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ABSTRACT 

We compute the expected yields of protons and lambdas in e+e- 

annihilation, using the KUV jet calculus and the recombination model. 

Our results have many features in common with the data, including their 

approximate size. We derive a differential equation for baryon pro- 

duction, and show that the terms we have calculated are one of three 

physically different contributions. 



I. INTRODUCTION 

Recently there has been a great deal of attention given to 

baryons in jets, from both the experimental and theoretical points 

of view. Data currently available on quark jets in e+e- annihilation 

show that the baryon distributions are within an order of magnitude 

of the meson distributions (an unexpectedly large cross-section for 

the production of baryons) l-5 , and that they have similar shape in x 

at large x (Ref.1). Similar features can be seen in quark jet data 

in deep inelastic muon scattering, as shown by the European Muon 

Collaboration6. At the same time, even in the absence of data, the 

creation of baryons in parton models offers enough differences from 

the meson case to present a theoretical challenge, 

Several theoretical papers have appeared discussing rather dif- 

ferent physical pictures for haryon creation. We may divide the more 

recent ones into: 

a) "string" pictures, such as the Lund model 798 and the Israeli 

model', in which baryons are produced by diquarks formed 

from breaking strings of colour force (see also references 

10 and 11) and 

b) "recombination" pictures, in which quark triplets found in 

a parton jet are recombined with an explicit "gluing together" 

function which makes them into a baryon 12,13 , 

although there exist other papers with less explicit models (for example, 

reference 14). In this paper we present another calculation in the recom- 

bination picture. 

Our basic scheme is the production of quark jets using the jet 

calculus of Konishi, Ukawa and Veneziano 
15 (KUV), followed by "gluon conversion" 
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16 into quark-antiquark pairs , and the gluing together of all triplets 

of quarks into haryons. In this our work resembles that of Eilam and 

Zahir 13 , but as we shall see, our answers differ from theirs both 

qualitatively and quantitatively. This is due to the facts (i) that 

we evaluate the full jet calculus expression for the three quark dis- 

tribution, rather than cutting off the integrals and throwing out small 

"unfavoured" propagators; (ii) we have a different functional form for the 

recombination function and (iii) we prefer different values for the para- 

meters A and Q, in the jet calculus. 

In Section II we discuss in detail the evaluation of our formula 

for the recombination contribution to haryon production. Certain features 

of the computation which simplify the evaluation are explained. 

In Section III we show the results of the calculation and their 

dependence on the parameters in the theory, Qf and A. The dependence on 

the jet value of Q2 is also shown and compared with the evolution more 

commonly assumed. 

In Section IV we put this contribution to the baryon fragmentation 

function into focus by writing a set of differential equations describing 

the evolution in Q2. The solution to these equations has three terms: 

a> a term of the "ordinary" Uematsu-Owens type 17 , whose size is 

governed by the "intrinsic" baryon content of the partons at Qt; 

b) the recombination term, whose size is governed by the recom- 

bination function assumed at Q$ and 

c> a term whose size is governed by the "intrinsic" diquark 

content of the parton at Q2 
0 

and a recombination parameter 

for recombining a diquark and a quark into a baryon (this 

parameter is not independent of the "triquark" recombination 

size). 
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These terms have rather different Q* evolution properties. 

Section V is a summary. 
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II. EQUATIONS 

Our basic formula for the recombination contribution to the 

parton fragmentation into baryons is (see Fig. 1) 

Di(x,Q2) = D ala2a3,i(Xl'X2'X3 ;Q2>RB 
ala2a3 

(X1'X2'X3' 'x)dxldx2dx3 
(2.1) 

where D 
a, a, a,,i (X1’X2’X3’ *Q2) is the probability for finding the three 

J. L 3 

partons al,a2,a3 with momentum fractions x 1'x2'x3 when they originate 

from parton i of four momentum squared Q2. In Eq.(2.1), the sum over 

the indices a Pa2 and a3 is implied. We will usually suppress the 

summation sign and assume the summation convention for repeated indices. 

The KUV jet calculus formulafor this distribution 

D 
ala2a3,i (x1,x2,x3;Q2) is (see Fig. 2) 

D 
ala2a3 ,i (x 1,x2,x3;Q2) = 

D 
alhl 

(Wl,Y-yo) Da c (W2,Y'-yo) Da c (w3,~~-yo)'b~+c c (Z'). 
21 32 2 12 

Db~b2(xtt,y-y.)ejib b (z) Dji(x,Y-Y). 
12 

6 (x l-wlzx) 6 (x2 -z'x'w2) 6[x3-(1-z')x'w3] A[x'-x"x(l-z)] (2.2) 



The variable Y is related to Q2 by 

Y=(2n. b)-1 %n[l+noh&n(Q2/A2)] (2.3) 

where 12nb = 11 NC-2N f' with N 
C 

= 3 colors and Nf = 3 flavors. The 

partons j,bl,b2,b;,cl and c2 have momentum fractions x,z, l-z, x",w2 

and w3,respectively, with intermediate momenta x' and z' integrated. 

The KUV propagator D,,(v;y(Q2)) g ives the probability for finding 

parton R with momentum fraction v in the QCD generated cloud of parton 

k characterized by four momentum squared Q2. n1 The P s are the Altarelli- 

Parisi18 branching functions for virtual partons (with the delta functions 

at x=1 removed)., We use the notation given by Willen 19 for QCD strength 

parameters 

*,2 = A2 e-l/ho) 

and 

1 u = 
S bEn(Q2/A12) 

The original jet has "off shellness" Q2 and the three partons are measured 

at off shellness Qi. 

