k ' - j p2dp i q2dq ;;$;y;)iQ F T (4.1) 
i 0 0 

where k is the on-shell value of q given by Eq. (3.8), orthogonality of 

the wave functions, or flux conservation, require that 

00 00 
dy Ul(x,y) U;(x,Y) - d Pl ( -P2) Gy-92) 

PlP2 9192 

* 
T p2,p1;W) ( T(P2,Pl;W) 

= - 
W+in p1 -2. "; 

+ i p2dp j q2dq 
-W-in o 0 

= 0 

.-. -_ _ 

(4.2) 

Hence our three particle unitarity condition is 

T(p2,p1;W) - T*(p2,p1;W) = - 1 p2dp f q2dq T(P~,P) 
0 0 (4.3) 

1 1 
X 

c2+ ;2 -W-in s2+G2+W+in 

In evaluating this expression we must take care to remember that, 

according to our general on-shell expresion Eq.(3.12), T has poles at 

which will contribute terms in addition to those coming from the physical 

three particle states given by 2Ti6(G2+t2-W) = 2in/c(F2+<2 -wj2+lj21, 

when n + 0 + . 
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lim 
Pa++ 

- Ea - w) T(Pa,Pb;W) = TEa(Pb;W) 
E a 

we find that we must evaluate 

0 0 

Co 

= 2ai I 
0 

'2in 

R 
-2 
P - ,-w)2+112] [(,2+qk-W)2+qZ] 

q2dq 
(,‘+8)2 = 2lTi & l 

(4.5) 

(4.6) 

Hence our final finite condition is 

T(&,pl;W) - T*(p2,pl;W) = - 2iTrn 

m 
$ p2&&?i 

._ -_ _ 
0 

x T(p1,p2;W) T*(PL,P~;W)+ R c 
TEa(pl) TEa(p2) 

2wa 1 (4.7) 

a 

from which the unitarity conditions for elastic scattering, rearrangement, 

breakup and coalesence can easily be extracted by using Eq. (4.5) 

The key to including the bound states in the FLN unitarity proof is 
2 

to note that the bound state poles in 't, -Fa/~,(,i- ca- W- iOf), when 

multiplied by the spectator wave function 6(p1-p2)/p2p2, satisfy the 

three-body unitary condition Eq. (4.3) thanks to Eq. (4.6) provided only 

that r2 ( ) 
l/2 

a = 2 2UaEa (4.8) 

which is indeed the correct normalization of our zero-range bound state 

wave function, provided it is interpreted to represent exactly two parti- 
2 * 

cles. Consequently, when we replace -2irnkl-rl by 'c- 'c in the diagonal 
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term given below, the correct bound state terms appearing in Eq. (4.7) are 

indeed preserved. In Eq. (4.3) taking proper account of the Faddeev 

channels we therefore have that 

co 00 

-cl 
p&. 

I 'Edqc Mac ( P,,P,GW ) 
1 

[-- 

1 

cc' 0 0 
;z+ ;t- W-in p"z+ ;; -W+in 1 

cc' 0 0 E ;2+ c 421 c w 
- 

ill 

1 
-2 -2 I (Pc,P,;w) (4.9) 
p,+q -W-tin 

C 

where we have invoked the channel independence of c2+c2 and have used 

the two forms of Eq. (3.11) in appropriate order in the replacement on 

the right-hand side. It is now simply a matter of algebra to see that 

the 6 and 6cb ac give us simply [with a second invocation of Eq. (3.11)] 

Ma,,(Pa+,;W) - Mzb(pa,pb;W) and that the rest of the terms cancel iden- 

tically, completing the proof. We trust that the channel form of Eq. (4.7), 
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which follows immediately from the left-hand side of Eq. (4.9) by the same 

steps as before, need not be written out explicitly. Further, since the 

angular momentum kinematics for any finite number of states is identical 

to that in the conventional Faddeev theory, we claim that this generali- 

zation is immediate, and that specific formulae are best left to subse- 

quent papers which apply this theory to specific problems. 

