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10 Introduction 

Factorization theorems play a central role in the analysis of 

many hadronic processes in that they allow one to write observable 

quantities as the convolution of a non-perturbative, process- 

independent piece with a perturbative, process-specific piece. 1 For 

the case of the Drell-Yan process, 2 proofs of the factorization con- 

jecture remain incomplete. In this paper, we show that initial state 

interactions in the Drell-Yan process violate factorization order by 

order in perturbation theory, and we discuss the effects of such 

interactions on the observed cross sections. 

Figure 1 shows the basic Drell-Yan process for anti-baryon-baryon 

collisions: a quark from one baryon annihilates with an anti-quark 

from the anti-baryon to produce a time-like virtual photon, which in 

turn produces a lepton pair of invariant mass-squared Q2. QCD fac- 

torization is the statement that, at large Q2, the cross section da/dQ2 

is given, up to terms of O(l/QL), by the convolution of the absolute 

square of a hard process (simple Feynman diagram) with evolved (scale- 

breaking) structure functions. This statement is depicted in Fig. 2 

for the basic process and some O(o,) radiative corrections. The dashed 

vertical lines cut through the final state (with conversion of the 

massive photon into a pair understood); the inner Feynman diagram is 

the square of the hard process; and the hadronic wave function "blobs" 

squared make up the structure functions. For example, the basic pro- 

cess gives a contribution 

do =@$$ L Idxldx2cS(x1x2- $[q(x,,Q2);(x2,Q2) + (1~++2>], (1) 
dQ2 q c Q4 
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2 where q(x,,Q ) and y(x2,Q 2 > are the quark and anti-quark structure 

functions respectively. 

Factorization theorems, as they are usually stated, also relate 

various hadronic processes to one another (universality). In parti- 

cular, they state that the structure functions q(x,Q2), T(x,Q2), 

g(x,Q") (gluon) that appear in the Drell-Yan formula are the same 

structure functions as those measured in deep-inelastic scattering. 

For deep-inelastic scattering on a nuclear target, the virtual photon 

interacts with a given charged constituent with a strength that is 

independent of the location of the constituent within the nucleus. 

Thus, we are led immediately to the statement of nucleon number addi- 

tivity for structure functions: 

(q(x,Q2)), = A(q(x,Q2)),, etc. (away from x=1) . (2) 

Here A is the nucleon number and the subscripts A and N denote the 

nucleus and nucleon, respectively. 

Nucleon number additivity, in the context of factorization, has 

important consequences for the Drell-Yan process. It implies that 

quarks on the back face of a nuclear target are just as likely as quarks 

on the front face to annihilate with a projectile anti-quark. That is, 

factorization seems to imply that nuclear matter, at least for the 

Drell-Yan process, is infinitely penetrable. 

On the other hand, we know that the projectile interacts strongly 

with the matter in the target. Total cross sections for hadrons on a 
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nuclear target go like A 2/3 , which indicates that the projectile does 

not penetrate much past the nuclear surface before an interaction occurs. 

In exclusive channels, multiple scattering (nuclear enhancement) appears 

to be important. Even in experiments that measure the Drell-Yan cross 

section, one must allow for the production of secondary hadrons and 

depletion of the beam as it passes through a mscroscopic length of 

target. In short, a projectile's wave function must be profoundly dis- 

turbed as the projectile passes through the target. 

II. Initial State Interactions 

In order to resolve this apparent conflict between strong-inter- 

action phenomenology and QCD factorization , we investigate the inter- 

action between target and projectile constituents (initial state inter- 

actions) in QCD perturbation theory. At first sight, it might appear 

that perturbation theory is an inappropriate tool for the study of 

strong-interaction physics. However, it does give us a consistent field 

theoretic framework - incorporating principles like unitarity and causality - 

within which to check our ideas. As we shall see, the principles that 

emerge from our analysis are rather general and probably transcend the 

limits of perturbation theory. Furthermore, factorization, if it is 

correct, must hold in perturbation theory, so any exceptions we find 

perturbatively represent valid counter-examples to the "theorems." 

