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ABSTRACT 

The energy-energy correlation at large angles in 

+- e e annihilation is calculated byresumming soft gluon 

contributions through two-loop level. The result is 

compared with experimental data. No agreement is obtained 

using a purely perturbative analysis. The relevance of 

nonperturbative effects at present energies is emphasized. 
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There has been a great interest in the processes characterized by 

two large but different mass scales in perturbative Quantum Chromodynamics 

(QCD) . l One well-known example is the production of two almost acollinear 

hadrons in e+e' annihilation. In this process the total energy Q and the 

relative (scaled) transverse momentum Q, between two hadrons play the role 

of the two scales [Qc = Q2 sin2(8/2); collinearity angle 6 N 180'1. The 

facts that experimental data are already available (PETRA)' and that new 

data will be available in the near future (PEP) make this process particu- 

larly interesting also from an experimental point of view. 

To analyze such a process, it is useful to introduce a well-defined 

and measurable cross section: the energy-energy correlation.3 This 

quantity is expected to give a clean test of QCD since not only its energy 

dependence but also its absolute magnitude can be calculated. In the 

acollinear configuration the energy-energy correlation is governed by the 

effective quark form factor4 built up by the resummation of large correc- 

tions due to soft gluon effects to all orders.5 This problem has been 

analyzed at one loop level by several authors.] 

In order to obtain a reliable answer in such a configuration (i) it 

is important6'7 to perform a perturbative calculation through two loops7 

and (ii) the question about the sensitivity of the result to nonperturba- 

tive effects must be investigated. 

Zising the unintegrated parton densities4'8 D(Q2,PT,x) the energy- 

energy correlation is written as9 (see Fig. 1) 
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where the sums extend over all hadrons and all quark flavors respectively 

and S(Q2,p:) represents the set of the two-particle irreducible contribu- 

tions with external photon vertices included. Taking the Fourier trans- 

form into impact parameter (bT) space the(nonsinglet) quark densitylo 

obeys the following evolution equation in the light-like gauge (gauge 

vector parallel to the antiquark momentum)7 

Q2 -$ Dq (Q2,bT,x) = /$ / dq; [ ?$' + K(osI"'>' ] 

(2) 

x CF(+$)+ 6 [z(l-dQ2 - q;] Jo(+) Dq(Q2, 2, s) 3 

with Jo the Bessel function of the first kind, b = lb,l, q = )qT/. The 

( )+ notation indicates the usual regularization procedure. K has been 

given in Ref. 11 in the same gauge: K = cGC(67/18)- (s2/6) 1+NFTFG10/9L 

We use the transverse momentum of the emitted gluon qc as the scale in the 

running coupling constant os which controls soft gluon effects.l'12 In the 

soft gluon approximation (z-1, Q2 >> s;), W. (2) can be solved and soft 

contributions resummed systematically. S(Q2,p$ is calculated in the 

same way as the coefficient function in ordinary hard processes. Substi- 

tuting the corresponding formulas7 for Dq, D- and S, Eq. (1) becomes 
q 
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where exp[T(b)I is the effective form factor7 and 
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2 
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with yE Euler constant. We choose in Eqs. (3) and (4) the starting 

value of perturbative evolution to bel3 l/b2 to eliminate logarithmic 

22 corrections other than14 Rn Q b . Due to this fact the residual density 

D(l/b2,b,x) would be safely expanded in terms of as(l/b2)[as(l/b2) << 11: 

D(l/b2,b,x) = D(l/b2,x> -t- Bccrs(l/b2)1. D(l/b2,x) is the usual decay 

function which satisfies the sum rule: xA I dxAxA D(l/b2,xA) = 1. 