Section V. Extension to Constituent Models and Three-Particle Forces 

Since the theory as so far developed completely ignores the effects 

to be expected from the short-range degrees of freedom predicted by the 

Wick-Yukawa mechanism, except in so far as they are reflected in the .-- 

as 
$ 

ptotic two-particle scattering states, we cannot anticipate the equa- 

.titis of the last two sections to be in agreement with experiment. How- 

ever they do provide, we claim, an unambiguous description of these 

asymptotic effects in the low energy region. What we must now provide 

is a practical, and hopefully reasonably unambiguous, way to supplement 

these equations with parameters that will not destroy the unitarity we 

have finally achieved, and which can be fitted to experiment. This 

simply cannot be done in terms of current nonrelativistic theories. As 

is well known, there are an infinite number of nonrelativistic (nonlocal) 

"potential models" which will give identical fits, even in a mathematical 

sense, to the two-particle scattering data. One of the hopes in the early 

days of the study of the three-body problem was that this ambiguity 

could be removed, or at least diminished, by comparing different two- 

particle models with three-particle experiments. However, as was pointed 

out in 1972-and indeed was a major motivation for this program34- 



I : 

..s- -- . . - .- 
-27- 

in the three particle system the same Wick-Yukawa mechanism which is 

supposed to generate the two-particle scatterings will necessarily give 

rise to three-particle forces in the three-particle systems which are, 

phenomenologically speaking, unpredictable, Hence two-body off-shell 

effects can be traded off against three-body forces while preserving 

a fit to three-body experiments and the ambiguity remains-a fact demon- 

strated in specific contexts by Brayshaw.16 If instead one tries to 

compute the interaction to be used in the nonrelativistic Hamiltonian 

theory ordinarily employed in nuclear physics from elementary particle 

theory, there was no consensus as of 1960 as to how this is to be done.35 

In this author's opinion that situation has not basically changed, and in .-- 

fa 
Y 

is further compounded in recent times by the controversy over "big 

.quark bags" and "little quark bags". So we must find our own route. 

One way to introduce fitting parameters into the theory with a 

well-defined significance is to define 

(5.1) 

This allows us, thanks to Eq. (3.12) to explicitly separate out the primary 

singularities, and hence the physical amplitudes, following the detailed 

treatment of Osborn and B0116.~ Calling their amplitudes 3u,,, Sab and 

BOb9 Kab' Gab and B0b in our zero-range limit we then find by comparing 

our Eqs. (3.12) and (5.1)with OB(IV.7) and (IV.8) that Kab=NaZabNb, Gab = 

I;Z a abNb and that the physical breakup amplitude is given by (see OB 

Eq. 1.2) 

= )g [;a(Li~)zab(Pa,p;o);z) - $abNb ] . (5.2) 

a + Ea 
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From this identification we can immediately take over their formulae for 

differential and total cross sections. Provided Nf = a r2 = 2(21.1 E aa p2 

we see that the “bound-state wave function" in configuration space is 

ra expt - (2uaEa) l/2 y /y and indeed has the correct normalization for a 

bound state with precisely two-particles in a zero-range theory. 

However, we claim that we have the freedom to replace ra by a 

parameter Na to be fitted to experiment. Why can we do this? In a con- 

ventional theory where the bound state has short-range structure, whether 

due to a "potential" or to some more complicated degrees of freedom 

which are not excited asymptotically in the reaction under consideration, 

_ Na.j.s indeed different from pa, and has to be determined either from some 

miFroscopic theory, or for example by extrapolating physically observed 
2 

.%'ross sections,to the bound-state pole; in that context Na is called the 

"reduced width". It is then a task for both theory and data analysis to 

prove that Nf so determined is indeed a unique constant independent of 

the particular reaction channels used to make the determination. Thus, 

by introducing this freedom into our own theory, we are not departing 

from standard practice. 

