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I. INTRODUCTION 

Quantum Chromodynamics is a renormalizable non-Abelian gauge field 

theory of quarks and gluons, based on the principle of exact local 

SU(3)-color symmetry.l From the experimental standpoint, there is now 

impressive evidence2 that QCD is a viable theory of hadronic phenomena. 

The most important phenomenological evidence for QCD comes from inelastic 

lepton scattering, e+e- annihilation processes, and those high momentum 

transfer exclusive and inclusive reactions where the structure of pertur- 

bative quark and gluon subprocesses can be studied in relative isolation 

from the bound state dynamics of the hadrons. From the theoretical stand- 

point, the elegant structure of QCD makes it appear almost compelling as 

a fundamental theory of hadronic phenomena, even though many crucial 

questions concerning quark and gluon confinement, and the effects of non- 

perturbative phenomena remain unanswered.3 

A critical feature of QCD is asymptotic freedom,' i.e., the logarithmic 

decrease of the effective quark and gluon coupling constant as(Q2) with 

momentum transfer which implies that the strong interactions become weak, 

and even calculable in perturbative theory at short distance. The fact 

that the annihilation ratio 

(1.1) R + -(s) = 
a(efe- + hadrons) 

ee u (e+e- -f p+p-) 

is empirically5 close to the zeroth order QCD prediction R" = 3 c e2 for 
q q 

energies above the heavy quark thresholds is a crucial check of asymptotic 

freedom and the color, "charge, and spin assignments of the quark quanta 

in QCD. Critical features of QCD are also confirmed by the observed 

logarithmic breaking of scale-invariance in deep inelastic lepton- 

scattering2 and the measurements of two-jet and three-jet structure of 



+- ee annihilation final states.' The recent observations of jet structure6 

in two-photon reactions (consistent with yy +~q< subprocesses), and 

measurements 7 of the photon structure function als"o provide fundamental 

checks of predictions which are essentially unique to QCD. However, 

despite these successes, there is no direct experimental evidence for 

(near) scale-invariant quark-quark, quark-gluon, or gluon-gluon scattering 

amplitudes as predicted by QCD; the cross section for large transverse 

momentum hadron production in hadron-hadron collisions appears to reflect 

much more complicated dynamical mechanisms. On the other hand, as we 

discuss in Section IV, the fact that the proton form factor GM(Q2) scales 
__ 

as (Q2)-2 reflects the fact that the minimum Fock state in the nucleon 

contains 3 quarks, and that the internal quark-quark interactions which 

control the nucleon wavefunction at short distances are consistent with 

scale invariance. 8y9 Thus far experiments are not sufficiently sensitive 

to distinguish a logarithmically decreasing as(Q2) from a constant; i.e., 

fixed point behavior. The sensitivity of the nucleon form factors to the 

form of as(Q2) is discussed in Section VI. 

Although there have been remarkable technical achievements in pertur- 

bative QCD calculations in the past few years,1*2s10 there has also been 

the realization that precise and detailed comparisons with experiment 

require consideration of effects and phenomena not readily computable 

with present methods. There are, in fact, only a very few large momentum 

transfer processes which can be studied rigorously to all orders in 

perturbation theory such as R 2 11 
e+e- 

(s),l the meson form factors FM(Q ) 

(and Fym (Q2)), the two photon processes12 yy + & at large momentum 

transfer, the photon structure function,13 and the Q2-evolution of the 



hadron structure functions. Although, in principle, these processes can 

be calculated to arbitrary orders in perturbation theory, in practice, 

there are serious complications involving the dependence of predictions 

made to finite order on the choice of renormalization scheme and the scale 

parametrization chosen for the argument of aS.2s13 We shall discuss a new 

method14 for avoiding the ambiguities in Section II. Aside from this, 

there is always the question of the radius of convergence of the pertur- 

bation expansion. Even for processes which can be calculated to arbitrary 

orders in a s, there are (presently) uncalculable power-law suppressed 

(higher twist) contributions15 which must be included in detailed fits to 

experiment, especially at the edge of phase space.16 

In the case of jet production, QCD-based predictions based on the 

elementary features of e+e- -+ q< and qqg, yy + qi, etc.,must also take into 

account higher twist contributions, model-dependent non-perturbative 

effects intrinsic to hadron formation and decay,' and possibly dynamical 

effects due to quark confinement.3 In the case of some exclusive processes 

such as the baryon form factor there are non-leading QCD contributions 

which are asymptotically suppressed by Sudakhov form factors.9'10 The 

precise evaluation requires an all orders resumption of perturbation 

theory. QCD predictions for elastic hadron-hadron scattering are compli- 

cated by the presence of Landshoff17 pinch singularity contributions which 

are only partially suppressed by Sudakhov form factors.'O Despite these 

complications, we can still derive general properties for exclusive 
" 

reactions such as hadron-helicity conservation18 and the leading power- 

law behavior." 

An even more interesting (and perplexing) situation occurs for all 

inclusive high momentum transfer inclusive reactions involving hadronic 



initial states such as Drell-Yan massive lepton pair production, direct 

photon .production, and large pT hadron production. As shown in Reference 

20, initial state interactions violate the usual QCD factorization theorem . 

order by order in perturbation theory and affect the normalization and 

transverse momentum dependence of the inclusive cross sections. In 

addition, final state interactions also affect the associated multiplicity 

and transverse momentum dependence of the outgoing jets in deep inelastic 

lepton scattering reactions. A detailed report on these effects is 

given in Reference 20. 

Perhaps the most serious complication to QCD phenomenology is the 

presence of higher twist subprocesses, since power-law suppressed contri- 

butions can often mimic (and thus confuse the identification) of the 

logarithmic modifications predicted for the leading twist contributions.16 

Examples of this for deep inelastic structure functions and fragmentation 

distributions are discussed in References 21 and 22 and Section V. In 

the case of three-jet production in e+e- annihilation, higher twist terms give 

contributions23 dN/dk: - (kz)-2 for the hadron transverse momentum distri- 

bution in quark and gluon jets. These hard components can complicate the 

separation of the,e+e- - -t qqg and e+e- - + qq subprocesses. In the case of 

; hadron production at large transverse momentum, "direct-coupled" higher \_ 
twist subprocesses such as gq -+ rq actually dominate24 the leading twist 

qq + qq + qaq subprocess at large xT = 2PT/ AC Evidence for direct- 

coupled rq + y*q subprocesses in rp + u+p-x reactions is discussed in 

Section V and Reference 22. 

Present QCD phenomenology is also incomplete in the sense that although 

much attention is paid to the Q2 evolution of hadron structure functions 



there is no real understanding of the basic x-dependent form of the quark 

and gluon distribution in hadrons, or how to relate them to other hadronic 

phenomena. The relation of the x w 1 behavior of structure functions to 

the exclusive fixed W2, high Q2 domain is only roughly understood.25 The 

x N 0 behavior of structure functions and the connection to the photoab- 

sorption cross section at fixed Q2, high v, and nuclear shadowing phenomena 

is also not well understood.26 

The main purpose of these lectures is to begin to extend QCD phenomen- 

ology by taking into account the physics of hadronic wavefunctions. Our 

eventual goal is to obtain a parametrization of the wavefunctions which 

will bridge the gap between the non-perturbative and perturbative aspects 

of QCD. The lack of knowledge of hadronic matrix elements is the main 

difficulty in computing and normalizing dynamical higher twist contributions 

for many processes. 

In Section III we emphasize the utility of a Fock state representation 

of the meson and baryon wavefunctions as a means not only to parametrize 

the effects of bound state dynamics in QCD phenomena, but also to inter- 

relate exclusive, inclusive, and higher twist processes. It is particularly 

convenient to choose a momentum space Fock state basis1g,27 

Jln(Xi'~~i;Ai) ; ~ Xi = 1 , ~ ii= 0 , 

i=l i=l 

defined at equal "time" T = t + z on the light-cone. Here 

X i = (k" + k3)i/(po + P3), Eli, and Xi specify the longitudinal and trans- 
. 

verse momenta and spin projection S z of each (on-mass-shell) quark and 

gluon in the n-particle Fock state (n r 2 for mesons and n .? 3 for baryons). 

We also choose the light-cone gauge A+ = A" + A3 = 0 so that only physical 



polarizations of the gluons occur. The color singlet wavefunctions are 

regulated so that they are finite in both the infrared and ultraviolet 

. 
There are a number of reasons why this representation of hadrons in 

terms of the quark and gluon degrees of freedom is useful: 

(1) In light-cone perturbation theory, the perturbative vacuum is 

also an eigenstate of the total QCD Hamiltonian on the light-cone; pertur- 

hative calculations are enormously simplified by the absence of vacuum to 

pair production amplitudes. 

(2) All form factors, charge radii, magnetic moments, etc.,have 

exact expressions in terms of the $,. 

(3) The structure functions Gq(x,Q) and Gg(x,Q) (and more general 

multiparticle distributions) which control large momentum transfer (lead- 

ing and higher twist) inclusive reactions, and the distribution amplitudes 

Q(x,Q) which control large momentum transfer exclusive reactions (and 

directly coupled inclusive reactions) are each specific, basic 

measures of the JI,. Examples of these calculations are schematically 

illustrated in Figures 1 through 3. 

(4) Other physical quantities such as decay amplitudes provide 

rigorous sum rule or local constraints on the form of the valence com- 

ponents of meson and baryon wavefunctions. 

The outline of these lectures is as follows. In Section II we give 

a brief introduction to QCD and asymptotic freedom. We then discuss a new 

method to avoid scheme and scale ambiguities in perturbative QCD predic- 

tions. In Section III we give a detailed discussion of light-cone pertur- 

bation theory and the Fock state expansion of hadronic wavefunctions. 
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Fig. 1. Calculable large momentum transfer meson processes in QCD, and 
their connection to the meson Fock state wavefunction J, _ and 
distribution amplitude +(x,Q). Only a representative " 
diagram for the hard scattering amplitude TH is shown. (a) The 
y -+ ITO transition form factor (measurable in single tagged ee -+ ee no 
experiments), (b) the meson form factor, (c) the yy + I& scattering 
amplitude. Details are discussed in Section IV. 
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Fig. 2. Baryon processes at large momentum transfer in QCD and the con- 
nection to the baryon Fock state wavefunction. 
factors, 

(a) Baryon form 
(b) heavy quarkonium decay 'I' + pp, (c) deep inelastic 

lepton-baryon scattering. Only representative contributions are 
shown. The inclusive cross section and structure function G 
is computed from the square of the baryon wavefunction q,B (x,Q) 

summed over all contributing Fock states. 
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Fig. 3 Example of QCD-computable higher twist "direct-coupled" sub- 
processes for inclusive reactions. The subscript D indicates 
that the hadronic wavefunction is involved directly in the 
high momentum transfer subprocesses. (a) Direct production of 
high pT mesons in hadron-hadron cross section. The predicted 
cross section is proportional to the meson form factor FM(p$) 
times the leading twist cross section. (b) Higher twist contri- 
bution to meson-induced massive lepton pair production. The 
predicted cross section is equivalent to a contribution FL(x,Q2) s C/Q2 
to the longitudinal structure function of the meson. 
(c) Direct meson production of quark jets in meson-baryon 
collisions. All of the meson energy is used to produced jet& at large 
transverse momentum. The cross section is proportional to F$l(p$ 
times the leading twist qq -+ qq cross section. (d) Direct 
production of anti-quark jets in BB collisions. The cross section 
is proportional to G(pG> times the leading twist qq -+ qq cross 
section. In each case the direct process dominates over the 
leading twist contribution in a large x kinematic region. 



The QCD equation of motion is also discussed. In Section IV we discuss 

measures of the hadronic wavefunction (form factors, magnetic moments, 

etc.), and the QCD analysis of high momentum transfer exclusive processes. 

We also show how meson distribution amplitudes can be measured in yy + 6 

reactions. The connection of the Fock state basis to leading and higher 

twist contributions to deep inelastic scattering is given in Section V. 

" In Section VI we discuss how many different QCD processes are interrelated 

(as in Figures 1 through 3) through the hadronic Fock states. We also 

discuss a novel type of QCD subprocess --direct coupled hadron-induced 

reactions. 29 A new prediction for the proton form factor is also given. 

In Section VI we also introduce a simple phenomenology of hadron wavefunctions 

and discuss present constraints on the form and normalization of the 

valence meson and nucleon Fock states. An important conclusion is that 

the valence Fock state as defined at equal time or the light cone appears 

to have a significantly smaller radius than that of the physical hadron; 

higher Fock states thus play an essential role in low momentum transfer 

phenomenology. Applications to quark jet diffraction excitation30 and 

the hidden heavy quark Fock state structure of hadrons are also discussed.31 

The effects of-initial and final state interactions on QCD inclusive reac- 

tions are discussed in Reference 20. 



II. BASIC FEATURES OF QCD 

In quantum chromodynamics the fundamental degrees of freedom of 

hadrons and their interactions are the quanta of quark and gluon fields 

which obey an exact internal SU(3) (color) symmetry. The spin-l/2 quarks 

are in the fundamental (triplet) representation of SU(3) 
‘2’ 

the spin-l 

gluons are in the adjoint (octet) representation, and hadrons are identi- 

fied with singlet states; e.g., mesons [M/I) N i~i 4i4i' and baryons 

- IB> -c cijk]qiqjqk>. In addition, gluonium (color-singlet bound states 

of 2 and 3 gluons) should exist. As we discuss in Section VI, new types 

of "hidden color" nuclear states are also predicted in QCD. The different 

types of quarks u,d,s,c,b,... are distinguishable by their flavor label 

and mass. It is well known that the general structure of QCD meshes remark- 

ably with the facts of the hadronic world, especially quark-based spectro- 

scopy (including the charm and beauty quark systems); current algebra; the 

dimensional-counting parton-model structure of large momentum transfers 

reactions (up to computable logarithmic corrections to scale-invariance); 

the scaling and magnitude of a(e+e- + hadrons) and large transverse momen- 

tum yy reactions), the general features of jet production in e+e- collisions 

as well as the narrowness of the J, and T. Experiments at large momentum 

transfer, both exclusive and inclusive, are consistent with the QCD postu- 

late that the electromagnetic and weak currents of hadrons are carried by 

point-like spin-l/2 quarks which interact via a Dirac coupling to spin-l 

gluons. 
. 

An essential feature of QCD is that SU(3)c is an exact local 

symmetry: rotations in color space can be made independently at any 



space-time point. The mathematical realization of this is the Yang-Mills 

non-Abelian gauge field theory. The QCD Lagrangian density is1 

'9QCD = $(i@ - d J, - 4 L Tr F2 
PV 

iDV = iau I + gAu 

Fuv = apAV - avAu + gCAu,A? 