Our analysis makes use of the light-cone (infinite-momentum 

frame) perturbation theory.3 This is merely a convenience. 
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All of our results can, of course, be obtained by starting with the 

usual Feynman rules, p icking an appropriate Lorentz frame, and carrying 

out the contour integration over one of the components (usually PO or 

P-) of each loop momentum. 

Figure 3 shows some examples of initial state interactions for the 

process of meson-baryon Drell-Yan production. Figures 3(a) and 3(b) 

show, respectively, examples of active-spectator elastic and bremsstrah- 

lung initial state processes, and Fig. 3(c) shows an example of a 

spectator-spectator initial state process. The spectator-spectator inter- 

actions were considered previously by Cardy and Winbow and DeTar, Ellis, 

and Landshoff4, and were shown to cancel, essentially because of unitarity. 

In this analysis we concentrate on the active-spectator interactions. For 

simplicity, we dicusss explicit calculations for the case of meson-meson 

collisions. The generalization to the Drell-Yan process for other types 

of hadronic collisions is straightforward. 

III. Elastic Interactions 

Let us consider first the elastic initial state interactions, the 

simplest example of which is shown in Fig. 4. If this type of inter- 

action is to give a factorization-violating (leading twist) contribution 

to the Drell-Yan cross section, it must not be suppressed by powers of 

Q2 relative to the basic process. That is, at fixed x 
9' xq 

it must 

give an s-independent contribution relative to the basic process. The 

various factors in this Feynman amplitude, in addition to those con- 

tained in the basic process, are as follows (for small y): 

Energy denominator =: yrf - 2rl*Rl + ie 
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indicated by a solid vertical line in Fig. 4; 

gluon propagator denominator = L21 ; 

gluon spin sum multiplying quark, '1' 5 
anti-quark convection currents =-T--. 

We work in the light-cone gauge (A' = 0) throughout in order to elimi- 

nate large (O(L)> cancelling contributions. Now, if the amplitude is 

to give an s-independent contribution to the cross section we must have 

2 d Rl rl.RI 
fdy - -- 1 

1: Y rfy 
$(xq-y,kL-RL> = O(1) . (2) 

- 2rl.R1+ ie 

!L2 I = -t(l-y) is limited by the hadronic wave function J/J to be of the 

2 order of a (hadronic mass) . Then, one might expect that Eq. (2) would 

be impossible to satisfy since the energy denominator contains a term 

yr: with r-F = s. In fact, we need only choose y to lie in a suf- 

ficiently small range: 

y'Lm. (3) 

Thus, we see that the leading-twist contribution comes from the region 

near the pole (Glauber singularity) in the energy denominator. The 

singularity corresponds to classical on-shell scattering, i.e., pro- 

pagation over infinite distance. This is to be contrasted with the 

mass singularities discussed in the usual treatments of factorization, 

which arise from the "collinear" region of momentum space. Unlike the 

mass singularities, the initial state corrections cannot be eliminated 

through the use of Ward identities or a particular choice of gauge. 
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dne might worry that the RI-integration in Eq. (2) seems to contain 

a logarithmic divergence in the small-RI region. In general, such diver- 

gences are cut-off by terms of O(kl/Q) that we have neglected in the gluon 

propagator. For the particular example shown in Fig. 4, the infrared 

divergence is also regulated becuase of a cancellation that occurs when 

one sums over the interactions of the gluon with all constituents of the 

color-neutral (singlet) hadronic system, as in Fig. 5. 5 This is simply 

the statement that a gluon cannot couple to a color neutral system when 

its wavelength is long compared to the size of the system. Note that, 

were it not for the RI-dependence of the hadronic wave functions, which 

is due to the finite transverse size of the hadronic color charge distri- 

butions, this particular initial state interaction would be completely 

cancelled. 6 

Based on our analysis of the momentum transferred by the virtual 

gluon, we expect that the elastic initial state interactions smear the 

transverse momentum (QL) distribution of the Drell-Yan pair, but leave 

the longitudinal momentum fraction (x) distributions unchanged. The 

magnitude of the smearing of the Qt distribution is 

< !L; >N - hadronic mass 

for a nucleon target, and 

< !2: >A = AlI3 < !I; >N - AlI3 (hadronic mass) 

for a nuclear target, since the distance the projectile quark travels 

through the nucleus is proportional to A l/3 . That is, the projectile 

quark undergoes a random walk in transverse 

2 l/2 step of magnitude -< R, >N . Such initial 

A-dependent contribution to <Qf> that might 

momentum space, with each 

state interactions give an 

be incorrectly attributed 
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to the "primordial" kT of the hadronic constituents. 7 