When it comes to physical interpretation, we can say that (1-f:) = 

(l-N2a/Tf) is the fraction of the bound state which, at the level of anal- 

ysis under consideration, can be thought of as "elementary" and fz as the 

fraction of the bound state which is indeed composite and can contribute 

to the reaction. This idea was discussed long ago by Weinberg36 and has 

been exploited in discussions of n-d scattering both by Aaron, Amado and 

Yam37 using Amado's "nonrelativistic field theory" and by Barton and 

Phillips3* in a dispersion theoretic approach. A more satisfactory way 
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of looking at the situation has been suggested by James Lindesay.3g 

Consider an "elementary" state ea which is simply a particle of mass 
n 

crna + mb - Ea>/CL that never comes apart and a "composite" zero-range 

state of the same mass and quantum numbers called E a, with the ?a=2(2eaua) % 

normalization. These two sectors of the theory refer to different 

particle number and as pure states are separately unitary. However, for 

detectors that respond only to the mass and quantum numbers, they cannot 

be experimentally distinguished. If we now form physical states as an 

incoherent mixture of the two pure states with weights (l- fi) for ea 

and fi for ca and multiply them by the appropriate spectator wave function, 

_ the_consequences will be the same as for our ad hoc replacement of r a 

. .-. -_ - Our next step is to consider the effect of a "three-body force" of 

zero range, which adds a direct 3-3 scattering channel, which we label by 

"0" in addition to the channels a,b,c 6 1,2,3 already considered. For 

this channel we express the wave function in terms of the hyper-radius 

R2 = g2-l- F2 and require that U'(R) / U(R) = & ctn 6 was R-t 0. The con- 
& 

jugate "momentum" is (s2+G2)' = W% on shell, and unitarity is preserved 

by taking r(W) proportional to e i6W sin 6w/ W' . The Faddeev equations 

are unchanged in form if we allow the sums to run over all four channels, 

but it is more convenient to eliminate the fourth channel and obtain 

modified equations for M ab in terms of the original three channels. 
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Explicitly 
3 

c GO MaO 
a=1 1 

[ 

3 
= l- 

c MOa GO '0 
a=1 

1 
3 

Mea = -To 
c GO Mea 
a=1 

3 
M =- 

a0 c 
M ac GO '0 

c-l 

(5.3) 

3 
M ab 6ab - Go Mob - 

c 
8 ac GO Mcb 

c=l 1 
F 

._ -_ _ 3 
= T 

C( Go '0 Go 
c=l 

= 
&ab+k Mac(GO rOGO-'OBCb)] rb ' 

c=l 

When there is a single three-particle bound state at W = -co, we 

can guarantee fitting this binding with our model simply by taking 

TO = -N; / (w+ Ed>. Solving the homogeneous equation then allows us to 

_ compute the "reduced widths" of the breakup of the bound state into the 

2 + 1 channels. An analysis of low-energy n-d scattering using this 

approach is in progress fn collaboration with M. Orlowski. We anticipate 

good results, since Barton and Phillips3' have already shown that the 

on-shell'terms in a model similar to ours already give reasonable pre- 

dictions once the sensitive doublet scattering length is fitted; our 

freedom in the choice of No will accomplish this. 
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To extend our approach to general data fitting of systems with 

three-particle final states, this zero-range three-body force will 

probably not be sufficient, since it only provides a single parameter, 

6W' at each energy in each total angular momentum state of the three- 

particle system. Returning to Eq. (3.13) and introducing a matrix notation, 

since 

(l+ Fot)z =-E,= ( z l+tEo) 

(5.4) 
(l+zt) l+Eot)z ( = z = z(l + Co) (1 + tz) 

we see that (l+Zt) is the left inverse operator for the first form of 

the equation and (l+tZ) is the right inverse operator for the second 
.-- 

fo m. 
f 

Thus, once we have solved the equation for Z, we have the inverse 

.gperators without further effort directly expressed in terms of Z. 

Further, since [Eq. (3.12jl M = t + tZt, we also can invert the Faddeev 

equations directly. Hence we can define a new amplitude M' by adding 

a driving term to the original equation and obtain the solution to the 

modified equation by quadrature. Explicitly, since 

(l+tGO)M = t = M(l+Ggt) 

(5.5) 
(1-Mco) (l+tGO)M = M = M(l+Eot) (l-FoM) , 

we take 

(l+tco)M’ = t + tXM 

t+Mxt = M'(l+cOt) 

M' = M+MXM = M' 