Our choice for the three quark recombination function 

RR qqq(x1'x2'x3' 
27x1x2x3 _ .x) = -- 

3 6 (x1+x2+x3-x) 
X 

(2.4) 

is discussed in the next Section. Since it has only integer powers of 

x1,x2,x3 we can compute moments of the three quark contribution to 

Dq(x,Q2) in terms of moments of the individual parton propagators 
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Dij(n,Q2) and the moments of the vertex functions, 

1 

P m4 
i-ted = 

I 
zm (l-~)~ pi+cd (2) dz 

0 

thus giving (from the three-quark recombination only) 

Dy(n,Y) = 27(n-3)! 

n-3 m 
c c 
m=o r=o 

>i jblb2b;c1c2qlq2q3 
y. y 0 

(n-i-m)! 
1 D n-m-2 r!(m-r)! qlbl 

(y-Yo) * 

D ;;f;' (y'-Yo) Dr+' 
'3'2 

(y'-Yo) Ds; (Y-Y’). 
22 

(2.5) 

The integrals over intermediate values of Q2 may be done analytically 

in the representation in which the propagators D(n,Q2) = exp(A,Y) are 

diagonal. 

If we used only the D qlq2q3,i(x1'x2'x3 ;Q 2 > for baryon production 

and the D ,(x1,x2;Q2) for meson production, 
4142 91 

we would have an unphysical 

situation with many gluons "left over" at the end of the jet evolution. 

Clearly we must use an algorithm which somehow includes these gluons into 

the hadrons formed in the jet. However, due to the rather primitive state 

of the recombination phenomenology, we wish to create baryons by combining 

only three quarks rather than by looking at sets of (three quarks plus 

multiple gluons). 
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, The ansatz used by Chang and Hwa 16 , conversion of the gluons 

by fiat into quark-antiquark pairs in such a way that their momentum 

is conserved, was rather successful in the corresponding calculation 

of pion content for e+e- 16,20 , so we shall use that here. Speci- 

fically, the probability that a gluon turns into a quark (antiquark) 

of momentum fraction z(l-z) is taken to be 

F g”qq (z> = $-- [z2+(W21 . 
f 

Note that no additional powers of the strong coupling are included. 

This formula is particularly simple to compute for our case, since the 

contributionsfrom D gqq,i(x1'x2'x3' *Q2) to the total take the simple form 

J D gqq,i(x1'x2'x3' -Q2) i?g+qi (z> 6. Cc - zy). 

Rp 2 
qqq (S,X2'X3' *Q )d Edxldx2dx3dz 

= D 
J 

2- 
gqq,$x1’x2’x3;Q )pg+qi (z) Rtqq (zxl,x2,x3;x)dxldx2dx3dz (2.7) 

and hence we see that all the moments of D 
999,i 

(x l,x2,x3;Q2) computed 

from xm in the expression of Eq.(2.5) will just be multiplied by 
J 

1 

J- - (z) zm dz. p894 
0 

Similar comments apply to the contributions from 2 and 3 gluons. 
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In order to organize the calculations in such a way that we can 

see the forest in spite of the trees, we utilize the counting scheme 

indicated in Appendices A and B. In calculating the contributions to 

proton and antiproton production from the three species of quark jets 
+- 

inee, we realize that symmetry relates all the required terms to the 

"23 irreducible diagrams" shown in Appendix A. In these diagrams, all 

the intermediate states are summed. Similarly, for the lambdas, we need 

only the 18 irreducible diagrams shown in Appendix B. 

The double integrals of all required combinations of parton 

propagators are evaluated once and stored. Then separate packages using 

the moments of the vertex functions assemble these for the irreducible 

graphs. Finally the irreducible graphs are multiplied by weights which 

indicate the number of times each occurs and the appropriate charge factor 

for the photon vertex, and the cross-section is obtained. 

We have been able to evaluate nine moments (3+<11) of the baryon -- 

fragmentation function in this way. Note that we keep all terms in the 

propagators; unlike Eilam and Zahir 13 we have not been forced to make 

approximations. 

To invert the moments, we use Yndurain's method 21 , which should 

work here. Due to the fact that we can only calculate moments n=3 and 

above (see Eq. (2.5)) our answers give the values of Dy(x,Q2) only for 

x above 0.3077. We could compute more moments if it were absolutely 

necessary, but the program already takes about 10 minutes on the SLAC 

computer, to produce the x distribution for each value of Qz and A, so 

we have therefore tried to be frugal in spite of our enthusiasm. 

Since we use Yndurain's method, our answers should be reasonably 

accurate for all points except the two end points shown. In this we avoid 
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the inaccuracies of a parametrization of the x dependence of the type 

used by Chang and Hwa 22 and Eilam and Zahir 13 . As discussed below in 

Section III, their technique has apparently resulted in incorrect 

evaluation of the Q 2 dependence of their expression at low x. 
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III. RESULTS 

a. PARAMETERS 

The size of the answers depends strongly on three parameters 

in the theory: A, the QCD constant that enters in as; Q2, the off- 
0 

shellness of the recombiningpartons ; and R, the overall size of the 

recombination function (e.g. R=27 in Eq.(2.4)). The results also 

depend, both in magnitude and in qualitative features, on the way the 

gluons are treated. As far as this paper is concerned, only one method 

for handling the gluons has been considered - the one described in the 

previous section and Appendix C. We therefore consider this as fixed, 

and worry only about the dependence on the three parameters A, Q 2 and R. 
0 

Our value of A is the Q2 at which as(Q2) = 1.0. The more usual 

parameter, A'-- such that as(Q2) = l/b Rn (Q2/Af2) - differs very little 

from it: A' = 0.932A. We therefore expect that values of A between 50 

Mev and 200 Mev should be reasonable, in accord with recent fits to the 

scale-breaking behaviour of the nucleon structure functions 23 . 

The choice of Qz is much less clear. Our first concern, of course, 

must be that the strong coupling constant be small here. Since we are 

using a perturbative evolution, we should not have very large values of 
2 

as(Q > at any point in the spray: this will be true if the values at the 

end of the evolution are still small. 

Our second concern is that the value of Qz should be reasonable 

for the application of the recombination model in the simple (really 

primitive) form we are using here. This is currently more a matter of 

art than science. However, early applications of the recombination model 

involved partons coming forward in hadron-hadron interactions. These 

partons were not terribly far off their mass shell; probably they had SE 

less than 5 Cev2. 
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For this reason we will restrict the variation of Qt to values 

less than 5 Gev2. The lower limit of variation should probably be that 

for which as(Qz) = 1, ie. Q,= 1.43A'. In this paper we consider a rather 

more restricted range of variables, down to Q2 = 1.0 Gev2. We have no 
0 

very good reason for this restriction of the range, other than a vague 

intuitive feel that the sum of the masses of the recombining partons 

ought to be quite a bit larger than the mass of the created hadron to 

allow for a lot of binding energy. Since the gluons split, their quark 

daughters will have smaller mass, so we want the Qz of the parent gluons 

to be fairly substantial. 