(2.1) 

(2.2) 

(2.3) 

Here 

is the color triplet of quark fields, and A'(x) = c haA: is the 
a=1,8 

color octet gluon field summed over the 3 x 3 traceless matrices X a 
satisfying [A,,X,l = ifabcXc and Tr[XaXb] = 26ab. 9QCD is obviously a 

color singlet. Local gauge invariance and color symmetry follows from the 

invariance of 9 
QCD 

under the general gauge transformation 

+(x1 + u(x) $(x1 (2.4) 

Au(x) -, U(x) Au(x) U-l(x) + $ u(x)(ap u-‘(x)) (2.5) 

where the unitary matrix U(x) = exp i C XaBa(x) is an arbitrary function 
a 

of space and time. Note that the field strength F"(x) + U(x) Fuv U-'(x) 

is not invariant since it is in the adjoint representation of SU(3) C’ 
The local gauge invariance of the Yang-Mills is an essential ingredient 

in proving the renormalizability and consistency of the theory. 

In general, a sum over quark flavors i = u,d,s,c,b... is understood 

in 5.EQcD. (In fact the mass matrix mij is not diagonal when the weak and 

electromagnetic interactions are taken into account.)32 The fundamental 

.__-^-r- _...” . . 



origin of the quark flavors and their masses remains an outstanding 

problem in hadron physics. 

In a sense QCD can be regarded as the non-Abelian generalization of 

QED: 

=PQED = $(x)(i$ - m) $ - $ Fiv 

where iDu = i.3' f eA', FPv = aPAV - aVAu. From the point of view of 

formal perturbation theory there are close similarities in the Feynman 

rules and treatment of ultraviolet renormalization and infrared divergences. 

The Feynman rules for QCD are given in Table I. In the case of covariant 

gauges one must formally include "ghost" scalar particles in loops, or 

else unitarity of amplitudes involving the non-Abelian-couplings will be 

lost. In the case of axial gauges (quAI = 0 where nu is a fixed 4-vector) 

there are no ghosts, but renormalization is somewhat more complicated. 

The color trace algebra for any Feynman diagram can be done almost auto- 

matically using the graphical rules given by Cvitanovic.3J The main 

algorithm is that as far as color is concerned, the gluon propagator N in 

SU(N) is equivalent to two quark lines z minus l/N times the identity (to 

remove the U(N) singlet). The complete rules are given in Reference 33. 

Although QCD and QED perturbation theory have many similarities, there 

are non-perturbative aspects of the non-Abelian theory which have no 

analog in electrodynamics, e.g., classical ("instanton") solutions to the 

pure gauge theory. These solutions can have profound consequences for the 

QCD vacuum state.34 Furthermore, the absence of asymptotic color states 
. 

implies that, at best, the perturbation rules are only valid in a far-off- 

shell short-distance regime. 



Table I 
* 

Feynman rules for quantum chromodqnamics. 

j Fermion 
Propagator ’ “se 

i 
8 g-m+ic aB 

Gluon a b nm;;emrm 
Ropogator ’ p p v 

-i gpu I 

Ghost a b i 6ab 
Propagator ’ 

m-v---- 
P 2 p +ir . 

Fermion : ’ 
Vertex ig Yp xa,fi 

v-b C7.C + face fbde(gpvgrsp- g,qgvo) 

+ fade fcbe (gpUgVp-gp’gu~ )I 

Ghost 
Vertex ’ 

q/’ x, 
g fabcrp 

b’ c 
. 

* 
From A. J. Buras, Reference 1. 



Fortunately for many processes of experimental interest it is pos- . 

sible to prove factorization theories which separate the long-distance 

dynamics associated with the hadron wavefunction and color confinement 

from quark and gluon subprocesses which only involve short distance propa- 

gation of color.35 If this factorization can be proved to all orders in 

perturbation theory, it is reasonable to assume that the corresponding 

perturbative predictions are legitimate predictions of the complete 

theory. In the case of predictions dependent on hadronic fragmentation 

from quark or gluon jets one has to make an extra assumption that the 

essential effects of color confinement are restricted to large distances. 3 

As in QED, one can sum the effects of vacuum polarization into a 

"running" coupling constant (as = g2/48) 

as(Q2) = 
a,CQt) 

l- as (Q2) [r (Q2) - -n tQ;)] 
(2.7) 

where a(Q2) can be computed (in some gauges) from the single-particle- 

irreducible contributions to the gluon propagator. Given the gluon 

propagator at any scale Qi one can use Eq. 2.7 to determine the effective 

interaction at the scale Q2, To lowest order in perturbation theory the 

quark and gluon loop insertions give [ Q2,Qi 2 >> m., i = 1, 2...n 1 f 1 
TT (Q2) - ntQ;) = & Q2 2 log 2 [ 3 nf - 4 

QO 
+ @ (a,> (2.8) 

. i.e., for nf c 33/2, as(Q2) decreases with Q2, exactly opposite to QED. 

More generally, one can calculate the Q2 dependence of as in higher orders 

a 2 as(Q2) z B[as(Q2)] = $ at(Q2) - 3 ai(Q2) ' (2.9) 
a 1% Q IT 

+ . . . 



where' B 0 = 11 - 2/3 nf, Bl = 102 - 38/3 nf. The solution for as(Q2) at 

large Q2 to two loop accuracy then has the form 

as(Q2) = 47r (2.10) 

where A is introduced as a constant of integration. The fact that as(Q2) 

decreases at large momentum transfer [asymptotic freedom] is an extra- 

ordinary feature of QCD which in principle allows a systematic computation 

of short distance processes. A graph of as(Q2) showing the effect of the 

81/B. term is shown in Figure 4. It should be emphasized that perturbation 

theory does not determine the form of as at small Q2 where its magnitude 

becomes large. As noted by Parisi and Petronzio,36 consistent calculations 

of perturbative loops demand that as(Q2) remains finite at all values of 

the loop integration. Thus far there is no direct experimental evidence 

that as(Q2) decreases logarithmically. 

If we choose Qt to be the ultimate ultraviolet cutoff scale of QCD 

then ascSi) = a: is the "bare charge" of the theory. We can then identify 

as(Q2) as the effective coupling constant which takes into account all 

2 2 vacuum polarization contributions of invariant mass & : Q2 c & c Qi. 

Similarly, we can define the running quark mass m(Q2) which takes into 

account all self-energy insertions in the range Q2 <t/H <Q2 2 
0' 

Let us now define a cutoff Lagrangian 5YK 
QED 

density for QCD by 
2 excluding all intermediate states with Jl > k2. The fact that the 

theory is renormalizable implies that 

&D = G(ia + g(K)h - m(K)) $ - + Tr F2 

+B ei-. m(K) ;i; CT Fuv IJJ -t . . . 
K2 UV 

(2.11) 
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Fig. 4. The QCD coupling constant ns(Q2) for nf = 4 to one- and two- 
loop accuracy. Empirical specifications of A in a given scheme 
should always use the two loop formula Eq. (2.10). 
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i.e., 2 2 all effects of very high mass states ,4[ > K are completely con- 

tained ,in the effective coupling constant g(K), the quark running mass 

m(K), and "higher twist" power-law suppressed l/~~, l/rc4, etc., terms. 
" 

If ~~ is taken at the ultimate cutoff scale Qt then g&D is the bare 

Lagrangian. If ~~ is chosen sufficiently large then the higher twist 

terms are negligible in (2.11). 

The classic perturbative calculation in QCD is that of the annihila- 

tion cross section u 
e+e- -f hadrons 

which can,be computed from the hadronic 

absorption part of the forward e+e- +- 2 +ee amplitude to order a . Since 

there are no external color charges there can be no gluon-mass infrared 

divergences or quark mass singularities. Thus the only relevant scale 

is Q2 = s = E2 cm' and we can compute perturbatively from 

The result to order at(Q2) is 

Re+e- 
(Q2) = 3 

CL 

2 
eq 

1+ 

9 

a: (Q2) 

?I 
+ 

IT2 
(B+A nf)+ . 

h ~~ = Q2. 

(2.12) 

where the A n f term arises from virtual quark loops. An essential and 

unique prediction of asymptotic freedom is that Q 
'ym R(Q') = 3 c ei = R", 2 

the free quark prediction. The specific values of B and A in Eq. (2.12) 

depend on the method of implementing the ultraviolet cutoff. In the MS 

scheme (a particular dimensional regularization scheme) one finds 37 

B 2 1.98, AZ -0.115. However, in analogy to QED, it is clear that the 

Anf term should be identified with the fermion loop vacuum polarization 

contribution to the running coupling constant in the aS(K term, the 

particular numerical value for A is rather arbitrary since we could have 

chosen any scale K 
2 = f2Q2 for the perturbation expansion. In QCD, as 

is essentially a function of B. = 11 - 2/3 nf. Thus we write B + Anf = 

-3/2 BOA + C, where C = (33/2)A + B 2 0.0825 must be scheme independent 



(since to the order of interest the cutoff schemes can only differ by the 

definition of the scale constant A2). We thus have the QCD prediction:14 

2 a 

Re+e- 
-I- 0.0825 ++ ..a 

I 
(2.13) 

a 
9 

where f = f 3A = e 2 0.71 in the MS scheme. 
MS 

Let us imagine that eventually 

measurements of (5 
e+e- 

2 
+ (Q2) hadrons 

will be sufficiently accurate that we 

can choose R(Q ) to define a "canonical" measurement of the QCD running 

coupling constant: 

az(Q2) f IT [K(Q2;; "][l - 0.0825 (R ;;')I 

(2.14) 
= afs(f2R2) . 

Our goal is then to show that all observables in QCD which have a pertur- 

bative expansion in as can (in principle) be expressed in terms of ar(Q2) 

without any scheme or scale ambiguity. We will define the scale parameter 

A = AR using Eq. (2.10) for a:. 

We thus propose the following prescription for making scheme and 

scale independent perturbative QCD predictions: l4 For any observable 
2 p(Q ) which has a perturbative expansion in as(Q2) one can compute in a 

given renormalization scheme 

as (42) 
~(9~) = a + (Apnf + BP) 

ai(Q2) 
2 -I- See 

T 
(2.15) 

As in the case of R(Q2) , we identify (-3/2)B A as the vacuum polarization .I OP 
correction to the running coupling constant in the as/r term. Thus 

+ l l l 



where 

and 

(2.17) 
. 

C =FAp+, (2.18) 
P P 

are scheme-independent. The leading order prediction for p(Q2) can thus 

be written unambiguously in terms of a:. If Cp as/n is reasonably small, 

then we expect that Eq. (2.16) gives a meaningful perturbative QCD predic- 

tion. An important task will be to carry out the above procedure to 

higher orders in as. 

As an example of the above method, let us consider the decay rate 

for pseudoscalar quarkonium states which is computed in terms of QG + gg 

plus higher order subprocesses. In the MS scheme:2g (C is a known color 

factor) 

T(n, + hadrons) 

mlc -+ YY> 
1 -l--f-- (17.13 - $ nf) + . . . 

(2.19) 
aR 

+ 2.46 -;+ . . . 

. 
i.e.: the effective scale in the vacuum polarization contributions 

is -0.37 M +- relative to the scale in e e + hadrons. 
‘lC 

If as2 0.2, then 

the correction term in Eq. (2.19) gives only a 7% correction to the deter- 

mination of a 
S’ 

In the case of the hadronic decays of J cp = I--- heavy 

quarkonium states, the correction to the QG -+ 3g decay amplitude appears 

to be very large so that the leading order expressions may not be meaning- 

ful. One finds40 



T(T + hadrons) = ~O(IT~ 
- 

(T -t P+IJ-> 8111 et 
7 

a 
[a:~ ((.22MT)2)]3 

aR 
l- 13.94 s+ . . . IT 

(2.20) 

For as z 0.2, the correction term gives a correction of order 30% to the 

determination of as. Note that even in QED, the radiative corrections to 

orthopositronium decay are very large: 

0 
r3y = r3y l - 12.61(3); + . . . 

> 
(2.21) 

so this appears to be an intrinsic problem to this type of decay process. 

Additionally, the QCD prediction for quarkonium decay is complicated by 

some uncertainties from relativistic and higher Fock state components in 

the quarkonium wavefunction. 

One of the most important predictions from QCD is the logarithmic 

variation of structure function moments, Mn(Q2) =A1dx xnF3(x,Q). 

Using the above renormalization procedure we find14 

d log Mn(Q2) = 2 at 
aR 

dlogQ2 
- $ Cn + . . . 

I 

where the y, are known anomalous dimensions (see Section IV). The coef- 

ficient Cn varies from -0.27 to 1.1 for non-singlets moments n = 2 to 10, 

thus giving reasonably small corrections to the lowest order predictions. 

The monotonic decrease of fn with n reflects the fact that the momentum 

scale for gluon emission becomes increasingly restricted at large n 
. 

(<l - x> w 0(1/n)) due to phase-space effects.41 Further applications 

and discussions will be given in Reference 14. We also note that,in 

processes with several large momentum transfer scales, the effective 



R argument for a s in the leading order predictions can be very complicated. 

For example in the case of large pT jet production due to qq + qq scatter- 

ing, the subprocess scattering amplitude involves a evaluated at the 
r s 

subprocess invariants i and ;, whereas the evolution of each hadronic 

structure function is sensitive to its respective'x-dependent phase-space 

boundary as well as the quark momentum transfer. 



III. RADRONIC WAVEFUNCTIONS IN QCD27 

Even though quark and gluon perturbative~ subprocesses are simple in 

QCD, the complete description of a physical hadronic process requires the 

consideration of many different coherent and incoherent amplitudes, as 

well as the effects of non-perturbative phenomena associated with the 

hadronic wavefunctions and color confinement. Despite this complexity, 

it is still possible to obtain predictions for many exclusive and inclusive 

reactions at large momentum transfer provided we make the ansatz that the 

effect of non-perturbative dynamics is negligible in the short-distance 

and far-off-shell domain. (This assumption appears reasonable since a 

linear confining potential V - r is negligible compared to perturbative 

l/r contributions.) For many large momentum transfer processes, such as 

deep inelastic lepton-hadron scattering reactions and meson form factors, 

one can then rigorously isolate the long-distance confinement dynamics 

from the short distance quark and gluon dynamics --at least to leading order 

in 1/Q2.35 The essential QCD dynamics can thus be computed from (irreducible) 

quark and gluon subprocesses amplitudes as a perturbative expansion in an 

asymptotically small coupling constant as(Q2). 

An essential part of the QCD predictions is the hadronic wavefunctions 

which determine the probability amplitudes and distributions of the quark 

and gluons which enter the short distance subprocesses. The hadronic 

wavefunctions provide the link between the long distance non-perturbative 

and short distance perturbative physics. Eventually, one can hope to 

compute the wavefunctio'ns from the theory, e.g., from lattice or bag models, 

or directly from the QCD equations of motions, as we shall outline below. 