There is evidence for such transverse momentum smearing in the 

CIP data shown in Fig. 6. 8 In the mass region (M ; 3 GeV) for which 

we expect the Drell-Yan mechanism to be dominant, the data show a trend 
2 

toward increasing < Ql > with increasing nuclear size. Fitting these 

data to Eq. (4) , we obtain c R2 > l/2 
1 % 200 MeV. In Fig. 7 we show 

the NA3 data for the ratioofthe Drell-Yan cross section on H2 to the 

Drell-Yan cross section on Pt. 9 Taking < et >,=200 MeV and using the 

CIP data for the Q, dependence of the cross section, we estimate that 

at large Q, the initial state interactions enhance the Pt cross section 

by a factor of about 1.7 relative to the H2 cross section. This is 

just within the NA3 error bars. 

In the case of an Abelian theory there is an important cancellation 

in do/dQ2 (but not do/dQ2dQ2) between the square of the lowest order 1 

elastic initial state amplitude (Fig.8(a)) and the interference of a 

two-gluon elastic exchange with the basic process (Fig. 8(b)). 
10 Tech- 

nically, the cancellation occurs as follows: once one has symmetrized 

the energy denominators of Fig. 8(b) with respect to the integration 

variables (gluon momenta), the denominators are identical to those of 

Fig. 8(a), except for a minus sign from moving one denominator across 

the final state cut and a factor of l/2 from carrying out the sym- 

metrization. The factor of l/2 just cancels the factor of 2 coming 

from the two equal contributions of Fig. 8(b). Physically, the can- 

cellation occurs because the initial state interactions can change the 

transverse momentum of the incoming quarks, but not the total incident 
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flux. As long as one does not observe the lepton pair transverse momen- 

tum, the changes in quark transverse momentum are of no consequence. This 

cancellation at large Q2 persists to all orders. In general, in the 

Abelian case, the Drell-Yan elastic initial state interaction graphs 

factorize into the absolute square of an elastic amplitude times the basic 

Drell-Yan process (Fig. 9). Since the elastic-amplitude is, for an 

Abelian theory, the exponential of an imaginary eikonal phase, its 

absolute square is unity. 11 

By examining the momentum dependence of the hadronic wave functions 

in the expressions for the elastic contributions, we arrive at a con- 

dition that must be fulfilled if the cancellation is to occur: 

s >> <Lf>N cy$2 , (54 

where s and LN are the nucleon mass and length, respectively. Con- 

dition (5a) is actually the statement that the beam be coherent over 

the region in which the target quark is confined: 

- 
(5b) 

This condition is easily satisfied in most experiments. 

In the case of a non-Abelian theory, such as QCD, the cancellation 

of elastic initial state effects outlined above fails because of the 

color algebra. Consider, for example, the color factors of the graphs 

of Fig. 8(a) and Fig. 8(b), which are shown schematically in Figs. 10(a) 

and 10(b), respectively. They differ by terms involving the commutator 

of two X-matrices. In fact, the ratio of the color factor of Fig. 8(a) 

to that of Fig. 8(b) is -(2-l), so that these two graphs do not cancel, 
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as in the Abelian case, but add. Since the cancellation fails because 

of terms involving the commutator of X-matrices, one might guess that 

graphs involving the triple gluon vertex, as in Fig. 11, could play a role 

in restoring the cancellation. However, such a graph contains one less 

Glauber singularity than the ladder graphs of the same order in us (Fig. 8). 

Thus, it has the wrong phase (pure imaginary)-to contribute to the 

Drell-Yan cross section. 