(5.6) 

with X arbitrary. The form of the driving term has been chosen asymetri- 

tally in the two equations to guarantee that both define the same M' and 
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hence insure time reversal invariance. But X must also be chosen so as 

to guarantee unitarity 

M'-M' 
* * 

Jr** 
MXK-MXM = -m(G,-G;)M*-M(Go-G;)M*X*M*-EWM(GO-G;)M*X*M* (5.7) 

or 

= MX(M-M*) + (M-M*) x*M* + MX(M-I‘II*jX*M* 

M(X-X*)M* = MX(M-M*)X*M* . (5.8) 

Since M has been shown above to be invertible, our unitarity condition on 

X thus reduces to 

.-- x-x* = X(M-M*)X* . (5.9) 

1 We can herefore always construct an appropriate parameterization for X. 
.-. ._ . 
We have now reached our goal of providing a general method for 

analyzing three-particle states which explicitly takes account of the 

known two-particle scattering phase shifts and bound states in the two- 

particle subsystems. From those we compute, once and for all, Z and hence 

M. We then introduce in X parameters for those amplitudes not well-fitted 

by the zero-range model consistent with Eq.(5.9). This allows us to com- 

pute M' by quadrature, and by computing observables from M' fit those 

parameters to experimental three particle observables by a conventional 

'least squares search. In this way we will find an explicit description of 

whatever in the three-particle system goes beyond the physics already 

contained in the two-particle scatterings. Applications of this approach 

will form part of subsequent papers in this series. 

To extend out theory to a model for the scattering of more complica- 

ted composite structures restricted to initial and final states containing 
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no more than three clusters, we must extend our notation as follows. For 

concreteness we can take the case of a system with A nucleons, Z  protons 

and N = A-Z neutrons, but the approach itself is more general. Consider 

first a state a containing Za 
i i 

protons and Na neutrons. In general this 
i 

system will have several levels, so we immediately extend the notation to 

states to a. 1. 
19 1 

each of which has a mass m (ai,Li). Each of these is con- 

sidered to be a "pure state" of that mass when acting as a spectator. The 

residual system will have i = N-Na neutrons and 2 = z-z a. protons. 
1 i a. 

This in turn can be decomposed into states b j e(ai.'i)l 

a. 1 
containing Nb neu- 

j 
trons and Z  

b. 
protons connected to states c k ;'bj) containing N = 

J , 'k 
fi -N - ai--~ b. neutrons and Z  = 2 -Z _ b protons* 'k ai j 

Out of this complicated 

de 
3" J 

ription we now select those clusters which we consider significant 

-i-n-&y particular physical process we wish to study and write down the 

zero-range equations for each partition of three clusters considered in 

isolation using Eq. (5.1) with Nf= rf as the driving term , and a 'c a which 

satisfies two-particle on-shell unitarity in this restricted environment. 

As we have already shown, each such system satisfies unitarity in the 

two- and three-cluster space so generated and can be considered a "pure 

state". Our last step is then to form  incoherent m ixtures of these pure 

states to construct the physical states of the reaction theory. 

Clearly the articulation of this program raises form idable combina- 

torial problems, whose solution will not be attempted in this paper. As 

is well known40 the inclusion of spin and the exclusion principle in dy- 

namical e.quations of the Faddeev-Yakubovsky type is an unsolved problem 

which must also be faced in order to convert this suggestion into a prac- 

tical approach to nuclear reaction theory. But we thought it worth while 
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to point out the possibility at this early stage in the hope that others 

may be attracted by the challenge. The combinatorics are no more diffi- 

cult than in conventional approaches, and the dynamics are considerably 

simpler. In particular, if we close the three-cluster channels by taking 
h 
r = 0, we obtain a dynamical theory for two-cluster multichannel problems 

in which only the binding energies and reduced widths of the composite 

systems enter, the dynamics arising solely from cluster exchanges. By 

using relativistic kinematics and an appropriate definition of mesons as 

massive quanta,lt we can include the mesons on an equal footing with the 

nucleons, and construct a theory that correctly describes meson as well 

_ asnucleon exchange in the dynamics. This theory becomes considerably 

mop powerful and more fundamental (e.g., when applied to the triton) 

‘GWn-we make the extension to four-particle systems sketched in the 

next section. 
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VI. Four Particle Equations 

We have seen in Section III that zero range three particle equations 

can be derived simply by imposing the zero range boundary condition on 

each pair starting from the asymptotic form of the three particle wave 

function. Our approach here is similar and again requires no references 

to "interaction". 