Knowledge of hadronic wavefunction will also provide explicit connections 



between exclusive and inclusive processes, and will allow the normaliza- 

tion and specification of the power law (higher twist) corrections to the 

leading impulse approximation results. As we shall discuss in Section VI, I. 
there are a number of novel QCD phenomena associated with hadronic wave- 

functions, including the effects of intrinsic gluons, intrinsic heavy 

quark Fock components, diffraction dissociation phenomena, and "direct" 

hadron processes where the valence Fock state of a hadron enters coherently 

into a short-distance quark-gluon subprocess. 

The most convenient representation of a wavefunction in a relativistic 

field theory is to use a momentum space Fock state basis defined at equal 

"time" T = t + z on the light cone (see Figure 5a):42 

i ~n(~~i,xi; ‘i) f 

Momentum conservation requires 

n n 

z 
i=l 

ZLi = 0, c x 
i=l i = 1, o<x <1 . i 

(3.1) 

(3.2) 

The ZLi are the transverse momentum of the (on-mass-shell) constituents 

relative to the bound state 3-momentum s = P3L The xi are the light- 

cone momentum fractions k' = k" + k3, A*B = $A+B- + A-B+) - 21 l $l ) ( 

k-!- x* =+ 0s’ + k3ji 
1 P PO + P3 

(3.3) 

3 (In a frame where P -f 00, the x are the longitudinal momentum fractions.) i 
The mass shell condition is k2 2 - =m,ork = (kf + m2)/k'. As we shall . . 

see, the equal-r formalism is equivalent to the usual Schroedinger equal- 

time theory in the non-relativistic limit. 

A unique and remarkable advantage of quantizing a relativistic theory 

at equal T is the fact that the perturbative vacuum state 10) is also an 
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Fig. 5. (a) The n-particle Fock state amplitude defined at equal +. 
The state is off the p- light-cone energy shell (see Eq. (3.12)). 
(b,c) Examples of light-cone time-ordered perturbation theory 
calculations. The frame is chosen so that k+ > 0. Cd) QCD 
equation of motion for the meson wavefunction. 



eigenstate of the full Hamiltonian. Matrix elements where particles 

are created out of the vacuum are excluded because of the fact that 
+ all particles must have k i > 0. Furthermore, the-charge operator and 

the current 3 + = Jo -t- J3 are diagonal in the Fock state basis. It is 

particularly advantageous to choose the light-cone gauge A+ = A" + A3 = 0 

since unphysical degrees of freedom do not appear, A comparison between 

time-ordered and T-ordered perturbation theory is given in Table II. 

Thus at a given "time" we can define the (color singlet) basis 

Iqs> = a! b+ IO> 
k+,$ k+',i$ 

. . 

. 

The pion state, for example, can be expanded as 

Ilr> = 1qq> Yq4 + (qig> YqGg + . . . 

(3.4) 

(3.5) 

where Y n = <nlr> is the amplitude for finding the Fock state In> in IIT> 

at time T. The full Fock state wavefunction which describes the n-particle 

state of a hadron with 4-momentum P u = (P+,P-,q) and constituents with 

momenta 

ku = (k+,k-,d) = 
(xc1 + ZL)2 + m2 

xP+, - X , 

and spin projection X. is 1 

'n = ~n(Xi'k~i; "i) 

u x.P ( 
+ ,x.8 11 + T: 

n 
1 > li A i 

fermions 

n E xiP+,xi4 + $i)h ( i 
l gluons 

5 
/ 

(3.6) 

(3.7) 



Table II 

Time-ordered perturbation theory. 

Equal t 

k* =$m (,;;;':;',;,) 

c i? conserved 

&ab = 'ab 

+ 
&VaCzko - $k" + ic 'cb 

a C 
n! time-ordered contributions 

Fock states Qn(ci) 
n 

c 
i=l 

d,=it=o 

&=p”- 5 k” 
i=l i 

. 
Equal T = t + z 

k- = 
k: + m2 

particle 
k+ mass shell 

c gL,kc conserved 

n/,b = 'ab 

+ v c C ac xk- -&k-+ iEV6b 
a C 

k+ > 0 only 

Fock states $n(z x ) li' i 

k+ 
n n 

x=--, c x. = 1, 
p+ i=l ' 

(0 < x i < 1) 

kl + m2 
X 



Note that $n(xi,zli; -t+ hi) is independent of P ,Pl. The general normaliza- 

tion condition is 

cs[dZkl]~dxlliVn(xi,gi; Ai) 1: = 1 (3.8) 
n 

where by momentum conservation 

II 1 d2kl = 16 *3.62 (gl si> li, 3 

and 

Cdxl = d 1 ( - 2 xi) fi dxi 
i=l i=l 

(3.9) 

(3.10) 

In the non-relativistic limit the equal T = t f z/c and equal time t 

theories coincide. For example, for the Fock state wavefunction in the 

rest system we can identify 

k" + k3 ,m k3 
X= M =-+- M M 

and the off-shell light-cone energy is 

(3.11) 

(3.12) 

Thus, in the non-relativistic limit, the hydrogen atom wavefunction is 

'ls = [kt +(me - L,'+ u2rn:12 
(3.13) 

Light-cone perturbation theory rules can be derived by either evalu- 

ating standard equal-time time-ordered perturbation theory for an observer 

in a fast moving Lorentz frame (the "infinite momentum" method),43 or more 

directly, by quantizing at equal T. The LCPTh rules are:1g*44 



(1) For each Feynman diagram assign particle 4-momentum k' such 

that kt,zL is conserved at each of the n vertices. (This is the analogue 

of 3-momentum conservation.) Since all particles-are on the (positive 

energy) mass shell (k2 = m2) we have 

k- = 
k," + m2 

k+ 
>o (3.14) 

(2) Construct all time orderings (up to n!) such that k' > 0 for 

all particles. 

(3) For each intermediate state assign a propagator 

1 

c 
-7 

k; - L ki + is 

initial intermediate 
+ and a factor l/k for each internal line. (This is the analogue of 

I/( c 
initial 

~~ - inter&diate Ei + is) and 1/(2E) in ToPTh.) 

(4) For each loop integrate 

d2kl cp 

J / 2(2d3 0 dk+ 

(3.15) 

(3.16) 

and sum over intermediate state spins and polarization. 

(5) The vertex factors depend on the theory. In the case of g+3 

interaction, assign a factor g at each vertex. In gauge theories the 

gluon-fermion vertices are 

g&u, -g&v, g&v, -g&h . (3.17) - 

The trigluon and quartic-gluon vertices are given in Table I. 

(6) Finally, there are instantaneous gluon contributions in A+ = 0 

gauge: 



+ + 
.*. 

<k+> 2 
(3.18) 

(analogous to Coulomb interactions) and instantaneous fennion contributions 
. 

y+/2k+ (the remnant of backward-moving "Z-graph" fermion lines). For 

example, the electron-electron scattering diagrams of Figure 5b give 

&it 
= e2 ly?l uyvu d 

ee+ee k+D 
+ e2 uy+u uy+u 

IJV &+I 2 

where the polarization sum is 

dpv = 
c 

IJv +=o EX EX’ c , k's = 0 
x=1,2 

and the light-cone and energy denominator is 

D = p, - k- - p, + is . 

Similarly, the Compton scattering diagrams of Figure 5c give 

r/i! 
2 

c 
+cUA A a SlU 

ye-rye = e 
P+D 

+ e2 
he v+b,u 

A=1,2 2p+. 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

D= k; + P; - p- + is 

(This is analogous to the decomposition of the Feynman propagator 

(fi-m + ic)-1 into positive and negative frequency components.) 

Calculations in light-cone perturbation theory are often surprisingly 

simple since one can usually choose Lorentz frames for the external par- 

ticles such that only a few time-orderings need to be considered. All 

the variables have a direct physical interpretation. The formalism is 

also ideal for computing helicity amplitudes directly without trace pro- 

jection techniques. A list of all the gluon fermion vertices which are 

required as gauge theory calculations is given in Tables I and II of 

Reference 19. 



It is straightforward to implement ultraviolet renormalization in 

light-cone perturbation theory. We define truncated wavefunctions #K 

and a truncated Hamiltonian HK such that all intermediate states with . 

181 ' K2 are excluded.45 Thus K-I is analogous to the lattice spacing 

in lattice field theory. Since QCD is renormalizable the effects of the 

neglected states are accounted for by the use of the running coupling 

constant as(r2) and running mass m(K2), as long as K 2 is sufficiently 

large compared to all physical mass thresholds. Completeness implies 

(3.23) 

The equation of state for the meson or baryon wavefunction in QCD is a 

set of coupled multiparticle equations (see Figure 5d): 

(3.24) 

where M2 is the eigenvalue and Vnn, is the set of diagonal (from instan- 

taneous gluon and fermion exchange) and off-diagonal (from the 3 and 4 

particle vertices) momentum-space matrix elements dictated by the QCD 

rules. Because of the K cutoff the equations truncate at finite n,n'. 

In analogy to non-relativistic theory, one can imagine starting with a 

trial wavefunction for the lowest Iqq> or Iqqq> valence state of a meson 

or baryon and iterating the equations of motion to determine the lowest 

eigenstate Fock state wavefunctions and mass M. Invariance under changes 

in the cutoff scale provides an important check on the consistency of 

the results. Note that the general solution for the hadron wavefunction 

in QCD is expected to have Fock state components with arbitrary numbers 

of gluons and quark-antiquark pairs. 



The two-particle %alence" light-cone Fock state wavefunction for 

\*’ 

mesons or positronium can also be related to the Bethe-Salpeter wave- 

function evaluated at equal 'I: 

/ 

dk- 
x i'Bs(kd = 

u(x,,Q &,,-9 
(3.25) 

dq &y 

-I- negative energy components, 

where $ satisfies an exact bound state equationI 

kf + rn; 

x2 1 $(Xi,Q (3.26 

The kernel fi is computed from the sum of all two-particle-irreducible 

contributions to the two-particle scattering amplitude. For example, the 

equation of motion for the le+e-> Fock state of positronium reduces in 

the non-relativistic limit to ( kL,RI N @(am), x = xl - x2 N O(a),) 

M2 = 4m2 + 4ms 

k2 + x2m2 I E - 
m 

I 
J, (Xi,kl) 

(3.27) 

The non-relativistic solution is (8 = am/2)lg 

641~ 6 x1x2 
2 

kl + (xl-x2)2m2 + B 22 1 

v+ - v4 
J22 

I1 - 
v4 -~ 
Jx1x2 

(3.28) 

for para and ortho states, respectively. 



More generally, we can make an (approximate) connection between 

the equal-time wavefunction of a composite system and the light-cone wave- 

function by equating the off-shell propagator Q= M2 - 
2 

in the 
. 

two frames: 

E= 

-. 

M2 - (eq;ij)2 , 2 qi = 0 CC-M.1 
\i-1 i=l 

M2 - 2 
i=l 

, c 
Zli = 0, zx i = 1 [L.C.] 

i 

In addition we can identify 

k+ 
x.-$ 2 

q" + q3 i 
1 , 'li = ;;li 

P 

(3.29) 

(3.30) 

For a relativistic two particle state with a wavefunction which is a 

function of the off-shell variable &only, then we can identify 

b =m 1 2=mSX=X1- x2) 27 

(3.31) 

In the non-relativistic limit this corresponds to the identification 
+ 
Ql = Cl, q: = x2m2. 



IV. MEASURES OF HADRONIC WAVEFUNCTIONS 

A. Form Factors of Composite Systems 

If we could solve the QCD equation of motion-[Eq. (3.24)1 for the 

light-cone wavefunctions $ n of a hadron then we could (in principle) 

calculate all of its electromagnetic properties. For example, to compute 

the elastic form factors <plJn(O)lp+q> of a hadron we choose the Lorentz 

frame4= 

pp = ( P+>P-,:l = ) ( P+ "',?i 
‘p+ 1 1 

(4.1) 

qp = ( q+,zil = ) ( 0, .&2J ,; 
P+ 1 ) 

where p2 = (P+d2 
+2 = M2 and -q2 = Q2 = ql. Then the only time ordering 

which contributes to the <plJ+Ip+q> matrix element is where the photon 

attaches directly to the ej uj y+u. 3 
currents of the constituent quarks. 

The spin averaged form factor is4=,lg (see Fig. 6a) 

~(9~) = Cx ej 
/ 

~dx~[d*k,l c JI~'(x~,~~~;~~)JI~(x~,~~~;~~) (4.2) 
n j 'i 

31’ where k. J 
= xi +(l-xj)> for the struck quark and ? - xi;' (ifj) for 

1 

the spectator quarks. (The -xi;;' 
-tl ' terms occur because the arguments k 

are calculated relative to the direction of the final state hadron.) 

We choose ~~ >> Q 2 2 ,M . We note here the special advantage of light-cone 

perturbation theory: the current J + is diagonal in the Fock state basis. 

Because of Eq. (3.23) the form factor is normalized to 1 at zero 

momentum transfer. We can also compute the helicity flip form factors 

in the same manner.1g'47 For example, the anomalous moment a = F2(0) of 
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Fig. 6. (a) Calculation of current matrix elements in light-cone 
perturbation theory. (b) Valence Fock state contribution to 
the large momentum transfer meson form factor. TH is computed 
for zero mass quarks q and ?j parallel to the pion momentum. 



any spin l/2 system can be written47 

.  

Explicit calculations of the electron anomalous moment in QED using this 

result are given in Reference 47, We notice that in general all Fock states 

11:: contribute to the anomalous moment of a system, although states with 

K2 much larger than the mean off shell energy <&> are not expected to be 

important. The general result (4.3) also includes the effects of the 

Lorentz boost of the wave function from pu to (p+q)'. In particular, 

the Wigner spin rotation contributes to F2(q') and the charge radius 

Fi(q2) in the q2 + 0 limit and can only be neglected in the limit of 

non-relativistic binding <E> C< M2. This effect gives non-trivial 

relativistic corrections 48 to nuclear magnetic moment calculations based 

on simple additivity G = 
-b 

(F > .'j l 

B. Form Factors of Mesons 

Results such as Eqs. (4.2) and (4.3) are formally exact but useless 

unless we have complete knowledge of the hadronic or nuclear wave func- 

tion. However, by making use of the impulse approximation and the 

smallness of the QCD running coupling constant, we can calculate features 

of elastic and inelastic large momentum transfer processes lg without 

explicit knowledge of the wave function. For example consider the lqi> 

Fock state component contribution to the pion form factor. Choosing 

K2 = Q2s we have 



+ higher Fock state contributions . . (4.4) 

The bound state wave functions are peaked at low transverse momentum, 

i.e., small off-shell energy 8. Thus the leading contribution at large 

Q2 come from the regimes (a) $t CC Gf and (b) ($l+(1-x)<l)2 << Gt. 