In general, the elastic interactions fail to cancel in a non- 

Abelian theory because the color rotation associated with the elastic 

exchanges fails to commute with the color matrix of the basic Drell- 

Yan process (Fig. 12). Thus, elastic initial state interactions, no 

matter how soft, can dramatically alter the Drell-Yan cross section by 

allowing color to "leak" from the active quarks to the spectators. An 

analysis of general initial state color rotations shows that this 

results in an initial state enhancement factor I 
eR' 

1 Q IeR Q I$ . (6) 

In (61, one factor of n 
C 

is present because color "leakage" removes the 

constraint that the annihilating quark and anti-quark have opposite 

colors. The second factor of nc accounts for the number of possible 

spectator colors for a given active-quark color. 

An example of elastic initial state interactions in a nuclear 

target is shown in Fig. 13. In this example, the spectator quark is a 

constituent of a (color singlet) nucleon that does not contain an 

active quark. As a consequence, the color factors of the two graphs 

shown are identical, and they cancel as in the Abelian case. Thus, 
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the elastic exchanges modify the nucleon cross section in a non-Abelian 

theory, but result in nuclear cross section that is still proportional 

to A. 

IV. Gluon Bremsstrahlung 

As we have seen, elastic initial state interactions have only a 

minor effect on the x-distributions of the annihilating constituents. 

However, one might expect inelastic reactions to alter the x-distri- 

butions significantly. For example, s-independent initial state brems- 

strahlung could, in principle, remove an arbitrarily large fraction of 

the momentum of the incident particles. We shall see, however, that 

such bremsstrahlung is suppressed at large Q2. 

Let us consider the initial state bremsstrahlung graphs shown in 

Fig. 14. In discussing the initial-state bremsstrahlung we find it 

convenient to isolate the part of the amplitude that is induced by the 

active-spectator interaction. To this end, we note that the amplitude 

of Fig. 14(a), in which the gluon is emitted before any initial state 

interactions, has a numerator coupling el*jl, whereas all other dia- 

grams lead to numerators of the form el*(jj+Rl). Thus, we define the 

j-part of each amplitude to be the piece obtained by keeping only the 

yi l term in the numerator. In addition, we drop all cross terms of 

the form Rlajl in the energy denominators for the j-part. It turns 

out that the j-part is the correct leading-twist approximation for the 

bremsstrahlung amplitude for j, ; 6 . We define the R-part to be the 

remainder of the leading twist contribution to the amplitude; The 

R-part is proportional to the momentum transfer 11, and so contains the 
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part of the bremsstrahlung that is induced by the active-spectator 

exchanges. It contributes in leading twi.st only for j, 2 fi << Q. 

Let us temporarily set aside the R-parts and consider first the 

effect of the j-parts. The j-parts of the various graphs combine to 

give a convenient factorized form. For example, for the j-parts of 

Figs. 14(a) and 14(b) the energy denominators combine as follows: 

B-‘&-l + C-l) = A-+’ . (7) 

Here A is the denominator associated with the emission of a gluon, and 

C is the-denominator associated with the elastic active-spectator scat- 

tering. In the case of a non-Abelian theory, we must also take into 

account the triple-gluon coupling graph, Fig. 14(c). Aside from the 

color factor, its j-part is identical to that of Fig. 14(a). The ' 

color factor is such that, when added to the color factor of Fig. 14(a), 

it yields the color factor of Fig. 14(b). A more general example of 

this sort of combinatorics is shown in Fig. 15. The graphs on a given 

row have identical energy denominators. Their color factors combine 

to give the color factor of the last row. Then, the energy denominators 

associated with each row can be added to give a factored result. Thus, 

we see that, in both the Abelian and non-Abelian theories, the j-parts 

combine to give a factored result of the form of a Drell-Yan amplitude 

with gluon emission (including wave function evolution) times an 

elastic initial state scattering amplitude (see Fig. 16). 

The factorized structure is such that, for a non-Abelian theory, 

the color factor is always computed with the elastic scattering outside 
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of the (real or virtual) bremsstrahlung, as in Fig. 14(b). Thus, the 

color traces are different for the cases of real and virtual emission 

(Fig. 17). This leads us to expect that da/dQ2 is modified by an X- 

dependent, factorization-violating factor: 

1 s I(Q2,xq,xq) G n2 . 
C 

(7) 

In O(as) the virtual graphs contribute a Sudakov double log: 

2 

x (elastic amplitude) . 

