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ABSTRACT 
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3Sl (Qfi) + GGGG + GGqi + 4 jets 

3Sl (Q@ -f yGGG + yGq< -f y + 3 jets . 

We show that the characteristic features of the jet distributions 

in the final state are determined by the 3-gluon vertex of quantum 

chromodynamics. These decays of a heavy quarkonium resonance 

(toponium) will offer clear signals for the gluons' self-coupling 

which can establish QCD as a local non-Abelian gauge theory. 
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1. Introduction 

Short distance processes in quantum chromodynamics create partons- 

quarks and gluons. If all relevant distances are small, these partons 

have large momenta (of order the inverse distance) and are well separated 

in momentum space. Partons do not appear at large distances 2 10 -IL3 cm , 

but jets of hadrons do. If the jets are narrow and well enough separated 

in momentum space to be resolved, they tell us the energy and angle dis- 

tribution the partons had at short distance. (Of course, there will be 

the fluctuations from the confinement process which makes a jet, so that 

the original parton momenta cannot be precisely defined. This smearing 

is less important the higher the momentum.) 

Through parton distributions at short distances we can check that QCD 

is a local gauge theory with colored spinor quarks and colored vector 

gluons with a self-interaction Cll. That is the aim of the present paper. 

We look at parton or jet distributions in the decay of the spin 1, odd 

charge conjugation quarkonia (J/Y,T, (t?)?) which can be produced in e+e- 

annihilation. In lowest order this decay is (Qo) + GGG + 3 jets or 

(Q@ + yGG -t y + 2 jets L-21. In higher orders there will be radiative 

corrections to these processes and also more jets will appear. We con- 

sider (figs. 1 and 2) 

(Q@ + GGGG -+ 4 jets 

-t GGqi -f 4 jets 

and 

(QG) -f YGGG + y + 3 jets 

+yGqq+y+3jets . 

(1) 

(2) 
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The par'ton or resolved jet distributions in these higher order decays 

depend on the 3-gluon vertex of QCD, and comparing our predictions to 

experiment will.allow one to confirm (or refute) its presence. (We pre- 

viously studied C = + (Qo) decays as a prelude C3l; see also ref. 4.) 

We intend for this to be done on the 3 Sl(tt) resonance when it is found. 

Quarkonium decays are particularly useful for this test as to leading 

order the only partons created are gluons. 

The T decays are well described by the QCD mechanism (bi;) -f GGG -t 

3 low energy jets C51. Though clean jets are not seen, hadron distribu- 

tions do need a matrix element containing vector gluons with color 161. 

The next resonance should give very clean multijet decays, as there is 

clear evidence-for an occasional third jet in e+e- -t q< + qqG + 2 jets + 

3 jets at EC m = 30 GeV c71. We thus take it as an empirical fact that . . 

at high energy partons at short distances give narrow jets, and that we 

can study the angle and energy distributions of partons in (1) and (2) 

by studying their jets. The fact that 3 jet events in e+e- are only 

N 20% of the total rate supports our view that (1) and (2) can also be 

treated perturbatively, to order gi and egi respectively. The mean 

number of resolvable jets should increase only slowly with energy, so 

that our perturbative calculation will be adequate up to (tt) masses of 

40-80 GeV. An important step in proving that radiative corrections do 

not disrupt low order phenomenology for 'S,(QQ) decays is the calcula- 

tion of the total rate by Mackenzie and Lepage [81 up to order gi. 

The rate corrections are in fact controllable. 

Since the jet resolution is crucial for the tests we propose, 

we discuss some more details of this problem in the next section. 
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In section 3 we present the 4 jet analysis of (Qq) + GGGG and GGqG. 

We consider the kinematics, and the results of our calculations are 

illustrated by various distributions, including jet energies and angular 

correlations between the jets. The analysis is repeated in section 4 

for photonic decays (QG) + yGGG and yGqq. All these decays, when 

observed on a heavy (ti) resonance, offer a clean laboratory to study 

gluon interactions. A short summary of some of our results has 

appeared previously i91. 

2. Jet Resolution in QCU 

Tests of the sort we propose will clearly not work easily if the 

confinement process of jet formation is too intertwined with the per- 

turbative generation of partons. There is evidence that the two can be 

separated at present energies. As an example, the simplest (and, of 

course, incomplete) approach to e+e- -t qq + q;iG + 2 jets + 3 jets 

(neglecting further radiative corrections, or neglecting yet higher 

orders in g,) is the following ClOl. In q';iG, if the invariant mass of 

(qG) or (CG) is below some cutoff ix, the event is taken to contain 

two partons only, q<. If the invariant mass is above this cutoff, 

three partons are present-qiG. The (qG) or ({G) parton mass cutoff 

can be chosen to be from 5-7 GeV, on the grounds that above this value 

individual qG or GG jets can be distinguished as for e+e- -f qy -f 2 jets 

at SPEAR energies. (This evidently just uses the most naive operational 

discrimination between a two and a three jet event.) Finally, each parton 

is independently replaced by a jet of hadrons. This parametrizes con- 

finement in a simple way. The procedure accounts for data astonishingly 

well C71. The presence of a (qG) or (;G) mass cutoff is of course 
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irrelevant when only clean three jet events are studied, as all pair 

invariant masses can then be chosen large. 