In order to extend our treatment to the four particle case we define 

the (3,l) configurations with r =1,2,3,4 and the (2,2) configurations with 

r=5,6,7 geometrically in Fig. 1 and algebraically in Table I. We see 

that, analogous to the treatment by Yakubovsky,41 we must consider 18 
_. .-- 

initial and 18 final configurations and construct our 

th a amplitudes F rt ab where the symbols are only defined 
-.- -_ - 

b C t. Starting from a state of four free particles, 

theory in terms of 

when a C r and 

we project out the 

state in which all angular momenta are zero and obtain the radial wave 

function 

r(Ojxr 
u(x;,Y;, zr) = 

sin pa a sin qa r(Olyr sin s Koz 
a 

r(O) r(O) 
'a qa 

SC:) r 
r 

co 
I / p;: 2dp;: fq:: 2dq;: Is;, dsr , 

0 0 0 

F r't r' r' 
a'b ( P,rr~,trs,,;E > 

X 
-r-l2 -r'.2 -2 
I',, +qa, +sr,-E-10+ 

(6.1) 

X 

/ 

dR 
sin pz:r(Q)xz sin s rtr(War 

P S rlrm 



..s-- 

-36- 

In order to apply our zero range boundary condition to this wave 

function, we must first reduce the spatial dependence to the coordinate 

yi of the distinguished pair, which can be done by Fourier transformation 

yielding 

U 

'Zsr 
(Yi) = 

sin qa r(o) (y> 6(pi - p;(O)) 6(s, - s,'"') 

qr(0) r(O) 
a ':'a 

Srst(0) 6ab 'rt 

aa 

- 71~: F~~(p~,k~,sr;E) e 
ikryr 

Xaa,'= l- 6,,, (6.2) 

where we have kept only the asymptotic form of the amplitude corresponding 

to the distinguished pair, consistent with our zero range assumption, and 

used the on shell value for qz defined in Table I. Applying our zero 

range boundary condition U'/U = kzctnba in the limit y, -0 + we find that 

F rt -r2 -2 
ab = -r,(E-pa -sr) k c 6,,,/R;;: F;:;j (6.3) 

r'=l a'Cr' 

Since this equation still contains disconnected scattering processes 

when r=r', we move these to the left hand side of the equation and obtain 

c 
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By examination of this equation on the left for the (3,l) configurations, 

we find that this is simply the zero range Faddeev equation M=t(l-J&I) 

clothed with the momentum conserving &(sr-sr (0)) /s,s:O) of the four parti- 

cle spectator and with the energy W replaced by E-2:. But, as proved 

above, this equation also holds in the time reversed form M= (l-JM@t 

obtained by applying the boundary condition to the first scattering rather 

than the last. Hence (1 - I@)(l+tjfi)M = M providing an inversion 

of- the operator on the left in Eq. (6.4) which when applied makes the 

rt dfiving term in the equation for Fab into Mzb(E-;z)G(sr- sr (O)) /srs:O'. 

._ -_ . For the (2,2) configurations, the only terms which couple are Fia 

c r and F- -r2 
aa' establishing immediately that Fia = ta(E-pa -$6(P;-Pa r(O)) x 

6(s -s (0) > /p;p;(O) SrSY) . r r The coupled terms appear to give a problem 

since neither component of either pair scatters from the other, the 

spectator momentum factors out, and we anticipate a factored form. The 

factored solution is immediate in the Schroedinger equation in configura- 

tion space, but in the integral equation we get contributions in the 

iterations to any finite order in the multiple scattering series. 