In an Abelian theory this double log would be cancelled by a similar 

contribution from the real emission graphs. However, as pointed out 

12 by Mueller , in O(ai) the color factor associated with the virtual 

emission is CF, whereas the color factor associated with real emission 

is C F - $2 A' Thus, there is a residual double log contribution 

CtC sA -- 
4r En2 Q2 - x (elastic amplitude) . 

A2 

It can be seen (most easily in axial gauge) that these double logs 

exponentiate to all orders in us to give (ignoring the running of the 

coupling constant) 

exp[-$Ln2$] x (elastic amplitude) . (8) 

Assuming that this formal resummation of the perturbation theory is 

justified, one is lead to conclude that the initial state factor is of 

the form 

I(Q2,x q,x4) = (Iea-l> t S(Q2,xq,x$ I2 + 1 , (9) 
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where 

IsI2 Q exp [-~d$] in the limit of large Q2 . 

That is, the initial state enhancement falls faster than any power of 

Q2 for Q2 large, so that the initial state effects are not in conflict 

with the factorization conjecture for do/dQ2.- Note, however, that the 

initial state corrections may still be phenomenologically important. 

Taking the infrared cutoff A to be given by the hadronic size, we find 

that the initial state enhancement factor is 

I 2 (n2-l)e7(2 Or 3, + 1 
C 

at present values of Q2. 

Finally, let us return to the discussion of the R-parts. By 

definition, the R-part bremsstrahlung is always internal to at least 

one of the elastic exchanges. As a consequence, it tends to be sup- 

pressed because of cancelling contributions from the Glauber singu- 

larities on either side of the gluon emission vertex. For example, 

the energy denominators C and B in Fig, 14(b) are of the form 

B 2 (y-yB + is) s 
(10) 

with 

C 2 (y-y, + is) s , 

yB-yC = dH2/S , 

where JM is the invariant mass of the anti-quark-gluon system. If the 
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hadronic wave function $(x,-y,kl -RI) is a slowly varying function of y, 

then the leading twist contributions from y % yB and y 'L yC cancel in 

the integral over y. The dependence of $(x) on the longitudinal momentum 

fraction of the constituent is controlled by the longitudinal size of the 

target: I/J g (xML), where L is the length of the target. For example, 

in a non-relativistic bound state x = (m+k3)/M, where m is the consti- 
ik L 

tuent mass and M is the bound state mass, and $(k3) % R 3 for con- 

stituents at fixed separation L. '4~ (x-y,kl-Rl) "slowly varying" then 

means 

c4z2iixqs) << (MNL)-L . (11) 

Since, as we noted previously, the leading twist contribution to the 

lepton-pair cross section due to the R-part amplitudes comes from the 

region,,& 2 3 !L2 1 << Q2, (11) implies that 

< Rf >/(x@ << (MNL)-l . (12) 

This is a new condition for the validity of the QCD prediction of the x: 

dependence of the cross section do/dQ2. 

The suppression of radiation over a finite length can be understood 

in terms of the uncertainty principle. The induced bremsstrahlung changes 

the spectator laboratory momentum by an amount ApzPeC -.Ai2~/(xqs). In 

order to detect the radiation specifically induced by the active-spectator 

interactions, one must have Ap, specL > 1. This leads immediately to (12) 

as the condition for no induced radiation in the target. 
13 

Note that for very long targets induced radiation does occur. Thus, 

we understand why depletion of the incident beam and the production of 
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secondary hadrons occur in a macroscopic target. In the case of a 

nucleus, an estimate of the condition for no induced radiation is 

Q2 > x~$L~<!~~>~ 1 ~~~(1.2 fm)A1'3<Q2>NA1'3 f 0.25 GeV2A2j3, (13) 

where we have used < R 2 >1/2 
N a 200 MeV for the average momentum exchange 

in a quark-nucleon collision. Note that for a-uranium target one re- 

quires Q2 ; 10 GeV2 before radiation losses can be neglected. 

V. Other Processes 

Finally, we note that initial (and final) state interactions of the 

sort we have investigated in the context of the Drell-Yan process are 

expected to affect many other hadronic reactions. An example that is 

closely related to the Drell-Yan process is direct photon production at 

large pT. As in the case of lepton pair production, we expect an 

enhancement in the cross section due to initial state interactions. 