Thus 
1 

F;“’ (Q2) “= 
J- 

dx 4(x,Q) ~J'(x, (l-~);~) 
0 

where" 

$(x,Q) 5 l 

(4.5) 

(4.6) 

If we simply iterate the one-gluon exchange kernel Vl in the equation of 

motion for $J, then for q: 

1 

. (4.7) 

0 

Thus we can write the gluon exchange contribution to the form factor in 

the form ;ll*lg [see Figure 6(b)] 

1 

F,(Q2) = J dxdy @*(Y,Q) TH(x'Y;Q) (P(y,Q) 
0 

(4.8) 



where 

TH = 
16nCFas(92) el e2 

Q2 
(1-y)(l-x) + xy 1 (4.9) 

. 
is the "hard scattering amplitude" for scattering collinear constituents 

q and i from the initial to the final direction. The color factor is 

'F 2n, = -L (nz-1) = 4/3, The "distribution amplitude" $(x,Q) is the 

amplitude for finding the /qG> Fock state in the pion collinear up to 

the scale Q. (It is analogous to the wave function at the origin in 

non-relativistic calculations.) The distribution amplitude enters 

universally in all large momentum transfer exclusive amplitudes and is 

a process-independent measure of the valence quark distribution in each 

hadron; its (logarithmic) dependence on Q2 can be determined directly 

from the operator product expansion or the light-cone or from an evolu- 

tion equation, as we discuss below. 

Thus the simplest estimate for the asymptotic behavior of the 

meson form factor is Fx(Q2) N as(Q2)/Q2. To see if this is correct 

we must examine the higher order corrections:1g 

(1) Contributions from higher particle number Fock states lq<g>, 

1 q?qq>, etc., are power-law suppressed since (in light-cone gauge) the 

numerator couplings cannot compensate the extra fall-off in Q2 from the 

extra energy denominators. 

(2) All infrared singularities and contributions from soft (!Ll + 0) 

gluons cancel in color singlet matrix elements. [It is interesting to 

note that the quark (Sudakov) form factor falls faster at large Q2 than 

F,(Q2).1 



(3) Vertex and vacuum polarization corrections to TH are higher 
2 order in as(Q ) since we choose K 

2 2 
= Q . The effective argument of as 

in TH is Q2 = xyQ2 or (l-x)(1-y)Q2 corresponding to the actual momentum 
m 

transfer carried by the gluon. 

(4) By definition, $(x,K~) sums all (reducible) contributions from 

low momentum transfer gluon exchange in the qi wave function. Hard gluon 

contributions with It??/ > ~~ and the irreducible (cross-graph, etc.) give 

contributions to TH which are higher order as(Q2). By analyzing the 

denominators in TH one can show that the natural t" cutoff for $(X,K) 

which minimizes higher order contributions is ~~ e Q; = Q2min{e,e}. 

(5) Although TH is singular at x + O,l, the endpoint behavior of 

$(x,Q2) - xc., (1-x)' (E > 0) is sufficient to render this region 

harmless. 

c. The Meson Distribution Amplitude 

The essential prediction of QCD for the pion form factor is the 

power-law behavior8 Fz N 1/Q2, with logarithmic corrections from the 

explicit powers of as(Q2) in TH and the Q2 dependence of the distribution 

amplitudes 4(x,Q2). . 

The variation of 4 with Q2 comes from the upper limit of the zl 

integration (since 9 N l/k:) and the renormalization scale dependence: 

$Q(x,Q = Z,(Q) Qo 
Z2 (Q,) $ (x,Q  (4.10) 

due to vertex and self-energy insertions. Thus 

Q 2 -ii- $(x,0) = 92 $Q(x,;l) + d 
aQ2 16x2 dlogQ2 

log Z2(Q2) 9kQ) o (4011) 



To order as(Q2) we can compute Q2J, from one-gluon exchange [as in 

Eq. (4..7)1, and dlogZ2(Q2)/dlogQ2 = as(Q2)yF/4n. Setting $(x,Q) = 

x(1-x) T(x,Q) = x1x27, we obtain an "evolution equation"lg . 

1 

x1x2Q 
2 a as (Q2) 

a logQ2 
~(Xi,Q) = 4a / 

Cdyl v(x i,Yi) @(Y,Q) 
0 

where 

v(xi,yi) x$5 e(y1-x+ 
A 

y1-x1 

Cti 
hlL2 

= 1 when the q and q' helicities are opposite] and 

A~(yi,Q) = ~(yi,Q) - ~(Xi,Q) l 

(4.12) 

(4.13) 

(4.14) 

The T(x,,Q) subtraction is due to the y,$ term - i.e., the infrared 

dependence at yi = x i is cancelled for color singlet hadrons. Thus 

given the initial condition $(xi,Qo), perturbation theory determines 

the evolution of +(x,Q) for Q > Q,. The solution to the evolution 

equation is 19 

~(Xi,Q) = ~1x2 n=O n o 'Z ' a (Q2) C~'2(x1-x2)(log Q2/A2)-Yn (4.15) 

3/2 where the Gegenbauer polynomials Cn (orthogonal on I cdxlx x 12 > are 

eigenfunctions of V(xi,yi). The corresponding eigenvalues are the 

"non-singlet" anomalous dimensions: 

cF 
Y, = B 

0 

n+l 26 

1+4 c 
1 h152 

2 ii-- (n+l)(n+2) 1 ' O . (4.16) 

L: These results can also be derived by using the operator product expansion 

for the distribution amplitude.4g By definition 



_ 
tj(x,Q) = A+ J- % eixz '2 i<0~~(z)+(0)~n>Q~z+=0,z2,- 2 zl=@(-1/Q2) (4*17) 

(Atis the positive energy spinor projection operator). The relative 
. 

2 separation of the q and i thus approaches the light-cone z =0 as Q2 + 00. 

Equation (4.16) then follows,by expanding Jl(z)$(O) in local operators. 1 
The coefficients an are determined from $(xi,Qo): 

.*.-I ; ; 
-'n 1 

s d(y-x2) C;'2 (x1-x2) Cp (xi ,Q,) . (4 l 18) 

-1 

For Q 2ico , only the leading yo=O term survives: 

where 

) 

(4.19) 

(4.20) 

is the meson wave function at the origin as measured in the decay IT+NJ: 

aO 
6= 

More generally, the 

lf 
2%" l 

(4.21) 

leptonic decay (p" +- -tee, etc.) of each meson 

normalizes its distribution amplitude by the "sum rule" 

1 
J fM dx 4&Q) = - , 
0 25 

(4.22) _ 

independent of Q. The fact that fir # 0 implies that the probability of 

finding the Iqi> Fock state in the pion is non-zero. In fact all the 



Fock state wave functions JI::(Xi’kli) (1~1 < K~) are well-defined, even 

in the infrared limit x i + 0 (since J&J w <k:>/xi and <k:> is non-zero 

for a state of finite radius). 
. 

The pion form factor at high Q2 can thus be written11'1g'50 

1 

F,(Q2) = s dx 4'*(x,Q> TH(X,Y;Q) $(Y,Q) 
0 (4.23) 

16 
TH= z 

a&l-x) (I-y)Q2) 

(1-x) Cl-y)Q2 l 

Thus 

F,(Q2) = x an logmYn 
2 l(jr as(82) 

n=O 
Q2/A2 --y- 

Q2 

x [l +B(asIp2)) +e( $)I (4.24) 

where ii2 2 <(l-x)(1-y)>Q2. Finally, for the asymptotic limit where only 

the leading anomalous dimension contributes:51 

Urn F,(Q2) 
as (Q2) 

Q2 +m 
= 167r f; 

Q2 ' 
(4.25) 

The analysis of the F,,(Q2) form factor, measurable in ee -f eer 0 

reactions proceeds in a similar manner. [See Figure l(a).1 An 

interesting result islg 

as(Q2) = 
VQ2) 

4nQ21F,y(92)1 2 

[1 + @( asJQ2))] (4.26) 

which provides a definition of a 
S 

independent of the form of the distri- 

bution function 48. Higher order corrections to Fx(Q2) and F,,(Q2) are 

discussed in Reference 50. 



D. Large Momentum Transfer Exclusive Processeslg 

The meson form factor calculation which~we outlined above is the 

prototype for the calculation of the QCD hard scattering contribution . 

for the whole range of exclusive processes at large momentum transfer. 

Away from possible special points in the xi integrations (see below) 

a general hadr onic amplitude can be written to leading order in l/Q2 

as a convolution of a connected hard-scattering amplitude TB convoluted 

with the meson and baryon distribution amplitudes: 

and 

181 <Q2 d2k 
4,(x,Q) = 

J 
2 $Q (x ‘: 16*2 szi ’ -L ) , 

181 <Q2 

(PB(Xi,Q) = 
s 

Cd2k,l J, qqq (xi ,i;,i) l 

(4.27a) 

(4.27b) 

The hard scattering amplitude TR is computed by replacing each external 

hadron line by massless valence quarks each collinear with the hadron's 

momentum pi xipE. p'"= For example the baryon form factor at large Q2 has 

the formg,1g [see Figure 2(a) and Figure 71 

(+(Q2) = j-Edxl Cdyl 9*(yi,@ T&,Y ;92> t’(xi% (4.28) 

where TR is the 3q+y -t 3q' amplitude. [The optimal choice for G is 

discussed in Reference 19.1 For the proton and neutron we have to 

leading order CC, = 2/31 

128n2C2 
T = B T 

P (Q2+~i)2 ' 

1281r~C~ 
Tn = B 

3(Q2+M2)2 [ T1 -T21 
0 

(4.29) 

(4.30) 
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Fig. 7. (a) Leading contributions to TH for the baryon form factors 
corresponding to the four terms of Eq. (4.31) and (4.32), 
respectively. (b) Contributions to the kernel for the evolu- 
tion of the baryon distribution amplitude. 



where 

T1 = - 
as(x3y3Q21 a&l-x,) U-Y,)Q~) 

x3(1-x1)2 Y3GY112 

; 
as(x2y2Q2) as((l-xl) (l-y$Q ) 

+- 
x2(1-x1)2 Y2u-Yl~2 

, (4.31) 

and 

as(xlylQ 2 ) as (x3y3Q 2 
) 

T2 = - 
x1x3(1-x1) Y1Y3(l-Y3) 

. (4.32) 

T1 corresponds to the amplitude where the photon interacts with the 

quarks (1) and (2) which have helicity parallel to the nucleon helicity, 

and T 2 corresponds to the amplitude where the quark with opposite 

helicity is struck. The running coupling constants have arguments Q2 

corresponding to the gluon momentum transfer of each diagram. Only the 

large Q2 behavior is predicted by the theory; we utilize the parameter 

MO to represent the effect of power-law suppressed terms from mass 

insertions, higher Fock states, etc. 

The QL-evolution of the baryon distribution amplitude can be 

derived from the operator product expansion of three quark fields or 

from the gluon exchange kernel, in parallel with the derivation of 

(4.12). The baryon evolution equation to leading order in as isl' 

X1X2X3 ~7(xi,Q) ' 3 ~ ~(Xi,Q) 
I 0 

CdyI '(Xi ,Yi ) ~(yi,Q). (4.33) 



Here 4 = xIx2x37, 5 = log(log Q2/A2) and [see Figure 7(b)] 

$& v(xi,yi) = 2xlx2x3 izj c ' (yi-xi) "~-yk) ~ 
j 

~ + ~ 
i-j ii 

= V(Y& l (4.34) 

The infrared singularity at xi = yi is cancelled because the baryon is 

color singlet. The evolution equation has the general solution 

~(Xi,Q) c a ; (x ) = x1x2x3 n=O n n i (4.35) 

The leading (polynomial) eigensolution T,(x,) and corresponding baryon 

anomalous dimensions are given in References 19 and 52. Thus at large 

Q2, the nucleon magnetic form factors have the formg'lg 

C$.+Q2) -+ 2 
A2 
)-‘“‘” [l +Li(as(Q2), $)] . (4.36) 

We can also use this result to obtain results for ratios of various baryon 

and isobar form factors assuming isospin or SU(3)-flavor symmetry for the 

basic wave function structure. Results for the neutral weak and charged 

weak form factors assuming standard SU(2) xU(1) symmetry are given in 

Reference 46. 

As we see from Eq. (4.28), the integration over xi and yi have 

potential endpoint singularities. However, it is easily seen that any 

anomalous contribution [e.g., from the region x2,x3 N @(m/Q), 

x1 N l-@'(m/Q)] is asymptotically suppressed at large QL by a Sudakov 

form factor arising from the virtual correction to the yyq vertex when 

the quark legs are near-on-shell Cp2 N @(mQ)j.1gr54 This Sudakov 



suppression of the endpoint region requires an all orders resummation 

of perturbative contributions,57 and thus the 'derivation of the baryon 

form factors is not as rigorous as for the meson form factor, which has 
. 

no such endpoint singularity. 

The most striking feature of the QCD prediction (4.36) is the l/Q4 

power-law behavior of 5; as #. The power-law dependence8 reflects: 

(1) The essential scale-invariance of the qq scattering subprocesses 

within T H' , 
(2) The fact that the minimal Fock state of a baryon is the 3-quark 

state. 

We will discuss the phenomenology of the baryon form factors and 

the resulting constraints on the baryon wave function in Section VI. 

In the case of hadron scattering amplitudes A+B + C+D, photo- 

production, Compton scattering, etc., the leading hard scattering QCD 

contribution at large momentum transfer Q2 = tu/s has the formlg 

(helicity labels and suppressed) (see Figure 8) 

x $,(xa,“Q) +,(xb’“9) ’ (4.37) 

The essential behavior of the amplitude is determined by TH, computed 

where each hadron is replaced by its (collinear) quark constituents. 

We note again that TH is "collinear irreducible," i.e., the transverse 

momentum integrations of all reducible loop integration are restricted 

to kf > @(Q2) since the small kL region is already contained in 4. If 

the internal propagators in TH are all far-off-shell@(Q2) Cas in Figure 

8(a) 1 then a perturbative expansion in as(Q2) can be carried out. 

. . 
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Fig. 8. QCD contributions to meson-meson scattering at large momentum 
transfer. Diagram (c) corresponds to the Landshoff pinch singu- 
larity which is suppressed by quark form factor effects. 

F 



However, this is not true for all hadron-hadron scattering amplitudes 

since one can have multiple quark-quark scattering processes which allow 

near-on-shell propagation in intermediate states at finite values of the 

xi' l7 The classic example is meson-meson scattering, where two pairs of 

quarks scatter through the same angle [see Figure 7(c)]. However, the 

near-on-shell region of integration is again suppressed by Sudakov 

factors. CPhysically this suppression occurs because the near-on-shell 

quarks must scatter without radiating gluons.1 A model calculation by 

MuellerlO for IT-IT scattering in QCD (using an exponentiated form of the 

Sudakov form factor) shows that the leading contribution comes in fact 

from the off-shell region lk21 N 0(Q2)lmE -1 where E = (2c+l) , 

c = 8C,/(ll - $ n,) (for four flavors E "= 0.281). This region gives 

the contribution" 

UM ITTr-tlrli 
~ e(Q2)-3/2 - c Rn (2c+l/2c) 

(4.38) 

compared to (Q2)-2 from the hard scattering Ik21 -d(Q2) region. 