We can compare this simple procedure to a more sophisticated one, 

due to the Lund group [ill. They account carefully for the low momentum 

hadrons, rather than superimposing independent jets, and they also model 

the nonperturbative color flow in gluon fragmentation. Their model thus 

interpolates smoothly between two and three jet regimes. Comparing the 

two approaches to the data [121, the differences turn out to be rather 

subtle at present energies. If one is only interested in modelling the 

confinement fluctuations and the smearing of parton energies and angles, 

the simplest procedure is good enough. This is hardly surprising, as we 

are interested in essentially calorimetric quantities which ought to ,be 

insensitive to the details of confinement. For our purposes here, it is 

acceptable to replace partons by jets generated in the familiar way. 

Eventually one would like to do better than this. But we want to 

add a cautionary remark, Static QCD properties on a lattice show a 

rather abrupt transition from the weak coupling regime to the strong 

coupling regime C131. Jet formation is a dynamic process and there is 

no comparable understanding of it. But it is at least not excluded 

that there is a similarly sudden transition from the perturbative to 

the nonperturbative regime. Maybe it is not possible to follow parton 

evolution below some critical invariant mass. We think that tests such 

as ours must not depend critically on the evolution of low mass partons 

(e.g., JF 5 5-7 GeV at present energies). The available evidence 

appears to support our view that there is an insensitivity to-this 

kinematic regime Cl21. 
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There is some evidence that QCD radiative corrections to multijet 

events can be dealt with similarly. Consider the QED processes 

e+e- -t 1-1 
+ 

+ 1-1~ + y and e+e- + (u + + soft or collinear y) + u- + y . 

Because of detector resolution, the two must be combined for small 

enough Cp 
u+ 

+ py (soft/toll) I2 5 L12- Similarly, a radiative e+e- -+ 

q + y + G must be combined with e+e- -t (q + soft/co11 G) + 2 + G. 

In QCD one can attempt to extend the operational rule we gave for 

+- e e + qq + qqG so as to include radiative corrections to q{G. 

Consider noncollinear events through the next orders in gs, qiG + q:GG 

+ qiqs (q<G now contains loop corrections). When two and only two of 

2 the four partons have low invariant mass p2 5 pNp, the state can be 

uniquely combined with q?G. For very soft gluons the pairing with 

smallest p2 can be chosen, or one can make a calculationally convenient 

choice. (The resulting cross section must of course be finite, with 

loop and soft divergences cancelling one another.) This provides us 

with an operational definition of a radiatively corrected 3 jet rate: 

loop corrections plus those 4 parton configurations which mimic 3 parton 

ones after a cutoff p2 NP' (Of course, the perturbative result depends 

on this cutoff in a well-defined way. The situation is not so unfami- 

liar in the context of QED tests.) The remaining events have 4 jets- 

as yet not radiatively corrected. 

The cutoff we describe is only partly set by detector resolution. 

Most of it is due to confinement. A collection of hadrons roughly 

collimated in angle cannot have a very low invariant mass. This pip 

can be chosen to be the mass of a typical jet, (pi, - 5 GeV at 

present Q2. (How very soft particles in the lab are assigned to jets 
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won't'change 
r p& much.) The exact numerical value of pip essentially 

sets the scale at which one first resolves 3 jets in e+e- annihilation. 

The radiative corrections to q;iG have been cast in this form by 

Kunszt Cl41 based on work in refs. 15 and 16. He shows that the shape 

of the 3 jet distributions defined this way agree reasonably with the 

lowest order Born approximation distributions. The total radiatively 

corrected 3 jet rate up to this order can be obtained in a simple 

approximate way. One just replaces the coefficient of the Born cross 

section, a ,,(Q2) += aLoi(Pq f pGj2 (P;i. + pG)2 /Q2L where a 
LO 

is the 

lowest order one loop coupling and the scale parameter in the right 

hand side is now the true A-. 
MS 

The change in the dimensional scale in 

aLO is not amazing, since the "distance" involved in the coupling is not 

actually l/,/F but some larger value, related to the mean invariant 

mass of paired partons. 

One can as well carry out this sort of analysis using other varia- 

bles C171. It is probably even desirable to do so, since in this way 

one can get a better practical understanding of the problem. 

There is no general proof that the above procedure works to all 

orders for e'e- + multijets, let alone that it is valid for all other 

processes such as (1) and (2), Yet it is physically a very simple pre- 

scription: the radiative corrections can mostly be accounted for by a 

change in the dimensional scale in a 
S’ 

and by a definition of a jet mass 

(or by some other appropriate definition of a jet). The remaining cor- 

rections are hopefully then truly small enough to ignore. We conjecture 

that this is in fact general and that radiative corrections and confine- 

ment effects are both controllable when handled in the way we have 

described. In fact, this conjecture is nicely supported for 3Sl (Q@ 



decays by the calculation of Mackenzie and Lepage c81 proving that the 

rate corrections are in fact controllably small. The same conclusion 

can be drawn from the radiative corrections of heavy paronium decays 

in ref. 18. 

In the following we will proceed to discuss higher order jet dis- 

tributions in orthonium decay without further detailed discussion of 

these points. A quantitative estimate of the confinement fluctuations 

in jet energies and angles relative to parton variables is simply 

obtained by using our matrix elements as input to a jet generating 

routine. 