Equation (4) contains all the contributions of the formI B(B/L)* [first 

term in Eq. (4)1 and (B/L)n (n>l) where L : Rn Q2/A2 and B Z Rn Q2b2 

with A the fundamental scale parameter. Collins and Soper, with a different 

formalism, have suggested a method6 to compute such terms. The neglected 

terms are of order @[(l/L)' (B/L)*] (n r 0, y 2 1) and @(1/Q2). Such a 

classification can be obtained by taking the limit L + m with B/L fixed and 

proves to be effective to pick up dominant contributions.7 

In Fig. 2 we compare Eq. (3) ( numerically integrated) with PLUTO 

data2 at Q N 30 GeV using NF = 5 and A = 0.1, 0.2, 0.3 GeV. The purely 

perturbative answer of Eq. (3) shows no agreement with the data.16 TO 

clarify the situation the cross section (Fig. 3) and the effective form 

factor exp[T(b)l (Fig. 4) are plotted also at Q = 100 GeV. In Figs. 3 and 

4 shown by dashed lines are the curves obtained keeping only the terms 

B(B/L)* [first term in Eq. (4)l which correspond to the result derived 

in Ref. 17. A detailed analysis of the contributions of these terms has 

been done in Ref. 19. Figures 3 and 4 indicate that the contributions of 

terms (B/L)* cannot be neglected compared to the terms B(B/L)n. For this 

reason the summation of the B(B/L)* terms gives only a partial result. 

(Note that when Q is larger B(B/L)n terms tend to be more important.) 

Keeping both these terms and neglecting @[(l/L)' (B/L)nl and @(l/Q2) 

terms in the exponent T(b) in Eq. (3) make a sensible approximation. This 
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fact can be explained by noticing that the region of small values of b is 

the relevant one in the integration of Eq. (3) due to the Sudakov-type 

effects in b T space: the strong suppression of large b when Q2 is large" 

(see Fig. 4). Since the perturbative calculations are unreliable in the 

large b region, this observation supports the above evaluation of the 

perturbative contributions. In the case that the large b suppression is 

not sufficiently strong, the final result should receive some corrections 

which come from not only the uncertainties in the perturbative estimations 

but also the nonperturbative effects (important at large b). 

At present energies expCT(b)l has still a rather long tail into 

large b region (Fig. 4a). This situation may be considered to be the 

case mentioned above. We have checked that the integration of Eq. (3) 

with an artificial cut off b max = MO CM0 N g(1 GeV-')I to roughly isolate 

purely perturbative contributions does not change the result and no better 

agreement with the data can be obtained. This suggests that at present 

energies the region of large b is still important. In fact the details 

of the answer (e.g., the slope of the cross section) are rather sensitive 

also to the precise behavior of exp[T(b)l in the damping regions.lg If 

this region is also within the perturbative domain [as(l/bL) << 11, 

exp[T(b)l can be calculated perturbatively and a reliable answer will be 

obtained. At present energies however, this region cannot be treated 

only by the perturbative approach, For this reason we believe that it 

seems to be quite difficult to find a characteristic feature of per- 

turbative QCD at present energies without a convincing way to handle 

nonperturbative effects.16 In this specific kinematic region the usual 

treatment of nonperturbative dynamics20 would decrease the cross section 

in Eq. (3). This is expected as well by intuitive pictures about 



-6- 

hadronizations. A better agreement with the data is likely. However, 

the crucial role played by the behavior of the form factor exp[T(b)l in 

the damping region will make such treatment too strongly model dependent 

and probably too naive.21 As the energy Q increases (e.g., Q  = 100 GeV) 

on the other hand, the shrinking into smaller b region22 (Fig. 4b) makes 

the result of the perturbative approach more promising. 

In conclusion we would like to stress that at present energies in 

order to explain the data it is essential to understand nonperturbative 

effects. Experiments at higher energies (LEP and/or COLLIDER) could 

answer the question whether the dynamics of soft gluons can be described 

perturbatively. 
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Figure Captions 

Fig. 1. The process e+e- -t y* -f A + B + X with kinematics. Single 

(double) line represents quark or antiquark (hadron). 

Fig. 2. The comparison between the theory Eq. (3) and the PLUTO data 

for the energy-energy correlation at large angles (Q N 30 GeV). 

Fig. 3. The energy-energy correlation at the two different energies. 

(a) Q = 30 GeV, A = 0.2. (b) Q = 100 GeV, A = 0.2. 

The solid (dashed) line is for the full result (first term) 

of Eq. (4). 

Fig. 4. The effective form factor expCT(b)l in bT space; (a) Q = 30 GeV, 

A = 0.2; (b) Q = 100 GeV, A = 0.2. The solid (dashed) line is 

defined as in Fig. 3. 
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