In an earlier paper on pions 20 , some of us tried to determine Qi 

by requiring that the Q2 dependence of higher moments of the quark-anti- 

quark contribution alone (without the gluon conversion terms) imitate 

that of a scale-breaking version of the Feynman-Field parametrization 24 

at as low a Q2 as possible. This led us to prefer small values of QE, 

near Q 2 
0 

= 0.5 Gev2.. (We should note that the A value used at that time 

was larger than the one now in vogue). It is not obvious to us now that 

this is a necessary or even a desirable condition. To require that the 

recombination model result imitate the Owens-Uematsu equations is to 

require that Qz be so close to A that cx s is large at Qf (see our discus- 

sion below of the Eilam-Zahir choice for these parameters). 

It is, however, desirable to calculate the large Q2 recombination 

predictions for pions, protons, kaons and lambdas using the same values 
n 

of A and Q:. This would result in a phenomenological "best fit" value 

for Qf. This work is under way and will be reported in a later short note. 
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b. THE RECOMBINATION 

Our choice of 

FUNCTIONS 

the form 

X1 x9x2 
RB qqq(x1'x2'x3' *x)=R XJ 6 (x1+x2+x3-x) 

X 
(3.1) 

is motivated more by a desire for simplicity in the evaluation of 

the moments in Eq. (2.1) than by rigorous physical arguments. However, 

there are some physical arguments which would lead us to a formula of 

roughly this form. 

As pointed out by van Hove 25 , the recombination function is 

a type of rate, and must take the form (for mesons, m; v,s 5 valence, sea quarks) 

where r(kv,ks) is a Lorentz invariant function. If we calculate such 

a rate in any simple model, it will come out as a polynomial in the 

appropriate dot products of vector momenta; hence,it would seem reason- 

able to use a polynomial in x 1' x2 and x 
3’ 

Of course, if we knew the baryon wave function exactly at low 

Q', we could simply insert this into the formula for the rate and compute 

the function r(kv,ks) explicitly. While we do not know the wave function 

at low Q2 , we do know it at high Q 2,26 . Ordinarily this would be irrele- 

vant, but it happens that the corresponding large Q2 wave function for 

the pion 27 

4 IXlX2 

does give a commonly used form for the pion recombination function, 

x1x2 6 (x1+x2-x), when substituted into the formula for the rate. The 

similar Lepage-Brodsky large Q2 wave function for the baryons 
26 

9 x1x2x3Y 
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leads to a rate formula 

x1x2x3 
3 6 (x1 + x2 + x3 - x) . 

X 

Finally, the form x1x2x3 was used in some phenomenological fits 

28 by Ranft . He claims that his results are not much affected by changes 

of the powers in the formula. 

Having once decided on a functional form for the recombination 

function, we must normalize it using some reasonable convention. We believe 

that the only really correct normalization is the requirement that, after 

recombination occurs, the momentum into all hadrons in the jet must be 

bounded above by 1 (see Ref. 20 for a discussion of this in the meson case). 

As yet, we have been unable to implement this in a rigorous fashion for 

baryons and mesons together. For the time being, therefore, we use the 

normalization method of Teper 29 : 

If 
C(xl,x2*x3;x) 6(x1 + x2 + x3 - x) 

is the recombination function, then 

S(xl~~2~x3;xl + x2 + x3) 

must be the probability that the three quarks in cells dx dx dx 12 3 

combine to make a baryon at some x. This probability should be 

bounded above by 1. For our case the maximum of the function 

1 xy(l-x-y) lies at x = y = --a 
1 

3' so the maximum value is - and our 27 

normalization factor should be 27 or less. 

If we take into account the fact that three quarks and three anti- 

quarks in a cell in 6 dimensional phase space may go either into a baryon 

and an antibaryon or into three mesons, we see that the actual normalization 
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should be less than 27 by some factor which is probably between 2 and 4. 

We compute the values of our function for R=27, but for proper agreement 

with the data these should be too high. 

We believe this normalization argument, though crude, to be 

preferable to the sum rule used by Ranft 28 

RI;, cl J:-:',, Jr:1i;2 5, c2 E3 (1-5l-52-53) = 1 

This is because in our basic formula, Eq. (2.1), the quantity which is 

differential in x1 and x2 is D(xl,x2;Q2), not R(xl,x2,x). R plays the 

role of a quantity differential in x; therefore,any sum rule involving 

it should be an integral over x. 

Other recent recombination model calculations involving baryons 

by Takasugi and Tata 30 , and by Eilam and Zahir 13 , use a different form 

for the recombination function suggested by the valon model of Hwa 31 : 

R' 

312 

x1x2x3 i I 3 6 (x1+x2+x3-x) 
X 

used by Takasugi and Tata and 

(19.9) (x1x2) 
1.65 1.35 

x3 
4.65 6 (x1+x2+x3-x) 

X 

used by Eilam and Zahir. Eilam and Zahir use not only this functional 

form but also this normalization, whereas Takasugi and Tata use the 

functional form but allow the normalization R' to run free. A priori, 

we do not expect that the essential features of the results should differ 
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very much between this functional form and the one we have computed, 

although of course, details will change. However, we have not yet 

checked this expectation by evaluating functions with non-integer 

powers. 

The valon model derivation of this function by Hwa and Zahir 32 

is actually a fit to the valon distribution in the nucleon as measured 

in deep inelastic scattering. This should therefore be some average 

of the wave function squared over the small intrinsic transverse momenta 

(p,) of the quarks in the nucleon (these are certainly less than one 

Gev‘) . In the jet calculus generated spray, however, we are recombin- 

ing quarks which are likely to be at rather large transverse momentum. 