3. Four-Jet Decays of Orthonium 

3. i GENERALITIES 

The decay amplitude of a heavy 
3 Sl(Qq) state to some final state F 

in the static approximation is 

g= 1 
fi 

tr {A tl+ v"> i(sz)} CfrtO) 

where & is the Qh + F Feynman amplitude without external spinors, Q is 

the usual nonrelativistic wavefunction at the origin and c$Ss) is the 

(Qo) polarization vector for spin component Ss (fig. 3). In this ap- 

proximation, the mass of the bound state is M = 2m Q = 2EB (EB is the 

beam energy in e+e-). Except where explicitly stated we use units of 

the beam energy, so M = 2. 

We ignore internal motion and also higher order radiative correc- 

tions to the 4 jet distributions. The former will have only a very 

small effect on jet distributions. We explained in the preceding 

section why we think that radiative corrections are controllable. 
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A more pessimistic point of view would be that they could unpredictably 

affect distributions at the 0(20%) level. This is too small to affect 

our conclusions. We will see that the effects of the 3G vertex are 

dramatic, and are not just of order 20%. 

The matrix elements for (Qq) + GGGG (labelled by colors a 1 2a3a4) a 

are proportional to products of color SU(3) f and d tensors. The 

overall color factors depend on the type of diagram in fig. 1. 

When all gluon lines are attached by the heavy quark line we have 

(fig. la) a factor 

f d +-d f . 
ala2m ma3a4 ala2m ma3a4 1 

For the diagram with a 3G vertex at the bottom in fig.lb, there is a 

factor 

d f . 
ala2m ma3a4 

The amplitude for (Qa) + GGqq with colors al,a2 and i,j contains a 

factor 

1 
-c 

d ( ) Am 
8fi ala2m ij l 

m 

It is useful to realize that when the matrix element is squared 

and summed over color indices a i only a few products of 

C+ = f d ?d f (4) 
ala2a3a4 al,a2m ma3a4 ala2m ma3a4 1 

do not vanish. They are 
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c C+ Cf 
ala2a3a4 ala2a3a4 

= 80 

c C+ C+ = -80 
ala2a3a4 ala4a3a2 

c C- C- = 80 
ala2a3a4 ala2a3a4 

(5) 

c C- C- = -80 
ala2a3a4 ala3a2a4 

c C- C+ = 80 
ala2a3a4 ala2a4a3 

C- C+ = -80 
ala2a3a4 ala3a4a2 

together with those obtained by interchanging ala2 +P a3a4 and so on. 

The Feynman amplitudes for the four parton final state were calcu- 

lated in the axial gauge with n = Q 
u v' 

i.e., assuming transverse gluon 

polarization (see the Appendix). Squared and summed over polarizations 

and color factors, these give the decay rates for an unpolarized (QG) 

state. Angular correlations of jets with the e+e- beams can be calcu- 

lated by taking appropriate initial state polarization amplitudes. 

Assuming that the intial (QG) state is unpolarized (or that the 

lab orientation of the 4 jet state is averaged over), the final state 

can be characterized by the following variables; (1) The lab energy 

of one jet (jet 1) x1, expressed in units of the beam energy. (2) The 

energy of a second jet (jet 2) in the rest frame of the three jet sys- 

tem recoiling against jet 1, x:. Similarly for xi. The unit-for these 

variables is half the recoil mass m (not the beam energy). 
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(3) The polar angle eR of jet 2 with respect to the direction of jet 1 

in the recoil rest frame. (4) The azimuthal angle +R between the 
R R R 

"PX2 and x3,x4 plane, also taken in the recoil rest frame. 

In units of the lowest order 3-gluon rate 

(6) 

1 dr(4 jets) a 
S 81 

=- 
r LO dxldx;dx;dcos'3Rd$R 7T 40(a2-9) 

x1(1-xlJ pj2 
476 

(7) 

where the statistical factor S is 4 ! for 4 gluon final states and 2! 

for GGqq: An average over initial (QG) polarizations is assumed. 

Sometimes it is useful to characterize a 4 jet configuration by 

the four jet energies xi in the lab (xx, = 2), the momentum xl2 of a 

2 2 2 pair of jets (xl2 = x1 + x2 + 2xlx2cos~12) and the azimuthal angle cp 

between the x1,x2 and x3,x4 plane. The phase space element related 

to this configuration is de%' = (IT~/~) dq dxl dx2 dx3 dx12. 

We want to preface our detailed discussion by some general remarks 

on the various amplitudes in figs. la, lb and lc. First we note that 

in an Abelian theory (QG) cannot decay to 4-gluons at all. Only GGq'; 

is allowed. Second, we calculate helicity amplitudes. It is thus 

possible to separate the contribution which involves the 3G vertex 

(fig. lb) from that which does not (fig. la). For transverse gluons 

in the final state there is no gauge dependence which might mix these 

two diagrams. This allows us to isolate the effects of the 3-gluon vertex 

in all our distributions. We do this because it is obviously. vital to 

check experimentally the existence of all the terms in the QCD Lagrangian. 

Our expectations for (1) and (2) are backed up by an analysis of S-wave 



-12- 

paronium decays to three jets 131. As in that case, we will find that 

the amplitudes of fig. la are very small and that fig. lb dominates over 

lc, even for five "light" quark flavors. The 3G vertex is indeed very 

important in quarkonium decays. 

The contributions from diagrams la, lb and lc are quite different 

when one of the final state quanta is soft or two of them are collinear. 