At very large pT the relative correction should be % < g2 >NA l/3 2 /p T' 

Jet and single particle inclusive reactions (A+B + C+X) should exhibit 

similar momentum-smearing effects. For example, in the case of jet 

fragmentation processes in deep-inelastic scattering RA + $,'I%, the 

final state collisions modify the transverse momentum distributions of the 

produced hadrons. In addition, we expect the inelastic final state col- 

lisions of soft particles to increase hadron multiplicity. Generally, 

all large pT inclusive hadronic processes should be affected by initial 

and final state processes. Exclusive processes are expected to be 

unaffected, since, for these, the hard process involves all the con- 

stituents - that is, there are no spectators. 
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VI. Conclusions 

In summary, we predict two important effects arising from initial 

state interactions in the Drell-Yan process at large Q2: (1) a new 

constribution to do/dQ 2 compared to standard factorization predictions, 

and (2) a smearing of the transverse momentum distribution do/dQ2dQi. 

Although the leading twist color enhancement of do/dQ2 is probably 

suppressed by a Sudakov form factor, it may be numerically important at 

present energies. In addition, we find a new condition (12) for the 

validity of factorization predictions for da/dQ2. In spite of the 

initial state collisions, we expect do/dQ' on a nuclear target to be 

proportional-to A. We note that these predictions do not depend 

critically upon the detailed nature of the color-changing active- 

spectator interaction, 14 and that they seem to be based on rather 

general concepts like conservation of flux (unitarity) and the uncer- 

tainty principle, which apply outside the domain of perturbation theory. 

Thus, we expect the effects of initial and final state interactions to 

occur quite generally in inclusive hadronic processes. 
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FIGURE CAF'TIONS 

1. The basic Drell-Yan amplitude for baryon-antibaryon collisions. 

2. Contributions of the basic Drell-Yan process and some O(as) 

radiative corrections to the lepton-pair cross section. The 

dashed vertical line indicates the final state. Conversion of 

the virtual photon (saw-toothed line) to a lepton pair is understood. 

3. Some examples of initial state interactions in the Drell-Yan 

process for meson-baryon collisions. 

4. An active quark-spectator quark initial state interaction in the 

Drell-Yan process for meson-meson scattering. 

5. An example of two diagrams whose infrared divergences cancel 

because-of the color singlet nature of the hadronic wave functions. 

6. CIP data for the mean square transverse momentum of a lepton pair 

produced in pion-nucleus collisions. M is the invariant mass of 

the pair. 

7. NA-3 data for the ratio of the Drell-Yan cross sections for pions 

on H2 and Pt as a function of lepton pair transverse momentum. 

8. Leading twist active-spectator elastic interactions in O(oz). The 

contributions cancel in an Abelian theory. 

9. Factorization of elastic active-spectator interactions in an 

Abelian theory. 

10. Color factors for (a) Fig. 8(a) and (b) Fig. 8(b). 
n 

11. An example of an elastic initial state interaction in O(cXz) 

involving the triple gluon vertex. 
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12. Non-cancellation of the elastic initial state factors in a 

non-Abelian theory because of the color constraint due to the 

Drell-Yan basic process. The color indices are denoted by 

a, b, c, d, with summation over repeated indices understood. 

13. Examples of elastic active-spectator interactions in pion nucleus 

scattering. In these examples the spectator quark is a constituent 

of a nucleon that does not contain an active quark (spectator nucleon). 

14. Examples of initial state bremsstrahlung amplitudes. 

15. An example of the factorization of the j-parts of initial state 

bremsstrahlung amplitudes. Diagrams on a given row have the same 

energy denominators. Color factors on a row combine to give the 

color factor of the last row. Energy denominators combine to give 

a factored result. 

16. General factorization of the j-parts of the Drell-Yan bremsstrahlung 

amplitudes into an elastic initial state factor times "ordinary" QCD 

radiative corrections. It is understood that the initial state 

color matrices appear to the left of all other color matrices. 

17. Examples of real and virtual bremsstrahlung with initial state 

interactions in O(az). 
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