Thus even when pinch singularities are present the far-off-shell 

hard scattering quark and gluon processes dominate large momentum 

transfer hadron scattering amplitudes. Given this result we can abstract 

some general QCD features common to all exclusive processes at large 

momentum transfer: 

(1) All of the non-perturbative bound state physics is isolated 

in the process-independent distribution amplitudes. 

(2) The nominal power-law behavior of an exchange amplitude is 

(1/Q>n-4 where n is the number of external elementary particles (quarks, 



gluons, leptons, photons in TH). This immediately implies the dimensional 

counting rules:8 

f(e ) c.ui. 

where n = nA+nB+nC+ng, and 

"H-1 

(4.39) 

(4.40) 

where FH is the helicity-conserving18'19 form factor. These power-law 

predictions are modified by (a) the Q2-dependence of the factors of as 

in TH, (b) the Q2-evolution of the distribution amplitudes and (c) a 

possible small power associated with the almost complete Sudakov 

suppression of pinch singularities in hadron-hadron scattering. The 

dimensional-counting rules appear to be experimentally well-established 

for a wide variety of processes (see Reference 19 and Figure 9): 

(+JQ2) - (Q2)-2 , F,(Q2) N (Q2+ 

and 

g (VP + rp) * (Q2>-7 

$f ('V -t rp) 1~ (Q2)-8 

$ (PP -+ PP) m (Q2+' 

2 (UP + VP) $- (VP -t VP) N Q2 I 

(4.41) 

(4.42) 

at fixed Bc m . The application to yy -t 6 processes is discussed in . . 
Section IV-E. 
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(3) Since the distribution amplitudes #M and 0, are Lz=O angular 

momentum projections of the hadronic wave functions, the sum of the quark 

spin along the hadron's momentum equals the hadron spin:18 
. 

c 
z 

iCH 
si = s; . 

(In contrast in inclusive reactions there are any number of non-interacting 

quark and gluon spectators, so that the spin of the interacting constituents 

is only statistically related to the hadron spin - except possibly at the 

edge of phase-space x N 1.) Furthermore since all propagators in TH are 

hard, the quark and hadron masses can be neglected at large Q2 up to 

corrections of order -m/Q. The vector gluon interactions conserve quark 

helicity when all masses are neglected. Thus total quark helicity is 

conserved in TH at large Q2. Combining this with (4.63), we have the 

QCD selection rule: 

c AH = c xH (4.44) 
initial final 

. I.e., total hadron helicity is conserved up to corrections of order 

@ '(m/Q). 

Hadron helicity conservation thus applies for all large momentum 

transfer exclusive amplitudes involving light meson and baryons. Notice 

that the photon spin is not important: QCD predicts that yp -f rp is 

proton helicity conserving at fixed ec m , s + a, independent of the . . 
photon polarization. Exclusive amplitudes which involve hadrons with 

quarks or gluons in higher orbital angular momentum states are also 

suppressed by powers of the momentum transfer. An important corollary 
\ 

of this rule is that helicity-flip form factors are suppressed, e.g.: 



F~,(Q~) /F~(Q~) N @‘b2/Q2) . (4.45) 

The helicity rule, Eq. (4.44), is one of the most characteristic 

features of QCD, being a direct consequence of the gluon's spin. A 

scalar or tensor gluon-quark coupling flips the quark's helicity. Thus, 

for such theories, helicity may or may not be conserved in any given 

diagram contributing to TH, depending upon the number of interactions 

involved. Only for a vector theory, like QCD, can we have a helicity 

selection rule valid to all orders in perturbation theory. 

The study of timelike hadronic form factors using e+e- colliding 

beams can provide very sensitive tests of this rule, since the virtual 

photon in e+e- + y* + hAEB always has spin +l along the beam axis at high 

energies. Angular momentum conservation implies that the virtual photon 

can "decay" with one of only two possible angular distributions in the 

center of momentum frame: (1+cos20) for I XA-ABI = 1, and sin26 for 

1 ‘A- ‘BI = 0 where XA,B are the helicities of hadron hA B. Hadronic 
, 

helicity conservation, Eq. (4.44), as required by QCD greatly restricts 

the possibilities. It implies that XA+XB = 0 (since the photon carries 

no "quark helicity"), or equivalently that AA-XB = 2XA = -2AB. Con- 

sequently, angular momentum conservation requires [AAl = lhBl = l/2 for 

baryons, and lhAl = Ix,~ = 0 for mesons; furthermore, the angular dis- 

tributions are now completely determined: 

do 
dcose (e+e- + BE) 0: l+cos28 (baryons) 

do 
dcos0 (e+e- + MM) = sin20 (mesons) 

(4.46) 

(4.47) 

We emphasize that these predictions are far from trivial for vector mesons 



and for all baryons. For 

l+acos28, -1 C a < 1, in 

So simply verifying these 

example, one expects distributions like 

theories with a scalar or tensor gluon. 

angular distributions would give strong 
. 

evidence in favor of a vector gluon. 

The power-law dependence in s of these cross sections is also 

predicted in QCD, using the dimensional counting rule. Such "all orders" 

predictions for QCD allowed processes are summarized in Table III. 

Processes suppressed in QCD are also listed there; these all violate 

hadronic helicity conservation, and are suppressed by powers of m2/s in 

QCD. This would not necessarily be the case in scalar or tensor theories. 

TABLE III 

Exclusive channels in e+e- annihilation. 
-ie(pA-pB)'F(s) for meSonS, 

The h iTBY* couplings in allowed 
processes are 
and -ie2e~vpa~op~F~y 

-iec pg)y'G(S)U(p~) 4 for baryons, 
(s) for meson-photon final states. Similar predic- 

tions apply to decays of heavy-quark vector states, like the $,$' ,--*, 
produced in e+e- collisions. 

e+e- * h&) $&a,) Angular Distribution 
u(e+e- + h&> 

u(e+e- + v+fJ+) 

Allowed 

in QCD 

Suppressed 

in QCD 

I +- ee + n+n-,K+K- 

P+(O>P-(O),K*+K*- 

ray (*l) ,SY ,rl'Y 

+- ee + p(f+)p(&),&i,... 

p(f)l)&+),iiA,... 
, A(')I)~(T%),~*~*,... 

e+e- + p+(O)p-(+l),~+p-,K+K*-,... 1 + cos2e 

P+('l>P-('I),... sin29 

e+e- * p(%)p(&),p&A&... 

p(+%>&%),A&... 

A(?%)~(+%),... 
\ 

sin2e 

sin2e 

1 + cos2e 

1 + cos2e 

1 + cos2e 

1 + cos2e 

sin20 

1 + cos29 

sin29 

kjF(s) 1 2 a, c/s2 

klF(s)12 - c/s2 

(na/2)s[FMy(s)12 - c/s 

2 (G(s) 1 - c/s4 
2 

IG(s) 1 - c/s4 

IGCs>l 
2 - c/s4 

-z c/s 3 

< c/s 3 

< c/s= 
< c/s= 
< c/s5 



The exclusive decays of heavy quark atoms ($,JI' ,. . . ) into light 

hadrons can also be analyzed in QCD.l* The decay J, + pi; for example 

proceeds via diagrams such as those in Fig. 2(b). Since q's produced 

in e+e- 
. 

collisions must also have spin 51 along the beam direction and 

since they can only couple to light quarks via gluons, all the proper- 

ties listed in Table III apply to 9, IJJ', T, T' ,... decays as well. There 

are considerable experimental data for the $ and $' decays.55 

Perhaps the most significant tests are the decays JI,$' + pF,nG,... . 

The predicted angular distribution l+S2cos2e is consistent with published 

data.35 This is important evidence favoring a vector gluon since scalar 

or tensor gluon theories would predict a distribution of sin20+d(as). 

Dimensional counting rules can be checked by comparing the J, and $' rates 

into pp, normalized by the total rates into light-quark hadrons so as to 

remove dependence upon the heavy-quark wave functions. Theory predicts 

BR(& + pp’> N 
BR(JI’ -+ PP’> 

where 

BR($ -t p;) Z r(* + pp> 
I?($ + light-quark hadrons) l 

(4.48) 

(4.49) 

Existing data suggest a ratio (M,,/M$)" with n N 6 + 3, in good agreement 

with QCD. 

Many more examples of exclusive reactions which test the basic 

scaling laws and spin structure of QCD are discussed in References 18 

and 19. The essential point is that exclusive reactions have the 

potential for isolating the QCD hard-scattering processes in situations 

where the helicities of all the interaction constituents are~controlled. 

In contrast, in inclusive reactions the absence of restrictions on the 



spectator quark and gluons allows only a statistical correlation between 

the constituent and hadronic helicities. 

E. Two-Photon Processes12 
l 

One of the most important applications of perturbative QCD is to 

the two-photon processes do/dt (yy + M$, M = IT,K,P,W at large 

s = (kl+k2)2 and fixed Oc,m,. These reactions, which can be studied 

in e+e- + e+e-MG processes , provide a particularly important laboratory 

for testing QCD since these "Compton" processes are, by far, the simplest 

calculable large-angle exclusive hadronic scattering reactions. As we 

discuss below, the large-momentum-transfer scaling behavior, the helicity 

structure, and often even the absolute normalization can be rigorously 

computed for each two-photon channel. 

Conversely, the angular dependence of the yy + @  amplitudes can be 

used to determine the shape of the process-independent meson "distribution 

amplitudes," $,(x,9), the basic short-distance wave functions which 

control the valence quark distributions in high momentum transfer 

exclusive reactions. 

A critically important feature of the yy + M% amplitude is that the 

contributions of Landshoff17 pitch singularities are power-law suppressed 

at the Born level - even before taking into account Sudakov form factor 

suppression. There are also no anomalous contributions from the XN 1 

endpoint integration region. Thus, as in the calculation of the meson 

form factors, each fixed-angle helicity amplitude can be written to 
2 leading order in l/Q in the factorized form CQ2 = pT = tu/s; 

% = min(xQ,(l-x)Q) 1 (see Figure 9): 



u#z . yy+e = jdx jcb $E(Y,"Q~) T&,Y;s,~~.~.> 6,(x,"9x) (4.50) 
0 0 

where TH is the hard-scattering amplitude yy -t (qt)(qq) for the production 

of the valence quarks collinear with each meson and $,(x,Q) is the 

(process-independent) distribution amplitude for finding the valence q 

and ;i with light-cone fractions of the meson's momentum, integrated over 

transverse momenta k I < Q. The contribution of nonvalence Fock states 

are power-law suppressed. Further, the spin-selection rule (4.44) of 

QCD predicts that vector mesons M and E are produced with opposite 

helicities to leading order in l/Q and all orders in as(Q2). 

Dimensional counting* predicts that for large s, s4 da/dt scales 

at fixed t/s or t3= m up to factors of En s/h2. . . 
Some forty diagrams contribute to the hard-scattering amplitudes 

for yy + MZ (for nonsinglet mesons). These can be derived from the four 

independent diagrams in Fig. 10(b) by particle interchange. The resulting 

amplitudes for helicity zero mesons are: 

T* 16tra 
S 327ra (e1 - e2)2a 

=- 
T 3s [ 1 x(1-x)y(l-Y) 1 _ cos2~ 

es c.m. 

(4.51) 

“-I 16aas 32Ta (el- e2)2(1-4 ele2a(y(l-y) +x(1-x)) 

T-+ =3s 2-c (1-x) y (1-y) l- cos20 
+ 

a2 c.m. -b2cos2ec m . . I 

(4.52) 

where b" > 
= (l-x)(1-y) +xy, the subscripts -++,--,... refer to photon 

helicities, and el, e2 are the quark charges [i.e., the mesons have 
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Fig. 10. (a) Factorized structure of the yy + e amplitude in QCD at 
large momentum transfer. The TJ.J amplitude is computed with 
quarks collinear with the outgoing mesons. (b) Diagram con- 
tributing to TH(yy - + MM) to lowest order in ct 

S’ 



charges +(e,-e2)l. To compute the yy + %I amplitude JtAx, [Eq. (4.50)1, 

we now.need only know the x-dependence of the meson's distribution 

amplitude $,(x,@; the overall normalization of 0, is fixed by the 
. 

"sum rule" (n = 3) , 
C 

1 

J dx fM 
$,(x,9) = - 

0 2fi 
(4.53) 

where fM is the meson decay constant as determined from leptonic decays. 

Note that the dependence in x and y of several terms in TAX, is quite 

similar to that appearing in the meson's electromagnetic form factor 

(4.23): 

16nas 1 

FM(s) = -g-- J 
dx dy 

4$(x,5,> qY'5 1 
x(1-x) y(l-y) 

0 

(4.54) 

when @,(x,Q) = $M(l-x,Q) is assumed. Thus much of the dependence on 

+(x,Q) can be 

form factor - 

4-k 
r/K- = t 

removed from &lAx, by expressing it in terms of the meson 

. I.e., 

(4.55) 

A+- ( (q - e2j2) 
A-+ = 16naFM(s) 

1 - cos2ec m + 2(e19) gpcam. 34 ] 1 (4.56) 
. . 

up to corrections of order as and m2/s. Now the only dependence on 4,, 

and indeed the only unknown quantity, is in the e-dependent factor 



1 

I 

f#;<x 23 QY 15) a[y(l-y) +x(1-x)] 

dxdy x(1-x) y(l-y) 
n 

a2 -b2cos28 c.m. 
1 

/ dxdy 
qp%a $(Y 2) 

x(1-x) y(l-y) 
0 

. (4.57) 

The spin-averaged cross section follows immediately from these expressions: 

da 2 da 
dt= ; dcos0 c.m. 

FdS) 2 (Cel- e2) 22 1 2(ele2XCel-e2)2) 
= 16ra* 7 

1-cos2ec . m . > 
2+ 

l- cos2ec . m . 