We need a recombination function appropriate for picking baryons out of 

this sort of intrinsic momentum distribution; it would therefore be no 

more rigorous to apply the structure function - recombination function 

equation of Hwa (Eq. (2.38~) of Ref. 31) than the heuristic arguments 

given at the beginning of this section. Eilam and Zahir are aware of 

this problem, and they cut off the integrals in the jet calculus in 

order to be sure they are only combining sets of quarks with rather 

small transverse momentum. This has other consequences, as explained 

in the last subsection of this section. 

C. GRAPHS OF RESULTS 

i) Q2 Dependence ----B-------B 

Perhaps the most striking feature of results calculated from 

Eq. (2.1) is the fact that the results rise with 

3 and 4. It is not surprising that there is an 

since the formula vanishes at Q2. What is less 0 

Q2 as shown in Figs. 

initial rise with Q2, 

easily anticipated, 
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however, is the fact that the rise continues for all values of Q2 

accessible with present and planned accelerators. 

The exact details of the rise depend somewhat on the values 

of the parameters Qf and A. For example, if Qt is large the variation 

at small Q2 is faster than if Qz is small (see Fig.5). This is because 

with large Qz and small Q 2 very few partons are produced in the spray 

and hence not much recombination can occur. Small Qi for the same Q2 

is closer to the "asymptotic" Uematsu-Owens 17 behaviour. 

We see in Fig.4 that all the contributions are rising with Q2, 

but that the smallest ones rise fastest. However, the decomposition 

of the total result, shown in Fig.6, remains similar in its main features. 

Because of this strong Q2 dependence through the region of current 

experimental interest, it should be possible to distinguish recombination 

model terms from the Uematsu-Owens type of behaviour. For reference we 

show in Fig.7 a typical Q2 dependence predicted by the Altarelli-Parisi 

equations. As input we have taken the EMC data of Ref.33 to give D", at 

Q2=25 Gev2, and we have assumed Di=0.5 Dz (the down quark fragmentation 

is, of course, suppressed in all applications with photons because of the 

charge). The data shown are from e+e- at higher values of Q2. We see 

that the Q2 variation of the Uematsu-Owens equations is rather small 

compared to that needed to fit the annihilation data. 

(ii) Leading Quark Effect -------------------- 

The next striking feature of the results, as stressed in 

our Letter34, is that at large x most of the contribution comes from 

terms where the initial quark comes right through and recombines with 

two gluons. 35 We shall term this the "leading quark" effect . Various 
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features of presently available data agree with this effect. For 

example, the data of Ref.33 show that, at large x, proton production 

from up quarks is very much larger than antiproton production, which, 

of course, contains no leading quark. The data in Ref.6 show that, in 

jets originating from quarks in protons, the production of lambdas is 

similar to the production of protons; a leading up quark can equally 

well pick (ud) or (sd) pairs up from the convereing gluons. 

At small x, on the other hand, most of the contribution comes 

from the three gluon terms. As a result we expect equal numbers of 

baryons and antibaryons in quark jets; this is seen by the EMC in deep 

inelastic-muon scattering 6,33 . 

In Fig.8 we present the predictions of this model for the functions 

Di, Di, ' Dt and DU. i Whereas DU Ti A 
and DU exhfbit a similar behaviour, DU is 

more sharply peaked than Dz in the small x region. 

Thus the results are almost totally dependent on the method used 

to treat the gluons in the spray, and it would behoove us to consider 

whether other techniques for handling them are possible. Certainly one 

can envision more general recombination functions which recombine any 

number of partons into a baryon (plus additional stuff which does not 

matter if we calculate the single particle inclusive distributions). 

We believe that further study of this sort should be done; to facilitate 

that we list in Appendix C the explicit forms of the recombination 

functions for two quarks and a gluon, for two gluons and one quark, and 

for three gluons, into a (baryon plus anything). 

In Fig.9 we present results for lambda production and proton 

production, calculated with the same set of parameters. Note that the 
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lambda production is a factor of 2 higher than the proton production 

at small x, where the triple gluon term dominates. We expect this, 

since there are only three different ways to assign the down quark 

from the proton to the three gluons in Fig.2, but there are 6 ways 

to assign the u,d and s quarks to the gluons for the lambda. 

At large x, on the other hand, where the leading quark effect 

occurs, the ratio of lambda to proton production is determined by 

the number of ways that the leading quark can combine with quarks from 

gluon conversion to create the appropriate particles. The combinatorial 

counting is slightly more complicated than for the small x case where 

only one graph (the triple gluon graph) is involved. In the large x case, 

the graphs involved are (see Appendices A and B) 6,8 and 9 for the case 

of the A and 7, 10 and 11 for the case of the proton. The contribution 

of these graphs to the Alp ratio is 4/3. 

(iii) Comparision with Data 4-------w- -__ a------- 

Of course, the lambda production should be suppressed 

from the values we calculate for two reasons: in principle it is more 

difficult to make strange quarks than it is to make non-strange quarks 

and we should somehow include this in both the jet calculus evolution 

and in the gluon conversion term. We have done neither. Also, there 

may well be SU(3) symmetry breaking in the recombination function, and 

we lack this also. 

When all this handwaving is over, we expect the number of lambdas 

predicted by the model to be no more than a factor of 3 smaller than the 

protons. At present there is no data on the large x distributions of 

protons; however, it is likely that the experimental lambda and proton 

cross-sections differ from each other at 1089 Gev 2 by less than a factor 

of 3. 
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We now compare with those high Q2 data on lambda and proton 

production which are currently available. This is shown in Fig.10 

for the parameters Qz=5 Gev2 and A=100 Mev. In Fig.11 we show how 

this comparision would change as the two parameters change. 

d. COMPARISON WITH OTHERS 

Earlier calculations of this general type were done by Chang 

and Hwa for pions 22 and by Eilam and Zahir for baryons 13 . The formula 

which they evaluate, 

+x,Q2) = T(Y) y J J d y dy'[same integrand as in Eq.2.2.1 R(xl,x2,x3;x)dxldx2dx3 

yO yO 

where T(Y)=Y if Q2 < 30 Gev2 and T(Y)=Y (30Gev2) if Q2 > 30 Gev2, may 

be rewritten in the form 

D j 1 i (Y-T(Y)) DjBl (x,T(Y) > 

From this we see immediately that for all values of Q2 above 30 Gev2 

(the cut-off value they insert for the integrals) they should just have 

the Owens-Uematsu type behaviour. That is, they should have a slow fall 

at large x with increasing Q2, and a slow rise at small x. 