This produces a hierarchy between the different diagrams. The diagrams 

where all gluons are attached to the heavy fermion line is finite every- 

where for S-wave ((16) decays. Propagator divergences are cancelled by 

a vanishing amplitude for a heavy quark at rest to radiate a zero energy 

transverse gluon r-191. By contrast, the diagram including the 3G vertex 

G + GG shows a-typical bremsstrahlung character, in close analogy to the 

bremsstrahlung of a gluon by a quark, q + qG. In these cases the radiated 

vector quantum has an energy and transverse momentum distribution 

dN u dE/E* dp;/p;, at small E and p2 On the other hand, gluon splitting 
T' 

into a quark-antiquark pair is infrared finite but singular for collinear 

configurations, dN = dE* dp 2 2 /p T T' Thus G + GG will dominate over G-tq{ 

(which also occurs in Abelian theories), and amplitudes where all gluons 

are radiated by a heavy fermion are negligible compared to these. We thus 

expect that distributions are dominated by the gluons' self-coupling. 

For this reason, the evolution of single particle spectra (or, rather, 

their moments) from one onium state to the next can be calculated c201 

from Altarelli-Parisi type equations [211. 

The last qualitative point we wish to emphasize is the overall 

normalization. From (Qq) -f 3G or e+e- -f q6G we can regard the normali- 

zation of the q;G vertex as fixed, up to the logarithmic dependence 
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of OL 
S- 

Thus the (Qq) - + GGqq rate is fixed by processes which have 

already been observed. The overall (Qo) + 4 jet rate then provides a 

measure of the importance of the 3G vertex contribution of this process 

-independent of the precise shape of the distributions. For realistic 

cuts on parton invariant masses, we will see that the overall rate is 

about ,four times the "known" (Qq) + GGq< rate (we use five "light" 

quark flavors). 

3.2 DISTRIBUTIONS 

Distributions will, or course, be affected by the cut which has to 

be introduced to make sure that we can speak of a 4-parton state. In 

units of the beam energy we will choose a cut on parton pair masses 

m ij 2 mcut with m cut = 2/9 (corresponding to a 5 GeV mass cut for a 

45 GeV mass onium state). We will occasionally use a smaller cut so as 

to illustrate the qualitative behavior in more detail. 

In order to make the cut dependence clear, we show in fig. 4 the 

total r4 as a function of m cut ' normalized to as/~. For mcut = 219 we 

find a total 4-jet rate 13 as/~ times the lowest order rate. This is 

probably near the maximum one can tolerate without making a calculation 

of the 5-parton final state necessary. 
* 

This figure clearly shows the 

dominance of the four-gluon final state over GGqq, and also that the four- 

gluon final state is dominated by the three-gluon vertex for massless 

transverse gluons. Thus we expect that the 3-jet topology will be domi- 

nant in quarkonium decays, with a significant number of 4-jet events. 

* 
The magnitude of the cross section for this mass cut is typical for 

other bremsstrahlung processes as 0 -+ -t GGG C31 and e+e- -t q&G/q$. 
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’ 

(Events with more than four jets or events from hadronic weak decays of 

the t quark can be separated out and analyzed by themselves. We imagine 

that this separation is obtained through some kind of cluster analysis for 

,jets C221. Our remarks which follow apply to the 4-jet class of events.) 

To show the general features related to the 3G vertex, we first 

look into the distribution of the invariant masses of all quark and 

gluon pairs in the final state. The distribution most sensitive to 

soft and collinear singularities will be the minimum parton pair mass 

(8) 

2 where m.. = (pi + p.) 2 
=J J 

with pi the parton four momenta (i,j = 1,2,3,4). 

The kinematic-limits of this variable are (the upper limit corresponds 

to the symmetrical pyramid configuration) 

m cut (9) 

and fig. 5 shows 

1 dI' -- 
r LO dmMIN 

. 

We note that the contribution of fig. la is totally negligible, as 

already mentioned. The contribution of the 3G vertex to (Qo) + GGGG 

exceeds (Qo) -f GGq$ by a factor N 4 at the lowest sIN and by less at 

higher values of this variable. Lowering mcut would increase the 

fraction of events due to the 3G vertex. (This would be relevant in 

considering the inclusive particle distribution on successive onium 

states.) 

The bremsstrahlung character of the dominant decay modes is also 

reflected in the classical measure of the acoplanarity of the events. 



-15- 

This is demonstrated by the minor distribution in fig. 6. Naturally, 

G -t GG induces a sharp rise of the distribution near zero. This rise 

is an order of magnitude stronger than in the 4-gluon decay without 

3G vertex which sets the scale of phase space effects involved. 

An important distinction between G + qc and G -t GG distributions 

follows from our earlier remarks. Consider the energy difference 

between the two partons paired in the 2-jet bundle of minimum invariant 

mass. The spectrum of gluons radiated by a (nearly real) gluon has a 

-1 z bremsstrahlung singularity C211 

( 1 2 
D,(z) = 6 1-z+z2 

z(l- 2) 

(where z is the fractional energy transferred from the initial to a 

final gluon). As a consequence of this infrared singularity for z + 0 

or 1, the energy distribution among the final gluons is asymmetric. 

This gives an increase of the distribution of the difference 

Ax = /xi- xj 1 towards 1, (x. and x. 1 3 
are the energies of the jets or 

partons making up the minimum invariant mass 2-jet bundle.) By contrast, 

gluon splitting into quark and antiquark does not have this behavior, 

since 

D ,,(z) = 2 [z2 + (l-z)2 
I * 

The resulting spectrum is rather flat. 