;$J + 2(ele2)2 g2[ecam. ;$,J - (4.58) 

In Figure 11 the spin-averaged cross sections(for yi + ITT) are plotted 

for several forms of $,(x,Q). At very large energies, the distribution 

amplitude evolves to the form 

$,(x,Q) Q,oJ fi fM  x(1-X) ,  (4.59) 

and the predictions [curve (a)1 become exact and parameter-free. However 

this evolution with increasing Q2 is very slow (logarithmic), and at 

current energies $11 could be quite different in structure, depending upon 

the details of hadronic binding. Curves (b) and (c) correspond to the 

extreme examples $, = [x(1-x)1 +i and 0, 0~ &(x-S), respectively. Remark- 

ably, the cross section for charged mesons is essentially independent of 

the choice of I$,, making this an essentially parameter-free prediction 

of perturbative QCD. By contrast, the predictions for neutral helicity- 
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Fig. 11. QCD predictions for yy + TTTT to leading order in QCD. The 
results assume the pion formfactor parametrizat%on F,(s) s 
0.4 GeV2/s. Curves (a), (b) and (c) corres ond to the distribu- 
tion amplitudes $ = x(1 - x), [x(1 - x)] 18 , and 6(x - l/2), 
respectively. Predictions for other helicity zero mesons are 
obtained by multiplying with the scale constants given in 
Ref. 15. 
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zero mesons are quite sensitive to the structure of 4M. Thus we can 

study the x-dependence of the meson distribution amplitude by measuring 

the angular dependence of this process. 

The cross sections shown in Figure 8 are specifically for yy + ITT, 

where the pion form factor has been approximated by Fx(s) w 0.4 GeV'/s. 

The X+IT- cross section is quite large at moderate s: 

g (YY + n+.rr-) 4jF,b) I2 
- 

f$ (YY + P+u-> l- cos4ec m . . 

(4.60) 

Similar predictions are possible for other helicity-zero mesons. The 

normalization of yy + m relative to the yy + ITIT cross section is 

completely determined by the ratio of meson decay constants (f,/f,)4 

and by the flavor-symmetry of the wave functions, provided only that 

4~~ and 6, are similar in shape. Note that the cross section for charged 

p's with helicity zero is almost an order of magnitude larger than that 

for charged r's. 

Finally notice that the leading order predictions CEq. (4.58)l have 

no explicit dependence on a 
S’ 

Thus they are relatively insensitive to 

the choice of renormalization scheme or of a normalization scale. This 

is not the case foreither the form factor or the two-photon annihilation 

amplitude when examined separately. However by combining the two analyses 

as in Eq. (4.58) we obtain meaningful results without computing O(as) 

corrections. The corresponding calculations for helicity one mesons are 

given in Reference 12. Hadronic helicity conservation implies that only 



helicity-zero mesons can couple to a single highly virtual photon. So 

'Ml ' the transverse form factor cannot be measured experimentally. For 

simplicity we will assume that the longitudinal and transverse form 
l 

factors are equal to obtain a rough estimate of the yy + p,p, cross 

section (Figure 12). Again we see strong dependence on 4 
Ml 

for all 

angles except Bc m w IT/~, where the terms involving gL vanish. Con- . . 
sequently a measurement of the angular distribution would be very 

sensitive to the x-dependence of +M , while measurements at 8 = rr/2 
1 c.m. 

determine FM (s). Notice also that the number of charged p-pairs (with 
1 

any helicity) is much larger than the number of neutral p’s, particularly 

near 0 c.m. = a/2. The cross sections are again quite large with 

do/dt (YY-, P;P;) 

do/dt (YY-W+P-) 

Results for other mesons are gi 

5 GeV' - 
s2 l 

0 

ll 
=- 

c.m. 2 

ren in Reference 12. 

(4.61) 

The yy -f @  and y*y -f M processes thus provide detailed checks of 

the basic Born structure of QCD, the scaling behavior of the quark and 

gluon propagators and interactions, as well as the constituent charges 

and spins. Conversely, the angular dependence of the yy -t H amplitudes 

can be used to determine the shape of the process-independent distribution 

amplitude g,(x,Q) for valence quarks in the meson q< Fock state. The 

case c m -dependence of the yy + @  amplitude determines the light cone . . 
x-dependence of the meson distribution amplitude in much the same way 

that the xB 
3 

dependence of deep inelastic cross sections determines the 

light-cone x-dependence of the structure functions (quark probability 

functions) G ,,,(x,Q) . 
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Fig. 12. QCD predictions for yy -t plb, 
leading order QCD. 

with opposite helicity +l to 
The normalization given here~ assumes 

that the p distribution amplitude is helicity independent. 
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The form of the predictions given here are exact to leading order 

in as(Q2). Power-law (m/Q)2 corrections can arise from mass insertions, 

higher Fock states, pinch singularities and nonperturbative effects. 
. 

In particular, the predictions are only valid when s-channel resonar-a 

effects can be neglected. It is likely that the background due to 

resonances can be reduced relative to the leading order QCD contributions 

if one measures the two-photon processes with at least one of the photons 

tagged at moderate spacelike momentum q2, since resonance contributions 

are expected to be strongly damped by form factor effects. In contrast, 

the leading order QCD y1y2 + 6 amplitudes are relatively insensitive to 

the value of qt or 4; for I4$ << s. 

Finally, we note that the amplitudes given above have simple crossing 

properties. In particular, we can immediately analyze the Compton ampli- 

tude yM + yM in the region t large enough with s >> ItI in order to study 

the leading Regge behavior in the large momentum transfer domain. In the 

case of helicity 51 mesons, the leading contribution to the Compton 

amplitude has the form (s >> Itl) 

&yM-+yM = 16raFM (t) (e:+ez) 
1 

(4.62) 

(Ay = xy , AM = A;> 

which corresponds to a fixed Regge singularity at J=0.56 In the case 

of helicity zero mesons, this singularity actually decouples, and the 

leading J-plane singularity is at J = -2. 



v. DEEP INELASTIC LEPTON SCATTERING 

The crucial evidence that the electromagnetic current within hadrons 

is carried by point-like spin l/2 quarks comes from deep-inelastic 
. 

electron, muon and neutrino scattering. At large momentum transfer, 

Q2 2 2 GeV2 the lepton-nucleon inelastic cross section displays a scale- 

invariant behavior consistent with the simplest type of impulse approxi- 

mation--where the electron scatters directly against point-like quark 

constituents of the target.57 The deviations which are observed at very 

large Q2 are consistent with the color radiative corrections predicted 

by QCD. In addition at low values of QZ, there is evidence for power 

law "higher twist" corrections associated with coherent multiquark 

processes, interference effects, and final state corrections--quite in 

analogy to the corrections to impulse approximation expected in nuclear 

physics inelastic breakup calculations. 

The Fock state representation we discussed in Section III provides a 

particularly simple and elegant basis for calculating the deep inelastic 

cross section in QCD. We first consider the forward Compton amplitude 
2 y*p + y*p with virtual photon mass q = -Q 2 c 0, and then calculate the 

ep + eX cross section from the absorptive part. An ideal Lorentz frame 

iS 

P = (P+,P-.ig = (P+, $9 $) 

P = (9',9,q1) = ( 0, 99 Gl ) 
P 

(5.1) 

(5.2) - 

with 9,' = Q2 and p-q = mv. For the diagram 13b which has no final state 

interactions, the (light-cone) energy denominator between the~photon 

interactions is 
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Fig. 13. Calculation of the forward virtual Compton amplitude. Diagram 
(b) gives the impulse approximation, neglecting final state 
and multiquark interactions. 



I 

where m is the struck quark mass, and the sum over i # 1 gives the spec- 

tator quark and gluon contributions. For states with 

CC 2mv and k2 << Q2 1 we can write 

2 
D Z.2rnw - $+ iE (5.4) 

14 = 

i.e., the electron scattering on a quark with light-cone momentum fraction 

D = m2 + 2mv - 
(iI + ;;1)2 + m2 

X 
- c(": : m2)i+ iE (5.3) 

if1 

1mD-l 
2 

=$&6X-& ( > (5.5) 

x ~ k" + k3 

PO + P3 = xBj (5.6) 

The corresponding impulse approximation cross section is (x + x 
Bj 

) 

da 
dQ2 dx 

(%p + a'x) = 
c Gq/P 

(x,a> da 

9 dQ2 
(Ilq + a's> (5.7) 

= xp 
where21 pq 

G q,p (x, Q) =~~[d2kl]~dx$@x,kL) 126(x - xq) (5.8) 
nr3 

gives the probability distribution for finding the quark with fractional 

light-cone momentum collinear up to the scale k,' < Q2, 181 < 2mv. Unlike 

large momentum transfer exclusive amplitudes, all Fock states contribute 

to the inclusive cross section. The subprocess cross section 

do/dQ 2 (Rq + 2's) is evaluated for a quark collinear with the proton 

momentum p + 
4 =xp+,z *o. 1 Since all the loop corrections to the sub- 

process cross section are hard (k2 I 2 O(Q2)), it can be developed as a 
-. 

power series in as(Q2). Thus the only correction to perfect scale- 



invariance of dd/dx dQ2 at large Q2 and fixed x 2 
W 

comes for the Q depen- 

dence of the probability distribution G(x,Q2), This in turn can only 

arise from the wavefunction renormalization or from contributions . 

'n - B(l/kl) at large kl. In QCD these occur only from the perturbative 

processes q -t qg, and g -t gg, g + q& as illustrated in Figure 14. In 

parallel to the derivation of the evolution equation for the distribution 

amplitude, we then can derive evolution equations for the distributions - 

Gq/H (x,Q2) and G ,/,(x,Q2) of the form58,5g 

1 
a as (Q2> 

alogQ2 
G(x,Q) = 2T / X 

For example, for the "non-singlet" distribution 

G ,,,(x,Q) = Gq,HkQ) - GyH(X,Q) 

(5.9) 

(5.10) 

we have to lowest order in as(Q2), (CF = 4/3) 

P q,q(z> 

= 
cF ;;zz2-&(l-z)[dx;Txxj (5.11) 

(The subtraction term, which ensures finite behavior at x 
g 

= 0, arises 

from the wavefunction renormalization, as in Eq. (4.14)). The Q2 depen- 

dence can be displayed most simply by taking moments: 

M,(Q2) = G(x,Q2) x"dx 

Then 

(5.12) 

(5.13) 
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Fig. 14. Contributions to the hadron Fock state wavefunction which give 
JI Q l/k1 at large kSL and thus structure function evolution. 



where the y, are defined in Eq. (4.16). The higher order corrections 

to the Q'-evolution of Mn are discussed in References 1 and 2. A critical 

feature21 is the fact that the higher loop corrections (e.g., from the 
. 

higher Fock states) are constrained kinematically to k: < Wy)Q2 c 

Cl-x)Q2, where y is labelled in the figure; i.e., the evolution is 

reduced at large x and for large n. A detailed discussion is given in 

Reference 41. 

Equation (5.7) displays an essential feature of-the QCD predictions 

for inclusive reactions: the factorization of the physical cross section 

into a hard-scattering subprocess cross section, controlled by short- 

distance perturbative QCD, convoluted with structure functions G(x,Q2) 

which contain the long distance hadronic bound state dynamics. Notice 

that the QL-evolution of G(x,Q) is also completely specified by the per- 

turbative QCD processes and is independent of the nature of the target. 

All the corrections to the perturbative QCD impulse approximation 

from final state interactions, finite kf effects, interference contribu- 

tions, mass corrections, etc.,are of higher order in 1/Q2, at least when 

analyzed using perturbative methods. In the operator product analysis 

these contributions correspond to matrix elements of "higher twist" 

operators which have non-minimal dimensions. The most important higher 

twist terms for deep inelastic lepton scattering are expected to cor- 

respond to processes where the lepton scatters on multiparticle clusters 

in 

of 

the target (qq, qi, virtual mesons, qg, etc.). We thus obtain a sum 

contributions (see Figure 15):15 

-!@- (RH + !&IX) = Ga,H(~) % (ea + ea) 
dQ2dx c (5.14) 

asH dQ 
'a = xp H 
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+ QCD evolution 
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Fig. 15. QCD contributions to inelastic electron-nucleon scattering, 
including radiative and higher twist (diquark, triquark) 
corrections. 
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where, in general doa/dQ2 falls in Q2 according to the compositeness of a: 

* (a 4nc12 

dQ2 
a + a'a) - - 

Q4 ' 
FafQ2) 1 2 (5.15) 

* 
For example, the "diquark" eqq -c eqq gives a contribution to ep + eX 

of relative order (m2/Q2)2. Since the qq can carry a large fraction of 

the proton's momentum, this contribution can be significant at large x. 

For a guide to this effect one can use the spectator counting rule:6098 

G a/HcX) 2 (' - x) 
2ns-1 

(5.16) 

where n s is the minimum number of spectator quarks (or gluons) in the 

Fock state required to stop at x + 1. The minimal Fock states containing 

a gives the dominant contribution. 

The simplified rule (5.16) can be derived from minimally connected 

tree graph diagrams, ignoring spin effects, or from simple phase space 

considerations if one ignores the spectator quark masse&l (see Section VI). 

Using this simple counting we can then classify the contributions to the 

hadron structure functions, as illustrated in Figure 15. The diquark con- 

tribution is expected to give a large contribution to the longitudinal 

structure function since it acts coherently as a boson current. The order 

as(Q2) contribution from the hard gluon radiative corrections with 

k," > (l-x)Q2 also gives a significant contribution to oh. 

A detailed derivation of the behavior of structure functions at x - 1 

from perturbative QCD is given in Reference 21. At x - 1 all of the had- 

ron's momentum must be carried by one quark, and each quark and gluon 

propagator which transfers this momentum becomes far off shell: 



k2-@(-k;‘:‘) . 
Perturbative QCD predictions thus become relevant. An important result 

. 
is that at large x the struck quark tends to have the same helicity as 

the target nucleon:21y62 

G q+/p+ - (1 - x)~; Gq+,p+ w (1 - x)~ (5.17) 

This type of spin correlation is consistent with the SLAC-Yale polarized 

electron/polarized target data. Combined with the SU(6) symmetry of the 

nucleon wavefunction this implies that the leading quark in the proton 

is five times more likely to be an up quark than a down quark, and thus62 

F,~(x,Q~)/F,,(~.Q~) - 317 
X- 1 

For the case of mesons, the perturbative QCD gluon 

G 
s/m 

N (1 - x)2 

(5.18) 

exchange prediction is63 

(5.19) 
3 

In addition, the same QCD analysis predicts a large C/Q' contribution to 

the meson longitudinal structure function (see Figure 3b):22g64 

2 

/ 

Q2 
F;(x,Q2) = + CF 

Q 0 

dk2 as(k2) Fn(k2) (5.20) 

-'/(l-x) 

which numerically is FL N x2/Q2 in GeV 2 units. This contribution, which 

can dominate leading twist quark distributions in mesons is normalized in 

terms of the meson distribution amplitude, which in turn is normalized 

by the pion form factor. 



The dominance of the longitudinal structure functions in the fixed W 

limit for mesons is an essential prediction of perturbative QCD. Perhaps 

the most dramatic consequence is in the Drell-Yan process xp -t 2+2-X; one 
* 

predicts22 that for fixed pair mass Q, the angular distribution of the I.+ 

(in the pair rest frame) will change from the conventional (1 + cos2e+) 

distribution to sin2(8+) for pairs produced at large xh. A recent analysis 

of the Chicago-Illinois-Princeton experiment65 at FNAL appears to confirm 

the QCD high twist prediction with about the expected normalization. 