In fact, the results they display fall continuously with Q2 at 

all x shown on their graphs. This is an artifact of the technique they 

use to invert the moments, which emphasizes the large x behaviour. 

Eilam and Zahir claim their answers do not vary much with the 

cut-off. This is clearly a somewhat misleading statement - their answers 

will rise with Q2 for Y below the cut-off, and then have Owens-Uematsu 

behaviour above this. While we sympathize with their attempt to limit 

the P, of the recombining hadrons, we feel that this should be achieved 
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by use of a modified jet calculus 36 which keeps track of p or which t 

reorders the graphs rather than by truncating the KUV results. 

Had Eilam and Zahir used the full jet calculus instead of their 

truncated version, with the same parameters A=650 Mev, Qf=O.64 Gev2 

and with the recombination function 

2 x1x2x3 
3 6 (x1+x2+x3-x) 

X 

(this is the valon prescription normalization of our functional form 

according to Hwa31), they would have obtained the Q2 dependence shown 

in Fig.12. We see that their truncation fo the integrals has led to 

a completely different form for the result. 

In Fig.13 we compare this set of parameters with the data. 

The agreement is quite respectable. While we believe these parameters 

to be foreign to the spirit of the model (A is much larger than that 

used in other QCD phenomenology, and the ratio of Qz to A2 is such that 

us is larger than 1 at the end of the spray), they produce a cross- 

section of reasonable size. This is larger (by two orders of magnitude) 

than the results obtained by Eilam and Zahir. At present we are unable 

to understand their results: experiments with our program lead us to 

believe that their truncation of the jet calculus should not produce a 

spectacular change in the size of the answers (see Fig.12). If the 

discrepancy is due to the different forms of the recombination function, 

then the sensitivity of these calculations to that form is remarkable 

and needs to be carefully investigated. 
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IV. ROLE OF THE RECOMBINATION TERM 

The recombination term calculated above has a different 

dependence on Q2 from that of the "normal" fragmentation functions 

obeying the Uematsu-Owens - Altarelli-Parisi Q2 evolution. It is, 

therefore, natural to ask how the two might possibly be related. In 

this section we attempt an interpretation of the two terms (and of one 

other term) by writing a pair of differential equations for the prob- 

ability that a baryon is found in a parton jet. This is similar to the 

9 equation derived by some of us in our recent paper on mesons in jets ; 

but,it has the additional feature that another construct, the diquatk, 

must be introduced to make the derivation simple. 

Let Dy (n,y> be the nthmoment of the i-tp fragmentation function. 

To write a differential equation for the y (i.e.,Q2, see Eq. (2.3)) 

dependence of this function, we must study the ways in which the function 

is changed by a lengthening of the y interval. Our basic hypothesis is 

that the only allowed changes due to variations in y come from quantum 

chromodynamics - i.e., that the only additional vertices allowed when y 

is changed are QCD ones. Given this, a lengthening of the y interval 

leads to two ways in which the fragmentation functions can be changed: 

a) The proton may already be present in the jet (prior to 

lengthening). In this case, lengthening of the interval 

can result in radiation from i (Fig.14); 

b) Lengthening of the interval may create the vertex which 

ultimately adds the third quark. This might then recombine 

with a "two quark system "already present to form the baryon. 

We will refer to this "two quark system" as a "diquark" 

without prejudice about whether the two quarks are "semibound" 
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or indeed whether they are even close to each other. 

Also, we will assume that the recombination in question 

occurs only at Q*=Qt; this is consistent with our desire 

to use only perturbative QCD down to Qi and the phenomen- 

ological recombination model at Qz. 

The fragmentation function then obeys a differential equation of the 

form 

d Dp (n,y) = Aji(n) Dp (n,Y) + fp i (npy) 
dy i , 

where 

(4.1) 

Ajib) = 1 A:'3 (n> = 1 
n,O 

c3 c3 

pi+jc 
3 

in the notation used in Eq. (2.5). The function f p ,(n,y> may be written 
, 

in the form (see Fig. 15) 

f p i",Y) = 
, 

'2 dwldw2 ~iib b (2) Da b (W ,Y-Yo)S~,,)b (w 
12 0 2 *,Y). 

RP ' (bc)a (zwl, (l-z)w2 ,t) 

J h 
+ dzdwdw P 1 2 i+blb2 (2) Dbb 

1 
(Wl’Y--Yo) S(ac)b2 (W2'Y). 

. RTac) b by, Cl-dw2 ,t> 

J ,. 
+ dzdwdw P 1 2 i+blb2 (2) Deb 

1 
(wl'y-yo) c (a,,)b2(w2gY) - 

. Ryab, c (y (l-h2 ,t> (4.2) 
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We have introduced the new symbol E; (ab),(x?y) for the propagator of 

parton c at y to go to diquark (ab) at Yo. Here x is the momentum 

fraction of c carried by the diquark. 

We have also used the recombination function 

RTbc) 2 (‘3, 9x2 9x1 ‘ 

which tells how the diquark recombines with the third quark to form 

a baryon. To take moments of Eq.(4.2) for use in Eq.(4.1), we need 

to know the functional form of this recombination function R. We will 

address this problem shortly. 

CASE OF "FRAGILE" DIQUARKS 

Next we consider the functions 5 (ac)b(w,~). As the interval is 

lengthened, there are in general three possibilities: 

1. The diquark is already formed and radiation occurs from the 

initial quark. 

2. The lengthening of the interval creates the basic vertex 

for forming the diquark. 

3. The diquark is already formed, and radiation occurs from 

the diquark. This last possibility does not arise for the 

proton fragmentation function; the proton is a color singlet 

whereas the diquark carries color. In this subsection we 

assume that all recombination, including the recombination 

into diquarks, occurs only at Qt; hence this term will not 

contribute. This is equivalent to assuming that the diquarks 

are rather tender objects which cannot sustain themselves 

under the impulse of any hard process, including~radiation. 
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In the next subsection we discuss what happens if recombin- 

ation into diquarks at larger Q2 is allowed, and radiation 

from the diquark is inserted. 