In fig. 7a, we show the distribution 

1 dr4 

r4 dAx 

for a cut mcut = l/9. It is plausible that the mass cuts eliminate 

events with large Ax, but a pronounced difference between the shapes of 
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Ax distributions for 4G and GGqq final states persists. This is even so 

if the minimum parton pair mass is constrained to 2/9 5 sIN 5 3/9 as 

shown in fig. 7b. The bremsstrahlung asymmetry therefore offers a 

unique test of the 3-gluon coupling. 

3.3 CLASS A AND CLASS I3 EVENTS 

The 4-jet events fall into two classes when analyzed in terms of 

thrust C231. In the first class the thrust axis is the axis of a jet, 

with three jets on the other side of a plane perpendicular to the axis. 

We call these class A (fig. 8a). The other class is made up of events 

where there are two jets on each side of a plane perpendicular to the 

thrust axis (which lies along the sum of the momenta of the two jets 

in each hemisphere). We call these class B (fig. 8b). 

There are many distributions which are most useful when examined 

separately for class A and class B events. As is clear from table 1, 

the fractions are both large for a reasonable range of m cut l 

For very 

small values of m cut the fraction of class A events goes to zero, as 

does the fraction of GGq< events. Both these effects are due to the 

gluon bremsstrahlung via G + GG. 

Class A events are best parametrized by the energy of the fastest 

jet, and the energies and orientation of the three recoiling jets in 

their c.m. frame. Class B events, on the other hand, should be charac- 

terized by the energies of the jets, the sum x.. of the momenta of, say, 
1J 

the 2-jet bundle with minimal mass, and the angle between the two planes 

formed by i,j and the two remaining jets. 
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Class A Events. As we mentioned before, these events have the 

thrust axis along a jet momentum vector (fig. 8a). For our value of 

m cut = 2/9 approximately 30% of the 4 jet events fall into this class. 

These events are useful because one can boost into the rest frame of 

the three recoiling jets in a unique way. Four independent energy and 

angle distributions in this frame can be studied in the same way as - 
+- - e e -+ qqG + 3 jets. 

Consider the thrust distribution (distribution of the energy of 

the most energetic jet) in this rest frame. The distribution of 

is shown in fig. 9, where TR is the recoil rest frame thrust.* Note 

that the thrust distribution for pure gluon final states is larger than 

for Gqq, and it falls off more rapidly towards low T R . This steeper 

dependence of the gluon final state is due to the bremsstrahlung 

behavior of G -t GG. 

We can again look into the energy asymmetry of the two softer jets in 

the 3-jet recoil rest frame. We find that, similarly to fig. 7, the average 

energy difference in gluon final states is larger than in quark-antiquark 

final states. 

The development of the event topology in the recoil system parallels 

the development in the e+e- continuum. At low invariant recoil mass, the 

hadrons form two slim jets (mainly gluon jets) which quickly broaden with 

fc This variable is now normalized to half the recoil mass, h-xl, so 

2/3 I TR 5 1 for mcut = 0. 
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rising mass. For large recoil masses, clear three-jet structures can 

finally be resolved. Due to the integer color change of gluons, this 

multijet structure develops faster in gluon final states of quarkonia than 

in quark final states of the continuum. These points will be elaborated 

in greater detail for y decays of quarkonia. 

There are other potentially interesting dist_ributions-above all, 

the orientation of the recoil 3 jet system in space. The TR thrust axis 

is expected to be aligned predominantly along the main thrust axis for 

4G final states, whereas the azimuthal distribution will be fairly flat. 

We have studied these distributions but will refrain from showing them. 

The main points we have to make are already clear from fig. 9. 

Class B Events. A schematic class B event is shown in fig. 8b. 

The majority of 4-jet events belong to this class, 2 65%, independent 

of m 
cut l 

We have selected three representative observables to demon- 

strate the effects of the 3G vertex. 

The first is the energy of the thin two-jet bundle in its rest 

frame (equivalently, its invariant mass), This is shown in fig. 10. 

The shape of the distribution ' 

1 dr4 -- 
r LO dm.. 

1J 

is different for GG in the thin jet compared to qq in the thin jet. 

hij is the invariant mass of the 2 jet bundle.) By contrast the shape 

of the two contributions is quite similar in the fat jet bundle. This 

behavior is again due to the 3G vertex. Note the much steeper fall off 

of the 4G distribution compared to the GGq< final states in the slim 

2-jet bundle. 
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Another characteristic distribution is presented in fig. 11. We 

define cos6 ij to be the cosine of the angle of the two jets in a bundle 

to the overall 4-jet thrust axis, defined in the rest frame of the 2-jet 

bundle.' For G + GG we expect this axis to lie along the overall 4-jet 

thrust axis-i.e., lcose ij 1 = 1 is favored. For G + qi a flatter 

distribution is expected. Figure 11 shows 
- 

1 dr4 
r Lo dcos0.. 

iJ 

for the thin 2-jet bundle (2/9 5 sIN s 3/9 cut). We see a clear signa- 

ture for G + GG. (This is absent in the distribution of the same quanti- 

ty for the fat 2-jet bundle.) 