Blankenbecler42 has pointed out to the author that the same problem occurs 

in the conventional theory; it is mentioned by Mitra, G illespie, Sugar 

and Panchapakesan.43 However, if we iterate the two pair equation once 

we find .that 
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Mib P;.P, ( r(0);E-s;) = 6ab ta(E-;i2 -z',, 6(pf;-pi("))/p;pz(o) 

-r-2 -CO)2 -r2 -CO)2 ta(E-P, -sr ) tb(E-~b -sr ) 

ir2 -r(0)2 a +'b 
+“sKo2-E - J 

EM ; 

r 

r C 5,6,7 (6.5) 

Here we have used the fact that in this configuration pi = q: as can be 

seen immediately from Fig. 1. -r(O)2 -r(0)2+$0)2 But E = pa +pb r showing that 

there is an on shell singularity in the first iterate. Hence we can 

multiply Eq. (6.5) through by this singularity and remove the unwanted 

multiple scattering term /ti. In configuration space this singularity .-- 

do 
7 

s lead to the factored form tatbe 
ikiyi e ik$yg as expected. Further, 

.w.e<see that for these configurations we also have Eq. (3.12) with 

Z -r-2 
ab = -6zb(Pa -Pa 

-r(O)2 _ io+)-l . Thus we have the Faddeev form for the 

equations and the algebraic inversion proceeds just as in the (3,l) case. 

In the three particle equation we can see explicitly that the 

factorization of t allows the reduction of the equation to one variable 

with a geometrical kernel involving an integration over the angle 

cosW15 between 6, and :,. All that happens for higher angular momentum 

states is that we acquire additional rotation matrices as functions of 

this angle and additional indices which are given explicitly in BO. The 

_ reduction occurs because of the 6-function for the spectator which puts 

the two body scatterings in the three particle space. In the four body 

case we have an extra integration in momentum, which makes the tactored 

form of the three particle equations into a convolution in the four par- 

ticle case. Hence we obtain by inverting the left-hand side of Eq. (6.4) 



..s-- 
-- ., 

- .T 

-39- 

the two variable equations for the zero range four particle problem 

- (3)M ;b(P;,p;;E-"S:) 6,+;- $")/s s(O) 
rr 

= - C C 
a"cr r' 

C I dpZ~~ (3)Mza,, (pz,pz,,;E- S’) 
a'Cr' 0 r 

X  
/ 

dpr’ (4)~~r’ 
a' (t ,(Pf;,,,P~:;E)(4)~~:~(pr.:,p~;E) aa a 

0 
(6.6) 

where 

(4)-rr' R aa~(~;,~;:;E) = $xaa,, JdG? jdq::jdsr,(p::2+C::2+~~,-E-iO')-1 

0 0 

r'2 . x Parr r'2 r'2s2 
Pat q,1 r' &(PZ- P;:;(n)) 6(s, - s,,,m)/P~P~:p2) s r r'r(" s 

i (6.7) 
rt and we have replaced the Fab which refer explicitly to the four particle .-. -_ _ 

case by (41Mrt 
ab with an eye to generalization to the N particle case. Just 

as in the three particle case, we could obtain an alternative equation by 

applying our boundary condition to the first scattering rather than the 

last; that is, we also have the equation c4)~ = 1 _ c4)M c4)E) t3)M . 
( J 

We also have the generalization of Eq. (2), namely 

c4jM rt = c3jM r 
ab ab 'rt + (31Mr (41Zrt (31Mt 

ab ab ab (6.8) 

- Hence by one iteration of Eq. (6.6) we can obtain an integral equation 

for the smooth function (4) 
_ Z  in which the primary singularities have been 

factored out. Thus knowing Z  we can immediately recover all the physical 

four particle cross sections in a manner strictly analogous to the three 

particle case discussed in OB. We are grateful to V. Vanzani for showing44 

that the form  of our four particle equations is identical to the form  of 
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one set of such equations he has developed in the conventional theory,45 

except that the off-shell behavior in his equations requires a convolu- 

tion over (3) M which prevents the factorization we have found in the zero 

range theory. 

Since our theory does not rest on a Hamiltonian model for the inter- 

actions, we are required1'2'34 to prove that the resulting equations are 

unitary. In the three particle case the unitarity condition Mab-Mzb = 

- c Mac CR0 - R;)M;b follows immediately from the form of the Faddeev 
cd 

equations and the two particle on shell unitarity condition ta - tf = 

-ta(Ro - R"o)t",, as has been proved in detail in Section IV. 

