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ABSTRACT 

By requiring the mass of the "bound state" of 

particle and quantum to have the mass of the particle 

we derive a fully covariant theory of single quantum 

exchange and production with physical unitarity, the 

correct nonrelativistic limit of Yukawa or Coulomb 

"potential" scattering, and scalar "Thompson scattering." 
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It'has been shown by one of us (JVL)l that the three particle zero 

range scattering theory, first developed in a nonrelativistic context,2 

using relativistic kinematics and an appropriate simple unitary and 

covariant two particle scattering amplitude as the driving term allows 

the calculation of unitary three particle amplitudes for elastic scatter- 

ing, rearrangement, breakup, coalescence and 3-3 scattering. For three 

equal mass particles it has been shown1 that these equations predict an 

infinite logarithmic accumulation of three particle bound states in the 

nonrelativistic kinematic region in quantitative agreement with the 

Efimov effect3 calculated using a separable nonrelativistic Hamiltonian. 

The theory therefore is proved to have the correct limit in nonrelativis- 

tic scattering-theory in this case. In this communication we prove that 

by appropriately defining one of the three particles as a "quantum" we 

have a covariant model which predicts unitary scattering amplitudes for 

two particles due to single quantum exchange and single quantum produc- 

tion in a two particle system, with physical flux conservation. In the 

nonrelativistic two particle elastic channel we recover Yukawa or 

Coulomb "potential" scattering. The two quantum-one particle sector 

is also correctly described. 

In our zero range scattering theory starting from three free 

(0) (0) particles with masses ma, mb and mc and momenta 2, , pb and p(O) 
-C 

in the three particle zero 3-momentum system, the physical three 

particle on-shell amplitude Mab has the general form 



Mab(ra.Pb(Ob) - ~abTa~a)~3(3,.1?33 = Ta(sa)Zab(Pa’P;o’ ;“)Tb (s,,) 
(1) 

where M2 ' 1s the invariant four-momentum squared and s 
a is the invariant 

two particle four momentum squared. For our model we use the covariant 

generalizat?on of the nonrelativistic scattering length model qctnd =- l/a, 

which is 
g(o)2 

a 
s,-Pf-iO+ 

+ -; s, 
( > (2) 

.-I with 
+ ma-)2] ['a - (ma+ - ma-)2J 

4sa . (3) 

The Faddeev equation for Mab is given diagramattically in Fig. la. 

Thanks to Eq. (11, all the physical amplitudes can be recovered by 

solving the single set of coupled equations 

= - 

= - 

3 
d PC 
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(SC) Zcb("c'"b;") 
c=a+ 0 (4) 
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where 

Ea,, = (1 - 6,b H &a + cb + E. ab 
+)-I -1 - M - i0 'ab 

and the equivalence of the two forms of the equation for Z ab can be proved 

by iteration. This immediately establishes the time reversal invariance 
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of the theory. Unitarity has been proved in Ref. 1, and for essentially 

the same model by Brayshaw.5 It also follows from the algebraic form of 

the equation for Mab and two particle unitarity, as has been proved by 

Freedman, Lovelace and Namyslowski.6 

To isolate the 2,2 + 2,3 coupled channels in which we are interest- 

ed, we follow the discussion of primary singularities in Mab given by 

Osborn and B0116.~ Calling their amplitudes xab, gab and Bob in the 

zero range limit Kab, Gab and B Ob respectively, we find by comparison of 

OB Eqs. (IV.7) and (IV.8) with our Eqs. (1) and (2) that the physical 

elastic scattering and rearrangement amplitude K ab = gaZabgb' that 

G ab = qaZabgb and that the physical breakup amplitude is given by 

giZab gb 1 (6) 
I S - v2 a a 

With an obvious generalization to relativistic kinematics, the cross 

sections for elastic scattering, rearrangement and breakup follow from 

OB Eqs. (111.8), (111.15) and the total cross sections from (IV.37) and 

(IV.39). 

In the nonrelativistic case when ra =-Nz(tf- sa-W) 
-1 + Ga with sa 

the binding energy of mb and mc and W the three particle energy normalized 

to zero at breakup threshold, the asymptotic form of the bound state wave 

function is Na exp(-Gy/y. Taking No = a 2(2~,c,)' corresponds to 

aassuming that the asymptotic form holds for all y greater than zero (our 

zero range assumption) and to assuming that the bound state contains 

exactly two particles. However, as is well understood in the nonrelativ- 

istic case, if the bound state has internal structure, Na will not have 
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that value, but will instead be a measure of what fraction of that com- 

posite structure will break up into the bound state and whatever part of 

the remaining three-body system carries off the momentum required by 

momentum conservation. Na can either be computed from a microscopic 

theory or determined from experiments which contain the bound state 

asymptotically, for example by extrapolating observed cross sections to 

the bound state pole; in that context N2 ' a 1s called the "reduced width". 