Other signals have been discussed as a check on the 3G vertex-for 

example, the azimuthal angular (x) distribution of the G'G'or qy plane 

in 

(Qo) + GG + 

G'G' and qi 
(12) 

defined relative to the GG plane C251. This angular correlation is due 

to a partial linear polarization of G* perpendicular to the GGG* Plane 

(for details see refs. 3, 26). In a straightforward generalization of 

(10) and (11) we expect for the distribution of the G'G' and qi plane in 

a slim 2-jet bundle, relative to the polarization vector of G*, 

.--._~- --- 

§ This angular distribution is closely related to the distribution 

of the difference of the jet energies in the slim 2-jet bundle 

(lab frame); se also ref. 24. 
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D,,(z,x) = $q ( l-z+z2j2 + z(l- z) cos2x 
z(l- z) 

(13) 

DGtq (z,x> z2 + (l- z)2 - z(l-z) cos2x 1 (14) 

In general, the G'G' plane tends to be perpendicular to the GG plane, 

whereas qq tends to lie in the same plane as GG. We have investigated 
- 

the asymmetry for (12), defined as the number of events with azimuth 

between 0 and r/4 relative to the number with azimuth between r/4 and 

IT/~ (normalized, of course, to the total number). This asymmetry-with 

our cuts on invariant masses of parton pairs-is of the order of a few 

percent, negative for 4G and positive for qt, in agreement with (13) and 

(14). This is quite small. A similar asymmetry for events in the e+e- 

continuum has been discussed in ref. 23. 

4. Photon Plus Three-Jet Decays 

Heavy quarkonium decays (Qo) + y + jets provide some important tests 

of quantum chromodynamics C2 1. The radiative decay of J/$ has been 

seen [27,281 but tests unimpeded by low energy effects, such as glueball 

production, will have to be carried out at more massive onia, T and (tt). 

Toponium with its charge 2/3 quarks will be particularly useful. The Born 

approximation ratio 

FL0 (I' GG) 

FL0 (GGG) 
= 36 ci 2 w 209 --e 

5 as Q 
0 (15) 

is large enough for a detailed analysis of this decay channel. The direct 

photon decays have a clean signature that makes up for the lower rate com- 

pared to pure hadronic decays. There are other advantages. It filters 

out direct weak t quark decays, which become increasingly important as mt 
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increases C291.* They will potentially disturb a 4-jet analysis above 

onium masses of about 75 GeV. The impact on y decays will be much less. 

Another advantage is that radiative decays will show a better signal to 

background ratio than hadronic decays if there should be a large continuum 

contribution under a (.tf) peak. 

For a resonance mass M of 40 to 75 GeV, the mass 1% of the hadronic 
- 

recoil system against a photon can easily be tuned in the range between 

10 and 40 or 75 GeV by varying the y energy, 

E 
+ l-g& [ 1 2 

This is the energy range where gluon bremsstrahlung from quarks clearly 

+-- emerges in e e continuum events. Suppose we look at the (Qq) -t y f jets 

final state in the multijet rest frame. Initially low mass back-to-back 

GG jets should broaden quickly with increasing MR. Finally, a clear 

3-jet structure should be visible. Figure 12 parallels the gluon-jet 

development in (Qo) + y -I- jets with the quark-jet development in the 

e+e- continuum. 

The gluon bremsstrahlung spectrum from a gluon source is N 6dz/z 

compared to (4/3)dz/z for a quark source. We therefore expect that in 

lowest order the jets broaden faster on an onium resonance than they do 

in the continuum C301 at the same s = &. As an example, this will 

reflect itself in a more rapid increase of the average transverse momen- 

tum of single particle spectra, 

<pf>- <p2> 1 NP]QG 'v $ ['p:'-'p:'Np]e+e- (16) 

* Note however that only @(20%) of these weak (tt) decays are purely 

hadronic. 
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(<+Np #refers to the nonperturbative transverse momentum spread in a 

quark or gluon jet at low energy; both appear to be nearly equal.) 

In the following we investigate 3-jet distributions in the recoil 

system. The 3-jet rate depends, as before, on the cut in parton pair 

masses which we use to define a "resolved" multijet event or multiparton 

event. We use the same cuts as applied to 4-jet events, including the 

photon. This is necessary as to localize the y emission in the femto- 

universe C311. The ratio of y + 3-jet events to the lowest order yGG 

rate turns out to be almost identical to the ratio of 4-jets to the GGG 

rate. The average photon energy is about half the heavy quark mass if 

these cuts are applied, leaving us with an average recoil mass of 

<s> - m M, i.e., N 30 to 35 GeV for a 45 GeV resonance. The mass 

of the recoil system is therefore in a range where clear 3-jet structures 

in the e+e- continuum can be resolved. 

The recoil thrust distribution of such events is shown in fig. 13. 

The pattern is the same as for 4-jet events: G + GG dominates over 

G -+ 6, and there is only a very small contribution from the diagram 

where 3-gluons emerge from a heavy fermion line. Figure 14 shows the 

distribution of (l/TLo) dr3 / dAxR, the jet energy asymmetry of the two 

slow jets in the recoil rest frame. We might note that a very similar 

plot of data for e+e- - + qqG + 3 jets shows a significant difference 

between scalar and vector gluon distributions C241. 