We claim that the generalization to the N-particle case is now trans- ._- 

pajent * 
We write our N-particle equation in configuration space using the 

.fu.IlFaddeev-Yakubovsky combinatorial decomposition and reduce this to a 

N-2 variable equation in the distinguished coordinate. Applying our zero 

range boundary condition as before, the two particle amplitude factors 

out. Transferring the appropriate configurations to the left hand side 

we obtain spectator problems in reduced spaces which can be inverted in 

the same way th'at we demonstrated explicitly for the (3,l) and (2,2) con- 

figurations above. The driving term on the right now has N-2 d-functions 

rather than 2 before the inversion, and one 6-function after the 

inversion. Hence, just as before, we can obtain N-2 variable equations 

_ driven by the appropriate analytic continuation of the N-l particle 

amplitudes. The integral equations that provide these continuations have 

no singularities other than bound state poles provided only the two parti- 

cle amplitudes themselves have no such singularities, as already required. 

Time reversal invariance follows from two forms of the equations as before. 
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Unitarity is immediate from an obvious generalization of the FLN proof. 

The reduction of the kernel to N-2 variables follows from standard applica- 

tions of angular momentum techniques, which or course become increasingly 

tedious as the number of particles increases, but which have to be faced 

in any exact N-particle theory. We therefore claim to have proved that 

the N-particle zero range equations are always N-2 variable equations of 

the form 

(N)>fC(N)C' (N) = (WMC(N) 
C(N-l)... C(N-l)... 

(6.9) 

’ %(N)C' (N) *'* - x cc" c 
C"(N-l)CC"... 

(N) ,CC" 
C"(N-1). . . 

(N) MC"C ' 
C" (N-l) . . 1 : 

and in reverse order. Finally, the essential singularities can always be 
r 

factored out by an obvious generalization of Eq. (13). . -- 

The physics lying behind the simple result we have obtained is 

that by sticking to two-particle on-shell scatterings of the pairs as 

the driving mechanism and making the angular momentum reduction, the 

only variable content left on which these amplitudes can depend, thanks 

to momentum conservation, is the appropriate analytic continuation to 

negative energies required by the uncertainty principle. The factorization 

is quite general for short range interactions as was proved long ago.17 

The simplification was conjectured a decade ago,34 but could not be proved 

because of the reluctance of this author to abandon "left hand cuts" in 

the two particle input, which turns out to be the key to success. In the 

relativistic generalization of this approach, which we claim to be 

immediate and which has been shown to work in the three particle case,3p4 

this assumption turns out to be analogous'to the "locality" assumption of 
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quantum field theory. Our theory differs in that it can be kept consis- 

tently to sectors in which only a finite number of particles enter by 

using particle functions rather than field functions as the basis. The 

basic trick in the relativistic generalization3s4 is simply to assume 

that "particle" and "quantum" bind to make a state with the same mass and 

quantum numbers as the "particle". As in the nonrelativistic theory 

presented in this communication, unitarity and time reversal invariance 

are immediate. "Crossing" and relativistic spin are under investigation. 

VII. Conclusions 

We claim to have sh&ni in this paper that by assuming that the two 

particle on-shell amplitude contains only the physical two-particle on- 
i 

shell unitarity cut and bound state poles we can derive three and four ._, -. . 

particle equations which predict physical three and four particle on-shell 

amplitudes which are rigorously unitary, and are uniquely defined in terms 

of physical observables, subject to any parameterization that agrees with 

experiment over a finite energy range and is compatible with our basic 

restriction. We also show that these equations allow phenomenological 

extension capable of facing the problems of data analysis for systems with 

three particles in the final state and of three cluster nuclear reaction 

theory. The approach used here implies a relativistic generalization 

which already has produced a covariant model for the two particle, one 

quantum and particle, antiparticle, quantum sectors of elementary particle 

theory describing both elastic scattering and single quantum production 

firmly grounded in the experimental results obtainable at low energy.4 
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TABLE I 

Four Particle Coordinates 

M=kmi=km 
i=l i=l r-j 

r C 1,2,3,4 r C 5,6,7 

Mr = M-mr 
4 

; Mvr = Mrmr 
4 

Mv, = (m +m >(m +m 
'1 r2 '3 r4 

) 

r. = 1 r-1+4 i r. = 1 r-5+3 i 

2 
S r = 2vrz; 

a,b,c C r ; u r =m m a I 
Cm +m 

r1 r2 rl '2 
> 

i a= (rl,lf2) ; b = (r2,r3) ; c = (r3,r1) 

Mrni =mr (mr+m 
3 1 r2 

) ; Z = (r 3,r4); i; = (r1,r4); 

;= (r2, r4) 

Mrni =m h +m > ; Er =m m 
r2 r3 rl a I 

(m +m 
‘3 r4 r3 r4 

),etc. 