Thus for phenomenological purposes Na becomes an empirical parameter and 

it is a task for data analysis and microscopic theory to prove that it 

is a constant independent of the reaction mechanism in which the bound 

state is produced. In a context close to ours, Aaron, Amado and Yam* 

have exploited-this freedom in Amado's "non-relativistic field theory" 

for n-d scattering, as have Barton and Phillips' in their dispersion 

theoretic approach to the same problem. In that context N, measures how 

much of the deuteron is a composite of neutron and proton, and how much 

is "elementary". Thus, if we do not restrict ourselves to the value 

gm 
a defined by Eq. (2) and replace it by a parameter g2 to be determined a 

by experiment, we claim we are not departing from accepted practice. For 

usf 2 (012 
a a - g;]/gi")2 tells us what fraction of the physical particle 

m a is a composite of m,+m Q' while l- ff tells us what fraction of the 

physical particle is "bare" in our two-particle one-quantum sector. In 

terms of the density matrix, the parameter f2 measures the incoherent a 

mixing of two pure states in different spaces which construct a mixed 

physical state of mass ma. 
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Once this is understood we can specialize the general treatment to 

the case of most immediate interest in establishing a covariant theory 

with the proper nonrelativistic limit. We assume that channels ma and mb 

represent particles and that channel mc is a quantum of mass m Q . 
For the 

initial state, if the spectator is % we assume the other system is a 

"bound state" of ma + mQ with mass plb E ma, and visa versa. We further 

assume that there is no direct particle-particle scattering, since all 

such scatterings are to be generated by single quantum exchange; this is 

easily accomplished by taking 'c - 0. 
C 

The resulting coupled equations, 

illustrated diagramatically in Fig. lb, are then 

Kab(&!jo%“f) = - gaR gb - “:“;;$ + gaRGbb] 

;M) = -J 2 [ I”,;<;;;; + gbRGab ] (7) 

6 L,b = 1,2 ; R ab = Rba = R , 

where the corresponding equations for Gab and Gbb are obtained by 

replacing ga by Qa in the first equation and gb by Tb in the second. 

These are our proposed covariant equations for the scattering of two 

scalar particles of mass ma and mb generated by the exchange of a single 

scalar quantum coupled to the production of that quantum starting from 

the same system. 

If we close the production channel by taking Ta = 0 = Gb and recall 

that we are in the zero momentum system so that on shell ga = -12~ the 

equations (with G = 0) describe elastic scattering with the on-shell 

(0) (0) amplitude TQa,ga ;M) = Rab(~a~~a ;M) + Kbb (-ga)-Ea (');M). 
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Further; since sa = (M-si)2 - (k;) 2 and M = s(O) a we find that 
2 

S -m a b = 2M[4') - EAI and the equations become a two-channel covariant 

equation of the Lippmann-Schwinger type due to single quantum exchange. 

For equal masses they reduce to a single equation for T, but for unequal 

masses we must retain the coupled form in order to have the proper rela- 

tivistic kinematics for "recoil". Our equations differ from the Bethe- 

Salpeter equationlO in the ladder approximation in that they are on-shell 

or single-time equations. They differ from the Blankenbecler-SugarI 

reduction of the Bethe-Salpeter equation in that they have no spurious 

singularities. In the nonrelativistic limit the "propagators" become 

[kcoJ2 _ k'2 _ iO+l =-Go and T =-V + VGOT with V = g,R gb' If we make 

the "adiabatic.approximation"12 in R in which the energies of the 

particles are assumed large compared to the energy of the exchanged 

quantum, V corresponds to the exchange of a virtual quantum with energy 

[rni + (k-k')2]' and in the nonrelativistic limit we have the conven- - - 

tional equation for the scattering due to a "Yukawa potential". There is 

no singularityinthe potential for m 
Q 

# 0 thanks to our assumption that 

m a =ubandmb=pa,butform =Oandg2= 
Q 

e2 we develop the usual 

Coulomb singularity. Thus we predict at low energy Rutherford scattering, 

and for charges of opposite sign, the Bohr bound state spectrum, in 

agreement with experiment to the accuracy expected. Restoring the 

production channel and using the covariant equation we can predict 

elastic scattering coupled to the production of a single scalar 

quantum at any energy. 
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The theory can be extended to the two quantum-one particle sector 