Striking 

SiP of 

evidence for the effect has also been seen in a Gargamelle analy- 

the quark fragmentation functions in vp + s+p-X. The results 

yield a quark fragmentation distribution into positive charged hadrons 

which is consistent with the predicted form: dN+/dzdy - B(l- z)~ + 

(C/Q2)(l-y) where the (l-y) behavior corresponds to a longitudinal 

structure function. It is also crucial to check that the e+e- -t MX cross 

section becomes purely longitudinal (sin20) at large z at moderate Q2.62 

The results (5.17) and (5.19) for G 
q/B 

and G q/El give the behavior 

of the leading QCD contribution to the structure function before QCD 

evolution is applied; e.g., the results are valid for F2(x,Q2) at Q2 of 

order of <k:>,. The large Q2 behavior is determined by the evolution 

equations (5.9), taking account of the phase space limits of the radiated 

gluons at x N 1.41 



VI. THE PHENOMENOLOGY OF HADRONIC WAVEFUNCTIONS 

Thus far, most of the phenomenological tests of QCD have focused on 

the dynamics of quark and gluon subprocesses in inclusive high momentum 
c 

transfer reactions. The Fock state wavefunctions $~(xi,~li; Xi) which 

determine the dynamics of hadrons in terms of their quark and gluon 

degrees of freedom are also of fundamental importance. If these wave- 

functions were accurately known then an extraordinary number of phenomena, 

including decay amplitudes, exclusive processes, higher twist contributions 

to inclusive phenomena, structure functions, and low transverse momentum 

phenomena (such as diffractive processes, leading particle production in 

hadron-hadron collisions and heavy flavor hadron production) could be 

interrelated. Conversely, these processes can provide phenomenological 

constraints on the Fock state wavefunctions which are important for 

understanding the dynamics of hadrons in QCD. In addition, as we discuss 

in Reference 67, the structure of nuclear wavefunctions in QCD is essen- 

tial for understanding the syntheses of nuclear physics phenomenology with 

Qa. 

A. Measures of Hadron Wavefunctions 

As we have shown in Section III the central measures of the hadron 

wavefunctions are the distribution amplitudes . 

cb(Xi,Q) = /" [d2q] ~~(Xi,~~i) (6.1) 

which control high momentum transfer form factors and exclusive processes: 

e/&t s n 4 @  TH (6.2) 

and the quark and gluon structure functions 

. 



(6.3) 

which control high momentum transfer inclusive reactions 

do z nG@d; (6.4) 

Examples are shown in Figures 1 through 3. A summary of the basic 

properties, logarithmic evolution, and power law behavior of these 

quantities is given in Table IV. 

The exclusive formula (6.2) also includes applications to large 

momentum transfer multiparticle production6*'* e+e- + H 1 . ..H. with 

Pi' Pj - @(Q2> , and the elastic and inelastic weak and electromagnetic 

form factors. We also note that hard scattering higher twist subprocesses 

to inclusive reactions such as yq + Mq, gq + Mq, q{ + MM, qq + Bi., etc., 

are absolutely normalized in terms of the distribution amplitudes.6g In 

particular, some amplitudes such as yq + nq, q: + ng and gq -+ xq can be 

rigorously related to the pion form factor since the same integral 

(6.5) 

enters in each of the quantities.70 The pi6 processes24 gq + Mq (see 

Figure 3a) and q< + Mq are particularly interesting and important in 

high-pT meson production processes such as pp + MX since the meson is 

produced directly in the subprocess without the necessity for quark or 

gluon jet fragmentation. In fact the contributions of standard pi4 

scaling processes such as qq * qq, gq -t gq, and gg + gg are strongly 

suppressed by two to three orders of magnitude relative to the "directly 

coupled" contributions because of the suppression of jet fragmentation 

DM/q (z) at large momentum fraction z and the fact that the subprocesses 



TABLE IV 

Comparison of Exclusive and Inclusive Cross Sections. 

Exclusive Amplitudes Inclusive Cross Sections 

A? N ' ~(Xi,Q) O TH(xi,Q) da - n G(xa,Q) @  &xa,Q) 

+(%,Q) = jQ[d2k1]$~.1'x,kJ G(x,Q) = GJQd2kl cdx]' bz(x~k~) I2 

Measure I# in yy + 6 Measure G in Rp -t eX 

c hi = AH 
ieH 

c ‘2 + AH 
i&H 

EVOLUTION 

W(x,Q) = c1 
a log Q2 s 

Cdylvky) 4 (y> s -g&.&La 
a log Q2 s 

dy P(x/y)G(y) 

‘pm $(x,Q) = n  xi l cflavor Q i 
'Ff G(x,Q) = 6(x) c Q 

POWER LAW BEHAVIOR 
2ns-1 

g(A+B +C+D)s -& f@,> AT-.- (AB + CX) s 
S d2p/E c 

Cl- XT) 

(Q2)nact 
-2 f(e,) 

n = nA + nB + nC + nD n act =n a+nb +nc+n d 

TH: expansion in as(Q2) d& expansion in crs(Q2) 

COMPLICATIONS 

End point singularities 
Pinch singularities 
Higher Fock states 

Multiple scales 
Phase-space limits on evolution 
Heavy quark thresholds 
Higher twist multiparticle processes 
Initial and final state interactions 



must occur at a significantly larger momentum transfer than that of the 

triggered particle.71 

Despite much effort there is at this time no systematic understanding 
l 

of high pT hadron production in QCD. A comprehensive attack must take 

into account not only leading twist subprocesses and directly coupled 

higher twist contributions such as those listed above, but also the effects 

of initial state multiple scattering effects. One of the most important 

experiments which could clarify the nature of these effects is the measure- 

ment of the ratio of direct photon to meson at high pT: (xT = 2pT/&) 

R y/n(xT'S'ecm) 
da = - (pp -+ YX) 

d3p/E 
(pp -+ IrX) (6.6) 

For example, if leading twist QCD processes dominate these reactions then 

R ly f(y) - (l-XT) 
-2 

Y/T 
at 0 N s/2. cm If directly-coupled processes 

such as gq + nq dominate the meson production then one predicts R 2 
y/n N 'T 

at fixed ";r and 0 cm' 72 Measurements of this ratio in nuclear targets is 

important for clarifying the contribution of final state multiple scatter- 

ing processes. 

The photon probe plays a crucial role in high-p?: hadron reactions 

since the photon couples directly to the quark and gluon subprocesses 

at short distances. The most dramatic example of these point-like phenomena 

is the recent observations at PETRA ES-* of high transverse momentum hadrons 

in yy collisions. The results at pT r 3 GeV appear to be consistent with 

the scale invariant QCD prediction73 

do(yy + jet + jet> = 3 

da(yy + P+P-) 
(6.7) 



These results also indicate that, unlike typical meson-induced reactions, 

an incident photon often produces high pT hadronic jets without leaving 

hadronic energy in the beam fragmentation direction.74 One also expects 

analogous results for directly coupled photons in yp + DX and yp + Jet + X 

reactions. The point-like behavior of on-shell photons is in direct con- 

trast to the predictions of vector meson dominance models. 

A surprising feature of QCD is that even a hadron can produce jets 

at large pT without beam fragmentation.70 For example, the existence of 

high twist subprocesses such as Mq + gq and Mg -t qq leads to high pT jet 

events in meson-induced collisions Mp + Jet + Jet + X where there is no 

hadronic energy left in the meson beam fragmentation direction (see 

Figure 3~). The inclusive cross section, which scales as pi6 at fixed 

xT and 8 cm' is absolutely normalized to the meson form factor. As in the 

case of the photon-induced reactions the directly coupled meson has no 

associated color radiation or structure function evolution. An experi- 

mental search for these unique and highly kinematically constrained events 

is very important in order to confirm the presence of these subprocesses 

which involve the direct coupling of meson q; Fock state to quarks and 

gluons at short distance. 

In general, we can replace any direct photon interaction by a direct- 

coupled meson interaction in the subprocess cross section by the replace- 

ment a Z F~(P;). Furthermore, one can compute direct-coupled processes 

which isolate the valence Fock state of baryons, e.g., pp + pX 

(production of isolated large pT protons via the qq + p; subprocesses), 

and reactions pp + qqX (from ip + qq) (see Figure 3b), pp + qqqX (from 

gp + wd, etc., each of which produce jets at high pT without beam 

spectators or fragmentation. 



B. Constraints on the Pion and Proton Valence Wavefunction2' 

The central unknown in the QCD analysis of hadronic matrix elements 

is the hadron wavefunction in the non-perturbative domain ~~ 5 1 GeV2. 

For illustration we shall assume that in this region the JI, fall off 

exponentially in the off-shell energy: 

n 
=M2--&m2) <o 

i=l i 

(6.8) 

(6.9) 

The parametrization is taken to be independent of spin; the full wave- 

function is then obtained by multiplying by free spinors u/m. The 

form (6.8) has the advantage of analytic simplicity: For example, the 

resulting baryon distribution amplitude at small K is 

3 m? 
.eb2 c 1 

'$(Xi,K) = A+ xlx2x3 e 
3 i=l Xi (6.10) 

At large K, 4 is determined from the evolution equation (4.33). At very 

large kL the JI, for non-valence Fock states should match onto the power 

law fall-off k:' predicted by perturbative QCD. It should be emphasized 

that the form (6.8) is chosen just for simplicity. An equally plausible 

parametrization is $, N An&iP with p = 3, which is suggested by the 

Schroedinger equation assuming a linear potential and the correspondence 

given in Eq. (3.41). 

In the case of the pion we can derive two important constraints on 

the valence wavefunction from the IT -+ pv and IT' + yy decay amplitudes: 

-- - 



. d2kl 1 

J 

f lT 

16r3 0 
dx $"(x,kl' = - 

25 

. 
-.-.. __.^ 

-  _  _  . 

i‘ ----  ‘- 

-.‘T- _ 
$?(x,kl = 0) = - 

z2k2) f71 

(6.11) 

(6.12) 

The derivation of the second constraint assumes that the radius of the _ _. - 
pion is much smaller than its Compton length: 

Let us now assume the form ; 1 : . ; 1 _ _ CI ') 

)..___.. __. _  -- 

,f -b:(:+_s! (K2 < 1 GeV2) 
.'-... _ SG a e _ -. _ - . 

(6.13) 

(6.14) 

(6.15) 

is the contribution to the slope of the meson form factor from the valence : 
Fock state (see Eq. (4.2)). The two conditions (6.11) and (6.12) then 

determine R$ = 0.42 fm, and27 _ :. 
2 

dx JIK 
s;ilr 

CX,itl) 

(6.16) 

Thus the probability that the pion contains only the valence Fock state 

at small ~~ is less than l/4. Furthermore the radius of the valence state 
expt ,~ turns out to be smaller than that of the total state: Rx = 0.7 fm. 



One can also verify that the bound P 
an 

S l/4 is also true for power law 

wavefunctions J, -emP, p > 2. 

The existence of other Fock states at equal T in the pion is to be 
. 

expected considering the fact that its quark and gluon constituents are 

relativistic. The existence of large mp/mz and rnA/% spin splittings 

(due to transverse-polarized gluon exchange) also implies that there is 

a non-zero gluon component intrinsic to both meson and nucleon bound 

states. 

In the case of the baryon wavefunction, one can obtain non-trivial 

constraints on the form of the 3-quark valence wavefunction by making a 

simultaneous analysis of the proton and neutron form factors and the 

+ -t pi decay amplitude, assuming the $ decays via a 3-gluon intermediate 

state (see Figure 6). The observed angular distribution53 for $ + pi is 

in fact consistent with the predicted form 1 + fi2 cos20 (where f3 is the 

nucleon velocity) and is a non-trivial check of hadron helicity conserva- 

tion for exclusive processes in QCD. 

The $ -t pp ratio is given to leading order in a s by (Figure lb)l* 

r(Jr + 3g.* Pi) = 3.2 x 10~ a3(s) -- l&M1 <T>2 
P($ + 3g -f all) S 6 s4 

(6.17) 

where lscM1/& ti.4, s = 9.6 GeV2, and 

I 
1 

<T> E CdxlCdyl 
4*(Y,,s) x1y3 + x3yl 

0 
yly2Y3 [X1(1-Yl) + Yl(1-Xl)][X3(1-Y3)+ Y3(lBx3)] 

ey) 
(6.18) 

X 

x1x2x3 



is a well defined function of the baryon distribution amplitude. In the 

case of the nuclear form factors (see Eqs. (4.31, 4.32)) it is important 

to use the correct argument for each as in the hard scattering amplitude 

TH corresponding to the actual momentum transfer which flows through each 

exchanged gluon in Figure 7b. This effect is expected to yield the most 

important contribution to next to leading order in as and is an integral 

. 

part of the QCD predictions. It is interesting to note that if 

@B = A x x x and if all the u $I123 s have the same argument (which is in fact 

the situation in the asymptotic Q2 -f m limitg'lg) then Eqs. (4.28-4.32) 

give Q2+,.,, M lirn Gp(Q2)/G;(Q2) = 0. However, the fact that us is not a constant 

and has different arguments for each diagram in T 1 allows one to obtain 
P 2 empirically consistent results for the normalization75 of GM(Q ), 2 G:(Q ) 

and the cp -t pp decay rate. To first approximation one requires27 

a_(x,y,Q2) 
---es 

as(Q2/9) 

as ((l- xi) (l- yi)Q2) as(4Q2/9) (6.19) 

- 1.5 to 2.0 at Q2 Z 10 GeV2 . 

The QCD predictions (4.28-4.30) for the proton and neutron form 

factors are only valid at large Q2 where the effects of mass corrections, 

higher Fock states and finite transverse momentum can be neglected. In 

order to understand these effects we extend the parametrization of! the 

3 quark valence Fock state contribution by using (Q2 + Mi)-2 in the 

denominators of (4.29, 4.30) and replacing as(Q2) -t as(Q2 + M2> = 

4x/fJo log ((Q2 + M2)/A2) to reflect the fact that at low Q2 the trans- 

verse momenta intrinsic to the bound state wavefunctions flow through 

all the propagators. 



Although we have not tried to optimize the parametrizations, a 

typical fit which is compatible with the proton and neutron form factors 

(see Figure 16) and $ + pi decay data areM 1.5 GeV, u I 450 MeV, 

mq 
2 300 MeV, and A = 280 MeV, so that as(Q2 = 

. 
10 GeV') 2 0.29. CAnalyses5' 

of higher order QCD corrections to the meson form factors suggest that one 

can identify the A used here with Amom = 2.16 A- .$.I The computed radius 

of the 3-quark valence state (computed from Gi via Eq. (4.2)) is however 

quite small: RV z 0.23 fm, and the valence Fock state probability is 

P > l/4. 
qqqlp - 

If this preliminary analysis is correct, then, as in the 

meson case, the valence state is much smaller in transverse size than the 

physical hadron (which receives contributions to its charge radius from 

all Fock states). 