Since our present philosophy excludes possibility (3), the equation 

for the diquark propagator 5 becomes (see Fig. 16) 

ddy '(ab)b2 (t9y) = c 
! 

dx P 
x b2ic2c3 (t/x) 6(-ab)c cx,Y> 

'2'3 2 

t 

’ c 
jk I 

‘b ~jk 'Z)Daj (,wl,Y 

2. 
-yo)JJbk(w2,y-yo)K(xl,x2,x). 

. 6.(x1-wlz) 6(x2-w2(l-z)) dxldx2dwldw2dz (4.3) 

where the function K(xl,x2, x) somehow describes the combination of two 

quarks at Qf to make a diquark. 

The recombination functions K(x1,x2,x) and Rp bb)c(xl,x2,x) may 

be determined by the following requirements: 

a) All the diquark clumpings (ab)c, (bc)a and (ac)b must be treated in 

the same way. 

b) The overall recombination function of 3 quarks into a proton (which 

we will achieve by first combining two quarks to make a diquark and 

then combining the diquark with another quark to make a proton) must 

take the form 

RP,bc (x 1'x2'x3' x) = R x1x2x3 
3 6 (x1+x2+x3-x) 

X 

n 
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c) The recombination of two quarks into a diquark (achieved by K) 

and of the diquark and bachelor quark into a proton (achieved by R) 

must preserve "moment" at the vertices. This is a property of the 

jet calculus vertices; we will concoct our theory to also have this 

form. While this is not strictly necessary it allows for much 

simpler interpretation. 

By implementing these requirements we deduce that the recombina- 

tion function to make a diquark from two quarks is 

Cab) 
K(ab) (x ab lYX2' 

x) = E x1x2 
ab 2 6 (xlfx2-x) . 

X 

This has the same form as the recombination function which makes a pion 

from a quark and an antiquark. One should not be surprised by this. In 

the discussion by Brodsky and Lepage of the pion wave function 27 , the 

form (X1x2) at Q** is largely determined from the Born graph, single 

gluon exchange. This will also be the Born graph for the diquark system; 

hence the wave function of the diquark system will be similar to that of 

the pion in the limit Q*a. As we explained in the previous section, we 

might hope that known similarities in the large Q* behaviour reflect 

corresponding known similarities in the small Q 2 behaviour. 

Of course, there are infrared difficulties associated with the diquark 

which are not present for the pion, due to the color of the diquark system. 

These would make exact replication of the Brodsky-Lepage calculation com- 

plicated. For our purposes here, however, singularities due to radiation 

from the diquark's color are being ignored (since, in the net hadronic 

amplitude, singularities in the various components of the calculation 

would presumably cancel). We only mention the Brodsky-Lepage arguments 
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as hints that the diquark recombination function might conceivably be 

the same as that for the pion; within our framework, at any rate, we 

need the particular form x1x2/x2. 

With this recombination function, the solution to Eq.(4.3) 

takes the form 

*0 

dy' Dc2b2 (n,y-y')ni2 [ n-r2 ) E p")Pc~:~n-r'l 
r=o J 

Y 

.D aj (r+l,y’-Yo) Dbk b-r-l, y’-Yo) . (4.4) 

When we insert the recombination which makes the diquark with momentum 

fraction w and the bachelor quark with momentum fraction x3 into a 

proton, 2 xw 
RP 

k)a 
(x3,w,x) = Rp 3 

(bc)a 3 - s (x3i-w-x) 

X 

we can then reduce Eq.(4.2) to moments 

f,$N,y)=l . 
, m 

D 
ab1 

(m+ld+-yo) $c)b2 (N-l-m,y) Rybcja + 

+ Dbbl !m+l,y-Yo) 5(ac)b, (N-l-m,y) Ryacjb 

+ Dcb 1 
(m+1~Y-Yo)~(ab)b2 (N-l-w9 RTabjc (4.5) 
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The solution to Eq. (4.1) is then 

i 

Y 
D”i (N,Y) = Dki (N,y-Yo) Do (N,Yo) ' Dji (',Y-Y') fp j ‘N~“‘d” 

, 
Y 0 

or in other words 

D’I (N,Y) =A+B+C 

with 

A = Dki (N ,Y-Yo) D; (Wo) (4.6a) 

J Y 
B = dy' D ji (N,y-y’) 1 Pm+l'N-l-m Dc b (N-l-m,y'-Yo). 

yO 
m  Wlb2 22 

. RP D (bc)a ab 1 
(m+l,y'-Yo) .5(bcjc2 (N-1-m,Yo) + 

+ Ryacjb Dbblb+l,y’-Yo) Scacjc2 (N-l-m,Yo) + 

(see Fig. 17) 

Y 
C = dy' D ji (N,Y-Y') 

Y 0 

(4.6b) 

.D c2b2 (N-1-m,y'-y") 1 P r+l,N-2-m-r . 
r c2+Rk 
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. RP E(bd D 
(bc)a bc ab 1 

(~~,Y'-Y~) DbR (r+l,y"-Yo) Dck (N-2-m-r,y”-yo) 

+ RTac)b ac 
,(=I Dbb 

1 
(m+l,y'-Yo) DaR(r+l,y"-Yo) Dck (N-2-m-r,y"-Yo) 

+ RTab)c ab 
E(ab) D cb (m+l,y'-Yo) DaQ (r+l,y"-Yo) Dbk (N-2-m-r,y"-Yo) (4.6~) 

1 I 
J 

Term A is the Owens-Uematsu term, corresponding to the process 

in Fig.14. This needs no discussion. Term B corresponds to the process 

shown in Fig.17. Here '(c&b, (N-~-M,Y~) is some "intrinsic" amount of 

diquark in the parton at Qz. Term C corresponds to the process of Fig.2: 

this is the recombination term calculated in the earlier sections 
37 . 