simply by taking ma = m Q = %, mc = m, and u,~= m = ub. Covariance and 

unitarity are preserved. This allows us to discuss quantum-particle 

scattering. To order g2 we obtain the two diagrams of Fig. lc, and 

hence go to the correct "Thompson limit" for our scalar theory.13 

Since our driving terms now have the same form as the lowest order 

perturbation diagrams of quantum field theory (of course only if we drop 

3, the inclusion of spin is straightforward, if tedious. If only one 

of the particles has spin we obtain a relativistic generalization of the 

Dirac equation, but with full covariant kinematics; the conventional 

one-particle Dirac equation is recovered in an appropriate limit. So 

we obtain fine-structure splitting and the magnetic moment of the 

electron to lowest order. Introducing a vector quantum and two spinor 

particles or two vector quanta and one spinor particle is, we believe, 

equally straightforward. We will present details on another occasion. 

To "cross" our theory and obtain a unitary equation for particle- 

antiparticle annihilation to two quanta might take us into a four- 

particle sector of the theory. Since the four particle version of 

the zero range theory already exists in the nonrelativistic case,14 

we are confident that this can be accomplished. The real test of the 

theory will be whether this allows us to predict the Lamb shift in a 

finite theory without renormalization. 
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Once we have included spinors and vector and pseudoscalar quanta, we 

can obviously construct a covariant "one boson exchange" model for nuclear 

forces and single meson production in nucleon-nucleon collisions. We can 

also explore the q{ spectrum of quantum chromodynamics in the quark- 

antiquark-gluon approximation. Another obvious application is to problems 

in which Ze 2 is less than 1 which, so far as we can see, is already 

included in what we have achieved. And so on. 

It remains to ask why this superficially simple route to an elementary 

particle theory with full unitarity in sectors restricted to finite parti- 

cle and quantum number was not developed long ago. We believe part of 

the answer can be seen by examing Eq, (7). There we see that what plays 

the role of the "potential" in the equation is the relativistic propagator 

of the virtual state, while what is normally called the "propagator" or 

"Green's Function" in the nonrelativistic limit comes from the interme- 

diate state in the two particle scattering amplitude, which has a pole 

when this intermediate state is "on-shell". It was natural enough in a 

Hamiltonian field theory to identify the "potential" with the "matrix 

element of an interaction", but this breaks the connection with the 

particles and distributes that energy all over space. Thanks to 

"renormalization" and herculean efforts an enormous amount of correct 

physics has been obtained from that approach, but contact with nonrelativ- 

istic quantum mechanics became extremely difficult. By insisting on using 

physical asymptotic free particle wave functions (covariantly normalized) 

rather than field functions as our basis we have avoided all these 

difficulties and recover the physically correct nonrelativistic limit 

without difficulty. This possibility was suggested by Serber long ago,15 
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but so far as we know his suggestion has never previously been success- 

fully implemented. Another part of the answer was the realization by 

one of u.s16 that.the Faddeev summation convention in the multiple scat- 

tering series automatically excludes "self energy diagrams" while guaran- 

teeing exact unitarity in a finite particle sector. It was faith in this 

insight that kept the program going in spite of many setbacks. 

In conclusion we emphasize that the coupling constant e2 which we 

introduce in the Coulomb example is the physical coupling constant as 

determined by the Bohr spectrum and Rutherford scattering, subject only 

to obvious small and finite corrections due to fine structure splitting 

and the like. Similarly the g2 of a meson theory is physical, and not 

in principle defined perturbatively. The masses of stable particles are 

physical and have no renormalization-though again precise values obtained 

from experiment for these and for unstable masses will have finite correc- 

tions due to multiparticle sectors when it comes to comparing theory and 

experiment. The real test of this theory will come when we go into the 

two-quantum-two-particle sector and attempt to obtain the e4 results of 

renormalized perturbation theory. 
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Figure Caption 

la. Diagrammatic representation of the Faddeev equation. 

lb. The particle-particle-quantum sector when there is no direct 

particle-particle scattering (Tc E 0). 

lc. The particle-quantum scattering to order g2 (Thompson limit;). 
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