The most crucial prediction from this analysis is that Q4GL(Q2) 

should decrease by a factor of 2 for Q2 = 10 to Q2 = 40 GeV2 , a trend not 

at all indicated by the data! Further measurements of GM(Q2) are clearly 

crucial in order to check this essential prediction of asymptotic freedom. 

Given the above parameterization of the nucleon valence Fock state 

we can use Eq. (5.8) to compute the 3-quark non-perturbative contribution 

to the proton structure function at large x (see Figure 17): 

G" q,p(x'9$ = x(1 - x)~ e (6.20) 

Since 4 m2b2 - 0.05, the exponential factor is not very important away 

- from the edge of phase space and so it is difficult to distinguish between 

the non-perturbative and (l-~)~ perturbative contributions at large x 

(see Section V). Higher Fock states Iqqqg>, lqqq qq> are expected to 

give the dominant contribution at lower x. Despite the freedom in this 

parametrization it is reassuring that one can simultaneously fit a 
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Fig. 17. Predicted valence quark contribution to the proton structure 
function. Evolution and higher Fock states are not included. 
(From Ref. 27.) 



number of diverse nucleon properties with QCD formulae and parameters 

which are the expected range. 

At low Q2 the exact formula (4.2) can be used as a further constraint 
" 

on the baryon Fock states. Eventually one hopes to extend the predictions 

to other domains of baryon phenomenology such as the baryon decay ampli- 

tude in grand unified models and the normalization of higher twist sub- 

process contributions to inelastic lepton-nucleon scattering. 

C. Quark Jet Diffractive Excitation30 

The fact that the wavefunction of a hadron is a superposition of 

(infrared and ultraviolet finite) Fock amplitudes of fixed particle 

number but varying spatial and spin structure leads to the prediction of 

a novel effect in QCD.30 We first note that the existence of the decay 

amplitude IT + uv requires a finite probability amplitude for the pion to 

exist as a quark and diquark at zero transverse separation: 

0) = J41; JncX(l-X)fr (6.22) 

In a QCD-based picture of the total hadron-hadron cross section, the com- 

ponents-of a color singlet wavefunction with small transverse separation 

interact only weakly with the color field, and thus can pass freely 

through a hadronic target while the other components interact strongly. 

A large nuclear target will thus act as a filter removing from the beam 

all but the short-range components of the projectile wavefunction. The 

associated cross section for diffractive production of the inelastic 

states described by the short range components is then equal to the elas- 

tic scattering cross section of the projectile on the target multiplied 

by the probability that sufficiently small transverse separation 



configurations are present in the wavefunction. In the case of the pion 

interac,ting in a nucleus one computes the cross section 

12Tr f; x2( -x)2 (6.23) 

corresponding to the production of two jets just outside the nuclear 

volume. The x distribution corresponds to do/d co4 N sin20 for the jet 

angular distribution in the qi center of mass. By taking into account 

the absorption of hadrons in the nucleus at ?l # 0 one can also compute 

the kL distribution of the jets and the mass spectrum of the diffractive 

hadron system. Details are given in Reference 30. 

D. The "Unveiling" of the Hadronic Wavefunction and Intrinsic Charm 

The renormalizability of QCD implies that all of the dynamics of the 

hadron wavefunctions Ir)z(xi,kli> at scales k2 much larger than mass 

thresholds is completely contained in the structure of the running coupl- 

ing constant us(k2) and running mass m(k2) and the quark and gluon external 

line renormalization constants. Nevertheless, the fact that there are 

different hadronic scales and thresholds in QCD does imply non-trivial 

dynamical structure of the wavefunctions. In the case of Compton scatter- 

ing, yp + yp, the energy denominators (see Eq. (5.3)) are a function of 

2Mv - En, so that the 

the scale ~~ w 2mv. 

As an example of 

cross section 

the change of 

is sensitive to wavefunctions up to 

wavefunction physics with the resolu- 
7 

tion scale let us consider a deuteron target. For very low K& << AMES E . . 
the deuteron acts as a coherent object. At the scale K~>>~ME~ E , the 

wavefunction corresponds to a n-p bound state. As the scale increases 



tQ K2 5 1 GeV2, the quark degrees of freedom become relevant and the 

deuteron wavefunction in QCD must be described in terms of six quark (and 

higher) Fock states:76 
-. 

ICI> = a](uud)l(ddu)l> + bl(uud)g{ddu)g> 

+ cl(uuu)l(ddd)l> + dl (uuu)g(ddd)g> (6.24) 

” + 
i..“.. 

.  .  .  
._.  _ 

Fhe first component corresponds to the usual n-p structure of the deuteron. 

The second component corresponds to "hidden color" or "color polarized" - 

configurations where the three-quark.clusters are in color-octets, but _... 

the overall state is a color-singlet. The last two components are the 

corresponding isobar configurations. If we suppose that at low relative 

momentum the deuteron-is dominated by the n-p configuration, then quark- 

quark scattering via single gluon exchange generates the color polarized 

states (b) and (d) at high kL; i.e., there must be mixing with color- 

polarized states in the deuteron wavefunction at short distances.67 

The deuteron's Fock state structure is thus much richer in QCD than 

it is-in nuclear physics where the only degrees of freedom are hadrons. 
. _ _ 

It is interesting to speculate on whether the existence of these new 

configurations in normal nuclei could be related to the repulsive core 

of the nucleon-nucleon potential,76 and the enhancement76 of parity- 

violating effects in nuclear capture reactions. One may also expect that 

there are resonance states with nuclear quantum numbers which are dominantly 

color-polarized. The mass of these states is not known. It has also been 

speculated78 that such long-lived states could have an anomalously large 

interaction cross section, and thus account for the Judek7g anomaly in 

cosmic ray and heavy ion experiments. 80 Independent of these speculations, 



it is clearly important that detailed high-resolution searches for these 

states ,be conducted, particularly in inelastic electron scattering and 

tagged photon nuclear target experiments, such as yd + yd scatter at large 
m 

angles. 

The structure of the photon's Fock states in QCD is evidently richer 

than that expected in the vector meson dominance mode1.87 For example, 

consider the one-gluon exchange correction to the y -t qi vertex. For - --1:- _ _ __. 
Q2 > @(K~) the vertex correction renormalizes the point-vertex. For the .- l. - _I. 
soft domain !Lt < ‘d (K2) one expects large corrections which eventually by -^ -. ._ 
dispersion theory correspond to the usual p, w, 4, . . . interpolating -, 
fields. The soft corrections thus give the usual hadron-like component __.. _ 

of real photon interactions. Nevertheless, the point-like component 
:- 
survives at any momentum scale,88 producing point-like corrections to 

photon shadowing, J = 0 fixed pole phenomena in the Compton amplitude, 

and the "antiscaling" QCD structure function of the photon.8g As the 

resolution scale Ic 2 increases past the heavy quark thresholds, one adds 

the y + cc, bi, etc.,components to the photon's wavefunctions. _ : 

It is also interesting to consider the dynamical changes to the 
. 

nucleon wavefunction as one passes heavy quark thresholds. For 

2 
K > 4m2 c the proton Fock state structure contains charm quarks, e.g., 

. 
states Ip> N juud c'd>. We can distinguish two types of contributions to 

this Fock state.31 (1) The "extrinsic" or interaction-dependent component 

generated from quark self energy diagrams as shown in Figure 18b--a com- 

ponent which evolves by the usual QCD equations with the photon mass scale 

QL; and (2) the "intrinsic" or interaction-independent component which is 

generated by the QCD potential and equations of motion for the proton, as 

(p__.-._ .  _ . . -  
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Fig. 18. Intrinsic (a) and extrinsic (b) contributions to the proton 
]uudcE> Fock state. 



in Figure 18a --a component which contributes to the proton Fock state 

without regard to QCD evolution. Since the intrinsic component is maximal 

for minimum off-shell energy &'= M2 - cc (k: + m2)/x 1 i 
ithe charm quarks 

. 
tend to have the largest momentum fraction x in the Fock state. (This 

also agrees with the physical picture that all the constituents of a bound 

state tend to have the same velocity in the rest frame, i.e., strong cor- 

relations in rapidity.) Thus heavy quarks (though rare) carry most of 

the momentum in the Fock state in which they are present--in contrast to 

the usual parton model assumption that non-valence sea quarks are always 

found at low x. One can also estimate using the bag model and perturbative 

QCD that the probability of finding intrinsic charm in the proton is -l-2%. 

The diffractive dissociation of the proton's intrinsic charm state31s30 

provides a simple explanation why charmed baryons and charmed mesons which 

contain no valence quarks in common with the proton are diffractively pro- 

duced at large xL with sizeable cross sections at ISR energies. Further 

discussion may be found in Reference 31. 



VII. CONCLUSION 

In these lectures we have discussed the application of QCD to hadron 

dynamics at short distances where asymptotic freedom allows a systematic 
c 

perturbative approach. We have shown that it is possible to define the 

perturbative expansion in us(Q2) in such a way as to avoid ambiguities 

due to choice of renormalization scheme or scale, at least in the first 

non-trivial orders.14 Our main emphasis in these lectures, however, has 

been on how to systematically incorporate the effects of the hadronic 

wavefunction in large momentum transfer exclusive and inclusive reactions-- 

thus leading to a broader testing ground for QCD. We have particularly 

emphasized the Fock state wavefunctions $n(xi,kJ_i; Xi) which define the 

hadron in terms of its quark and gluon degrees of freedom at equal time 

on the light-cone. It is clear that a central problem of QCD is to deter- 

mine not only the spectrum of the theory but also the basic bound state 

wavefunctions of the color singlet sector. Such solutions may be found 

in the near future using lattice numerical methods, particularly by quan- 

tizing at equal time on the light-cone, or by more direct attacks on the 

QCD equations of motion for the JI,, as discussed in Section III. 

Even without explicit solutions for the $,, we can make a number of 

basic and phenomenological statements concerning the form of the wave- 

functions: 27 

(1) Given the JI, we can compute the single and multiple quark and 

gluon distribution amplitudes and structure functions which appear as 

the coefficient functions in the QCD predictions for high momentum trans- 

fer exclusive and inclusive reactions, including dynamical higher twist 

contributions. We have also emphasized general features of these distri- 

butions, including helicity selection rules, Lorentz properties, connections 



with the Bethe-Salpeter amplitudes, renormalization properties, and cor- 

respondence limits in the non-relativistic weak binding approximation. 

(2) The perturbative structure of QCD leads to predictions for the 
. 

high kL, x -t 1 and far-off shell behavior of the wavefunction. In par- 

ticular, the large kl power-law behavior qv N kl of the valence wave- -2 

functions and the 1~11~ w k12 behavior of the higher Fock state contributions 

lead to QCD evolution equations and light-cone operator product expansion 

for the essential measures of the wavefunctions, the distribution amplitudes 

$,(x,9) and c$~(x~,Q), and the structure functions. We have also emphasized 

the fact that the valence wavefunction behavior $, - k12 implies that the 

high k: behavior of quark and gluon jet distributions dN/dk: is -l/k;, 

not exponential or gaussian. 

(3) Important boundary values and constraints on hadronic wavefunc- 

tions are obtained from the weak and electromagnetic decay amplitudes, 

including JI + BE. The distribution amplitudes are measurable in detail 

from the angular behavior of the yy + M% and83 yy -+ Bg amplitudes. 

(4) By assuming simple analytic forms for the valence wavefunctions 

in the non-perturbative domain, we have found consistent parameterizations 

which are compatible with the data for hadron form factors, decay ampli- 

tudes, etc. An important feature which emerges from these studies is that 

the valence state is more compact in transverse dimensions than the physi- 

cal hadron. Even at a low momentum transfer scale, higher Fock states 

play an important role, i.e., there is no scale where the proton can 

be identified as a 3-quark valence state. This observation may be com- 

patible with the traditional nuclear physics picture of the nucleon as a 

central core, surrounded by a light-meson cloud. 



(5) The fact that there is a finite probability for a hadron to exist 

as its valence state alone, implies the existence of a new class of 

"directly-coupled" semi-inclusive processes where a meson or baryon is 
. 

produced singly at large transverse momentum, or interacts in a high- 

momentum transfer reaction without accompanying radiation or structure 

function evolution.2g As in the case of directly-coupled photon reactions, 

the hadron can interact directly with quark.and gluons in the short- __ 

distance subprocess, with a normalization specified rigorously in terms _- _ 

of..the distribution amplitudes or form factors. Examples of these sub- . . . ~ 
- - 

processes are qq + Bq, gq -t Mq, Mg + qq, Bq -f qq. We have also discussed 

an important contribution to the longitudinal meson structure function 

F M 
L. -.. C/Q29 involving direct-coupling of the meson, somewhat analogous to 

the photon-structure function. The finite probability for a meson to 

exist as a qi Fock state at small separation also implies a new class of 

diffractive dissociation processes. 30 

(6) The Fock state description of hadrons in QCD also has interesting 

implications for nuclear states, especially aspects involving hidden color 

configurations. More generally, we have emphasized the idea that the far- 

off shell components of hadron wavefunctions can be "unveiled" as the 

energy resolution scale is increased. For example, the existence of heavy 

quark vacuum polarization processes within the hadronic bound state 

implies finite probabilities for hidden charm Fock states even in light 

mesons and baryons. The diffractive dissociation of these rare states 

appears to provide a natural explanation of the remarkable features of 

the charm production cross sections measured at the ISR.31 



(7) We have also emphasized the importance of initial state inter- 

actions, in all inclusive reactions involving hadron-hadron collisions. 

The initial state interactions disturb the color coherence, kl distribu- 
. 

tions, and at low energies the x-dependence of the incoming hadronic 

distributions. Despite these profound effects on the hadronic Fock 

states, some of the essential features of the QCD predictions still are 

retained. A detailed discussion is given in Reference 20. 
.r _ 5 - ---Thus,-6 summary, we have found that the testing ground of perturba- 

t%ve-QCD where rigorous, definitive tests of the theory can be made can 

now-be‘extended throughout a large domain of large momentum transfer 

exclusive and inclusive lepton, photon, and hadron reactions. With the 

&ssible exception of hadron production at large transverse momentum, a 

consistent picture of these reactions is now emerging. By taking into 

account the structure of hadronic wavefunctions, we have the opportunity 

of greatly extending the QCD testing ground, unifying the short and long 

distance physics of the theory, and eventually making contact with the 

realm of hadronic spectroscopy, low momentum transfer reactions, and 

non-perturbative physics. 
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