CASE OF "TOUGH" DIQUARKS 

In the discussion so far, we have assumed that all the recombina- 

tions occurat Yo. If one believes that the diquark is a relatively fragile 

object, which can exist only at small Q*, this is a reasonable point of 

view. However, there is some feeling in the literature that many of the 

observed violations of scaling in deep inelastic electron scattering come 

in fact from scattering off diquarks. While these contributions are 

higher twist, and therefore, dominate at small Q*, it is not clear that 

a Q* which is small for those purposes is necessarily our small Q20. We 

should therefore investigate the possibility that diquarks exist also 

at large Q2. 

More explicitly, our study above uses 

d 
- Dy (n,y> = Aji Dy (n,y> + fp i (n,y) d y , 
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where 

f p i (x,y) = 
, 1 

'dzdx2dx3P 
i+kR 

(z> Dak (x3,y-Yo) EcbcjL (x2,y,Yo) RTbc)a(x3,x2,x) 

+ cyclic permutations 

with '(,,)!I (x2,y,Yo)being the probability of finding a diquark (bc) 

at Y. from a parton R at y. We wrote this in terms of a recombination 

function K in Eq.(4.3) 

Now let us imagine that the recombination into diquarks can 

occur at any y' (we will continue to assume that the recombination into 

protons occurs onlyatYo, due to the known extended structure of hadrons). 

What we are exploring here is the possibility that the diquarks might be 

treated as pseudo-fields, analogous to the quarks and gluons and with 

some reasonable existence at larger Q* (i.e., presumably a less extended 

structure than the proton). We generalize the recombination function 

K(xl,x*,x) to the new function ELtb) (x1,x2,x,y') which indicates that 

the recombination takes place at y' and we explore the dependence of the 

diquark propagator s(x,y,y,) on both its initial (y) and final (y,) 

variables. 

As we change y (the mass label of the initial quark) we again 

have the two possible contributions from radiation off the quark and 

recombination. Now, however, the recombination may occur at any of the 

y's available in the range. The differential equation analogous to 

Eq. (4.3) is therefore 
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2; '(bc)ll (X,Y,Yd) = 1 
j 

fY f + dy’ J I 
dx' h 

dz dWldW2 dXldX2 x' Pajij (Z) Dai (Wl'Y-Y') Dbj(W*'Y-Y'). 

'd 

.E(ab) (x ab l,x2,x:~') ~(xl-wlz) 6bc2-w2(1-z>l D qq ($ d-Yd) * (4.7) 

Similarly, as we increase the observation point of the diquark, two 

possible things can happen: 

(a) We may lose a possible radiation vertex from the diquark (note that 

the diquark is assumed to radiate like an antiquark, so we know the 

vertex for this). 

(b) We may lose a possible recombination into a diquark from all possible 

"creation" vertices. 

These thus give us the differential equation for the variation of the 

diquark propagator 5 in its other variable 

a 
- t(bc)& (x,Y,yd) = - 
ayd X 

q-f9g ('1 &.),( ; ,Y,y,) 

IY 

J 

h 

-1 
dy" P k-+ij 

yd 
(Z> Dai (Wl,Y"-Yd) Dbj (w23Y"-yd). 

. Ecab) ab (x 1'x2'x'Yd) bbyWIZS) 6[x2-w*o-z)Sl. 

.Dkll (5,y-y")dz dwldw2d 5 dxldx2 (4.8) 
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Since we will not study the behaviour of these equations in detail, we 

do not give here the most general solution; however, it is clear that 

the recombination contribution to the solution is 

t(ab)R (x,Y,yo) = i' dy" Iyl'dy' I DkR (S,y-y") 'k-ij (z> Dai(wl,y"-y')* 

yO *0 

.D bj (w2,y”-Y’) E;;b) (xl,x2,x'9y') Dqq ( Cl ,Y’-Yo). 

. 6 (x,-szw,) 6 [x2 -C(l-z)w2]dzdxldx2dSdwldwldw2 % (4.9) 

We see that allowance for the diquark radiation leads to a more compli- 

cated expression than the one we have evaluated, and it is not so easily 

related to the concept of a jet calculus evolution followed by the 

recombination function x x x /x3 
123 6 (x1+x2+x3-x). 

Thus our approach fits neatly with the diquark concept only if 

one assumes that the diquarks are interesting objects for the Qi at which 

proton formation is accomplished, but not for arbitrarily large Q*. 
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V. SUMMARY AND CONCLUSION 

We have shown that there are general reasons for expecting the 

jet fragmentation into baryons tohave three major contributions, with 

differing Q* dependence. One of these is the usual Owens-Uematsu term; 

the others involve recombination of a quark with a diquark, or of 

three quarks. 

We have evaluated the three quark recombination into protons 

and lambdas for a particular choice of the recombination function, and 

shown that (for currently accepted values of the QCD constant A and 

reasonable values of Q* 0 and size R of the recombination function) we 

+- 
can obtain rates for e e annihilation into these baryons which are in 

the neighbourhood of presently observed rates. 

It is thus possible that the recombination mechanism will account 

for the observed rise of the amount of quark jet momentum going into 

baryons. Detailed fits to data require more work: (a) The parameter Qf 

must be chosen to fit both meson and baryon data; (b) The contributions 

of the other terms need to be estimated as carefully as possible and 

added to the term evaluated here. This work is underway. 

Various other features of the model also need further investigation. 

In particular, most of the results depend on the method used to convert 

the gluons present in the jet spray into quark-antiquark pairs, thus pro- 

ducing effective recombination functions which recombine both gluons and 

quarks. Thus far, only one method has been investigated. The theoretical - 

significance of this is not at all clear. 