As a final remark, we again draw attention to the overall normali- 

zation of ry3/ rEo for clearly resolved y + 3 jet events. Just as in 

the case of the ratio r4/ rLo, it depends on the 3-gluon vertex in a 

nontrivial way and thus can provide supporting evidence for its presence, 

independent of the detailed shapes of the distributions. It might be 



. 

-23- 

amusing to compare the experimental rates and distributions for 

(Qo) + y + 3 jets and (QG) + 4 jets directly by treating the photon as 

just another parton (an unconfined one, of course). 

5. Summary 

On physical grounds, one expects that toponium will be a good place 

to look for experimental evidence of the 3-gluon-vertex of QCD. We have 

shown that this is indeed the case. The overall rate for (QG) -f GGGG + 

GGqi + 4 jets is about four times larger than expected in using the 

"known" Gqq vertex for GGqq and the (negligible) contribution to GGGG 

where all- gluons are radiated from the heavy fermion line. A number 

of 4-jet distributions clearly show the presence of a G -f GG contribution. 

These features are all present even including a lower limit on parton- 

parton masses so as to obtain a 4-jet configuration. Distributions will 

differ quite dramatically from, for example, a 4-jet phase space model. 

This is clear in comparing the overall shapes of our distributions to 

those for GGGG finalstates where the (transverse) gluons are all radia- 

ted by the heavy fermion. These will be qualitatively similar to 4-body 

phase space, and do not even resemble the contributions from G + GG. 

Distributions containing the G +GG vertex do differ significantly 

from those containing G + q;. Thus, there is clear evidence for the gluon 

bremsstrahlung spectrum dz/z from G + GG which is the most direct 

consequence of the 3-gluon vertex. 

The process (Qo) -t (Y + GGG) + (Y + Gqi) -+ y + 3 jets is particular- 

ly nice. In the recoil hadron rest frame one can compare jet broadening 

to that in e+e- annihilation. Even a relatively crude measurement should 

show that at recoil mass s * \IK around 20-40 GeV events consists 
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of a thinner jet and a broad jet which is appreciably wider than in e+e-. 

Some events will show a resolution of the broad jet into two subjets 
+- also as in e e annihilation. Rates are large, and the distributions are 

marked by the effect of G + GG, in particular the jet energy asymmetry. 

Another significant comparison will be between moments of hadron 

' momentum distributions [201 in T(9.46) = (bF) and (tf). When they are 
- 

carefully compared to the evolution of moments of hadron distributions 

in the continuum we can expect additional strong support for the pre- 

presence of a G -f GG vertex. The evolution in Q2 of such distributions 

also depends on the p2 (or mass) evolution of partons. It will be quite 

interesting to study these effects. 

There is;of course, a missing element in our analysis-toponium 

has not yet been found. We await its discovery. 
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Appendix 

Helicity Amplitudes and Cross Sections 

In this Appendix we should like to present some more details on the 

helicity amplitudes for 4-gluon final states in fig. 1. We give the 

complete decay probability for GGqq final states. Photon decay matrix 

elements coincide with these apart from simple color (and for probabili- 

ties) statistics factors. 

Let us begin with the somewhat simpler set of diagrams involving 

the 3-gluon vertex. After separating off the color factors and coupling 

constants, defined in section 3, the remaining amplitude corresponding 

to fig. lb is-called F1(1234); the virtual gluon in the middle, F2(1234); 

and at the top, F3(1234). A common factor 46 Q(0) is left out. The 

amplitudes depend on the momentum vectors ki (energies xi> and the polar- 

ization vectors E i and E of the gluons and the decaying quarkonium state, 

respectively. (Read E i as the complex conjugate of the polarization 

vector in the following.) The quark mass m. is chosen to be unity. 
. 

These are the amplitudes. 

F,(1234) = 
+ (5'3)+ (x3-x4)(E3E4)[-(E1E2)(Ekl~ + (EEl)(E2kl)1 .-- -- 

F2(1234) = 
D2 

F3(1234) = - F1(4321) . 
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The Lvectors Ri are defined as 

5 = [(+kl)+ (%)(E29- ~+q]5 - (El - kl) 

+ [(=P1)- hE)okl)l~2 + [(k1E2)W)- (w) (kl# 

12 = [Me2kl) - (sk1)(c1s2jk2 + [(sk1, hk2)- (E~lNklk2)]“2 

+ (1 + 2) + [(s1s2J(k1k2) - (s1k2)(s2k1# 

R3 = + (s3s4)* - (k3s4)s3 + (k4E3)'4 * 

The vectors C and A are the sum and the difference of k3 and k4, 

respectively.. The denominators D i follow from the quark and gluon 

propagators, 

D1 = 8x1 x3 + x4 
f - (k3k4)](k3k& 

D2 = 8x1x4(k2k3) . 

The amplitude F4(1234) in which all gluon lines are attached to 

the heavy quarks (fig. la) is a bit more involved. Writing 

' 

we have 

H(1234) + 2x4 H'(1234) 
F4(1234) = - t - 

D4 

H(1234) = 
1 
A(1234;34) + 2 c3k4 ( ) B(124;4) 1 ('kl) - (kl - y) 

+ [AC4321;31)+2(s3k4) B(421;1)](sk4)- p4 -f k4](ss4) 

+ 
[ 
A'(1134;34)+ 2(s3k4) B'(114;4) 1 (sc2) 

- A(3214;14)(sk3) - ( k3 - c3) . 