MrnZ =m (m +m 
rl r2 r3 

> ; (P:)~ = 2nz(;z12 (pf;)2 = ~;Z(P~)~, etc. 

If the four particle c.m. energy normalized to zero at four particle 

breakup threshold is called E, then the on shell condition E = T2+x2+"s2 

_ is configuration and channel invariant. The on shell momentum for the 

-r2 -2 % 
distinguished pair is defined as kz = [2uz(E-pa -sr)l . The spatial 

coordinates corresponding to _pi, 9-i and zr are x r, ri and gr respectively. 

In order to express the four particle wave function in terms of a single 

set of coordinates we will need to know the geometrical connections 
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etc. which are readily 

obtained from Fig. 1. If we take out the dependence on the orientation 

of the configurations in space, which can be done by an appropriate appli- 

cation of rotation matrices analogous to that done with care for the three 

particle case in OB, these transformations will depend on the three direc- 

tion cosines (bra*;:), (pz*Sr), l ̂s,) which we symbolize collectively by 

R. The reduction of the plane wave basis exp i(p*x+q*y+s*z) to the - - - -- 

scalar form used in the text is greatly facilitated by the identity 
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rc 1,2,3,4 

‘i =r-l+4 i 

1-82 

'2 4 

rc 5,6,7 
ri =r-5+3 i 

4250Al 

Fig. 1. Geometrical definition of the four particle coordinates used in 

this study for the (3,l) and (2,2) configurations. Algebraic 

details are given in Table I. 
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ZERO RANGE SCATTERING THEORY 
I. NONRELATIVISTIC THREE AND FOUR-PARTICLE EQUATIONS* 

H. Pierre Noyes 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

p. 7. The right hand side of Eq. (2.4) should be multiplied by i. 

p. 10. Delete the last three lines. 

p. 11. Replace entire page by: 
At first sight we m ight invoke the well known boundary condition 

mode110,11,12 to avoid the left hand cut in -r(z-G2). Unfortunately the 

left hand cut for such amplitudes is replaced by an essential singularity 

at infinity. As was pointed out to the author by M . Orlowski, this pre- 

vents representation of the amplitude by the usual dispersion-theoreti.c 

formula (Eq. (2.6)) with p =0, which is required in our treatment below. 

This creates a serious difficulty in applying our theory to nuclear force 

problems- since the effective range formula and sim ilar simple descriptions 

of the nucleon-nucleon S wave amplitudes predict an "interaction pole" at 

about -20 MeV. . _, .-. _ To avoid this catastrophy we can use the modified effective 

range formula 

qctn6 = [a+eq2(l+Eq4)][1-q2/q;]-1 
') 

(2.10) 

where q 6 is chosen to reproduce the zero in the S-phases at around 250 MeV. 

In order that this formula have no singularities for q2 negative (other 

than the deuteron pole in the triplet state, which is easily retained, it 

is easy to show that E must be greater than approximately +[(4/3B) -a]-". 

This will of course produce a departure from  linearity in q ctn6 at fairly 

low energy, and hence may require further modifications depending on the 

accuracy to which the nucleon-nucleon phase shift must be fitted in 

specific applications. Numerical investigation of the adequacy of this 

approximation in the n-d system is under investigation and will be reported 
_ in subsequent papers in this series. Preliminary work by M . Orlowski shows 

that it is indeed possible to obtain reasonable fits of the same quality as 

those customarily employed in the three nucleon problem at low energy, and 

that the peculiarities of the model can be confined to the region beyond 
meson production threshold, where the three particle equations guarantee 

that they~will be numerically insignificant. Indeed we should be 

p. 12. Delete the first three lines. 

p. 39. Line 7 from  the bottom , for "N-3 &-functions" read "one fi-function". 
-- 
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