The form assumed for the three quark-baryon recombination function 

also deserves further study. Estimates by another group using a different 
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form have obtained quite different results. The significance of this 

form is not independent of the gluon conversion; in the end only the 

net functions which effect the recombination of the partons into the 

baryons and mesons have any physical meaning. A great deal more 

thought needs to be devoted to this subject also. We feel, however, 

that the results reported here are encouraging enough to make this 

further study worthwhile. 
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APPENDIX A 

INDEPENDENT TERMS FOR p + 5 

We list in Fig. Al the 23 irreducible diagrams for e+e- + pX 

within the KLJV jet calculus formalism (see also Fig. 2). 
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APPENDIX B 

INDEPENDENT TERMS FOR h + n 

We list in Fig. Bl the 18 irreducible diagrams for e+e- -f AX within 

the KUV jet calculus formalism (see also Fig. 2). 
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APPENDIX C - 

GENERALIZED RECOMBINATION FUNCTIONS 

If we consider the gluon conversion and the quark recombination to 

form some new effective recombination functions, we find (the overall 

normalization factor R has been omitted): 

a. GTJJON(xl) - QUARK(x2) - QUARK(x3) 

e(x - x2 - 
x2x3 x-x -x 

x3)(3(x1 + x2 + x3 - x) --y- ( 2 
3, l 

X x1 

x-x x-x -x 
.+[(-223)2+ ( 2 3 - x1 2 

x1 x1 
) ] 

f 

This is shown in Fig. Cl as a function of the gluon momentum fraction 

x1, for various values of the quark momenta. Note that the function is 

zero unless x2 + x3 < x < x1 + x2 + x3, so in general "ultra-wee" gluons 

do not contribute. 

b. GLUON(x$ - GLUON(x2) - QUARK(x3) 

dc2 cl(<; + (1 - E;l)21<2[~; + (1 

+ x3 - x) 

This is shown in Fig. C2. Now we on ly have contr ibutions if x 3 <xc 

that either x1 = 0.0 

is not reached at all (as in the gluon-quark-quark case) or the function 

x1 + x2 + x3. For fixed x, x3 and x2, this means 

goes to zero there. 

C. GLUON(x$ - GLUON(x2) - GLUON(x3) 
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l 52 
2 2 2 

[E2 + (1 - 6,) 153K3 + (1 - F-g216 (xlsl + 352 + x353 - 4 

This is shown in Fig. C3. Here there are contributions only if 

x < x1 + x2 + x3. Again, for fixed x and x2, x3 this means either that 

x1 = 0.0 is not used or that the function has a zero there. 

DISCUSSION 

We have seen above that despite the "minimal" form of our three 
n 

quark recombination function x1x2x3/x', the resulting recombination 

functions still vanish when the gluon momentum is "wee". A three quark 

recombination function with a higher power of x1 will of course provide 

a more rapidly vanishing gluon recombination function. 
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Figure Captions 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 3a. 

Fig. 3b. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

The basic components of our calculation. QCD evolution of the 

jet produces the three partons to be recombined plus other 

partons. The recombination schematically indicated here 

includes conversion of the gluons to q q pairs, and recombina- 

tion of quark triplets. 

Diagramatic version of Eq. (2.2) for the 3 parton inclusive 

distribution. 

Dependence of the (p + F) inclusive distribution on Q2 

(Q 2 2 
0 = 2 Gev , A = 200 Mev.). 

Dependence on Q2 of the most important terms, 3g and 2g + q 

for (A + K) production (Qi = 1.5 Gev', A = 100 Mev.). 

Dependence on Q2 of the less important terms, g + 2q and 3q, 

for (A + x) production (Qi = 1.5 Gev2, A = 100 Mev.). 

At low Q2, evaluation of Eq. (2.1) for larger Qz leads to more 
rapid Q2 variation for e+e- + (p +7)X: (a) Qi = 1 Gev2,A = 50 
Mev; (b) Q2 = 5 Gev2, A = 50 Mev. 
The decomp&ition of total (A + i> production is similar at 

(a) Q2 = 1089 (Gev)2 and (b) Q2 = 10' Gev2, despite different 

variation of the contributions shown in Fig. 4. 

The behaviour with Q2 expected from the more usual Ilematsu- 

Owens term; the input is at Qf = 25 Gev2 from the EMC data 33 . 

The data are from ref. 2. 

As samples of the functions measured in inelastic muon scat- 

tering, we show Dp u, D;, F 11 Du and DU at Q2 = 25 Gev2, Qi = 2 Gev2, 

A = 200 Mev. 

Predictions for the relative size of (A + 1) and (p + p) cross 
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Fig. 9. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

Fig. 13. 

Fig. 14. 

Fig. 15. 

Fig. 16. 

Fig. 17. 

Fig. Al. 

Fig. Bl. 

Fig. Cl. 

Fig. C2. 

Fig. C3. 

(continued) 

sections. At x = .31 the ratio R = (A + K)/(p + F) is 1.87 

(the dominant 3g terms have a ratio of 2); at x = .92 R = 1.33 

(the dominant 2g terms have a ratio of 1.34); Q2 = 1089 Gev2, 

Qi = 2 Gev2, A = 200 Mev. All SU(3) breaking effects have been neglec 

Comparison with available data, using Qi = 5 Gev2 , A = 100 Mev: 

4 e+e- + (p + F)X at Q2 = 144 Gev2, data from ref. 2. 

b) e+e- + (p + F)X at Q2 = 900 Gev2, data from ref. 2. 

cl e+e- -t (A + x)X at Q2 = 1089 Gev2, data from ref. 1. 

Variation of the predicted cross sections for e+e- + (A + K)X 

with Qz and A at Q2 = 1089 Gev2. 

Evaluation of our formula for e+e- -f (p + T;>X for Qi = 0.64 

Gev2 , A = 650 Mev (Eilam and Zahir parameters 13 ). The valon 

normalization of our functional form was used. 

Comparison of the Eilam-Zahir normalization with data. 

The first term in Eq. (4.1): Owens-Uematsu evolution. (The 

blob indicates the intrinsic proton at Qz). 

Quark-diquark recombination, the second term in Eq. (4.1). 

The black box represents the diquark propagator 5. 

Pictorial representation of the terms contributing to the 

"diquark propagator" in the case of "fragile" diquarks. 

Pictorial representation of the term B in Eq. (4.6b). The 

blob represents intrinsic diquark in the parton at Qi. 

The 23 KUV irreducible diagrams for e+e- -f pX. 

The 18 KUV irreducible diagrams for e+e- -f AX. 

Behavior of the gluon-quark-quark recombination function. 

Behavior of the gluon-gluon-quark recombination function. 

Behavior of the three-gluon recombination function. 
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