The symbols A and B abbreviate the expressions 
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A(123&;34) = (Elk3)[(c2E4)(E3k4) - (E3E4)(E2k4)] - ('1 - '2) 

- (s2 - & 3 subsequ. > - (E4k3)[(slE2)(E3k4) - (5s3) ("2k4) 

+ (E2E3)(Elk4)] - b4 - k4) 

B(123;3) = 61k3)(&2s3) - (E1E3)(E2k3) ' 

The indices before the semicolon refer to polarization indices, those be- 

hind, to the momentum index. A' and B' follow from A and B, respectively, 

by replacing sl + kl. Defining furthermore 

R(123;4) = (E1E2)(E2k4) - (E1"3)(E2k4) ' 

the remaining term H' is given as 

H'(1234) = -- (rkl)[(ElE2)(E3E4) - (ElE3)(E2E4) + (E1E4)(c2'3)] 

+ 5 ( - kl):- (EEL) R(134;l) + (s3) R(l24;l) - (s4) R(123;l) . 

D4 is the product of the denominators in the propagators, 

D4 = 8 x1x4 x3 + x4 - k3k4 ( )I . 

The cross section for (Qq) -f GGqc is more compact than for gluon 

final states. We thus present here the final expression for the proba- 

bility Zlsr<Q@ -f GGq{112, color factors and C4fi @(0)12 removed, and 

summed over all helicities, 

zIgI = 
-c cik(m2ji (qkl)j ( 9k2)k . 

D2 

m is the invariant mass of the quark-antiquark system, q the 4-momentum 

of the quark. The coefficients c1 are symmetric, 
jk 

Cik(xl ,x2) = Cij (x2,x1) l 
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The only independent, nonzero coefficients are listed below (x = xq+x-). 
q 

0 
coo = -8x2(x 

q 1 

0 8xxx 90= q(1 -x2) 

0 2 2 c20 = - x 

0 
c11 = 4x2 

1 
coo 

x1x2 
3 

1 
c20 = -1+5x-+x2 + x1x2 

1 
c11 = 2Q-x1x2) + x(3x-10) 

2 coo = 16 11 + 14 + 31x 43 2 - - x1x2x x1x2 - 2 x + 6 x3 

-3x - x1x2 
3 
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3 '1 
coo = s ( - 26 + 34x - 13x2 + 2x1x2x + 10x1x2) + + xq(x-xq) 

3 1 
c1o = 8 ( x1 - x2 ) 

3 1 
‘20 = -- 16 

3 = 1 
c11 8 

4 1 
coo = - 16 ( 6+xx 12 - 4x) 

5 1 
coo = - 64 

Finally, the denominator D is given as 

D= 2 2 
x1x2 m ( m - 4 . 

These expressions have been obtained by processing the Feynman diagrams 

through REDUCE and SCHOONSCHIP. 
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TABLE 1 

Fraction of events of a given type which fall into class A, as well as 

the total class A fraction 

II I I 

m = cut .l .2 .3 .OOl .Ol 

all events .09 .21 .30 .31 .25 

GGGG events .09 .22 .33 .30 .25 

GGqq events .6 .51 .43 .39 .26 



-35- 

Figure Captions 

Fig. 1. Orthoquarkonium decay into GGGG and GGqG. 

Permutations of gluon lines are not shown. 

Fig. 2. Orthoquarkonium decay into y + GGG and y + Gqq. 

Permutations of photon and gluon lines are not shown. 

Fig, 3. Decay amplitude for a quarkonium state (Q?& to some 

final state F. 

Fig. 4. Magnitude of the 4-jet cross section in onium decays as a 

- function of the invariant mass cut of 2-jet bundles. 

Separately shown are the GGGG final states with and without 

3G vertex, and GGqs final states for five "light" quark flavors. 

Fig. 5. Distribution of the minimum invariant mass of 2-jet bundles, 

normalized to the (Born term) decay width in units of as/~. 

Fig. 6. Minor distributions of the various 4-jet decay modes. 

Fig. 7. Distribution of the energy difference between the two jets 

belonging to the minimum mass 2-jet bundle of 4-jet events. 

(a) minimum mass cut at l/9, (b) minimum mass between 2/9 

and 3/9. 

Fig. 8. (a) Kinematical configuration of class A events. The thrust 

axis coincides with one of the jet momenta. The three remain- 

ing jets lie on the opposite side of the plane perpendicular 

to the thrust axis. (b) Class B events. There are two jets 

on each side of the plane perpendicular to the thrust axis 

(which coincides with the sum of the momenta). 
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Fig. 9. Thrust distributions of the jets 2, 3 and 4 (in fig. 8a) 

in the rest frame of the recoil system, for invariant 2-jet 

mass cut at 2/9. 

Fig. 10. Energies of the two 2-jet bundles in their own c.m.s. each, 

for class B events. 

Fig. 11. Angular distribution of the jets in the slim bundle relative 

to the thrust axis in their own c.m.s. for class B events. 

Fig. 12. Gluon-jet broadening in (Q@ + y + 2 jets in the jets' rest 

frame by gluon bremsstrahlung, paralleled to bremsstrahlung 

-off quarks in the e+e- continuum. 

Fig. 13. Thrust in the recoil system of photon decays; all parton- 

parton and parton-photon pairs have mass larger than 2/9. 

Fig. 14. Energy difference of the two slow jets in the recoil system, 

the mass of parton and photon pairings between 2/9 and 3/9. ' 
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