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1. INTRODUCTION 

The method of lattice Hamiltonian blocking, or the real space renormal- 

ization group, has been successful in a variety of models, yielding results 

for ground-state energies, mass gaps, and correlation functions. When 

applied to soluble 1 + 1 dimensional models, where it can be compared with 

exact solutions, it succeeds in giving fairly accurate results. Improv- 

ing upon these results, however, usually necessitates complicated refine- 

ments of the procedure, and even so the spatial structure of correlation 

functions computed in such schemes is never very accurate. 

Stated simply, a blocking scheme is a systematic way to compute scale 

transformations in a lattice model, from one ultraviolet cutoff Al to a 

smaller one, h2; This is done by solving approximately for those modes 

that have frequencies A2 < w < Al, and removing them from the theory. 

In this paper, we report a new method of treating these higher- 

frequency modes using an adiabatic (Born-Oppenheimer) approximation. The 

usefulness of the method is explained in general, and demonstrated in the 

framework of a very simple model: a free Bose scalar field theory in one 

space dimension. We examine in detail several schemes employing the method. 

For the most part, we concentrate on the massless case, which is the 

hardest to attack by blocking techniques due to its long-range correlations. 

The results of the adiabatic approach are compared with those of con- 

ventional blocking schemes. 

For each scheme we treat, the ground-state energy and various equal- 

time Green's functions are computed for the trial ground-state.l We find 

excellent agreement with the exact results; using previous methods, one 

must keep many more states per site and sites per block to attain 

accuracies that we can get using our adiabatic approach. 
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Our'adiabatic method is closely related to, and grew out of, the 

recently developed Shadow Hamiltonian technique by Quinn and Weinstein2 

(QW) . It is, however, more suited for treating Bose field theories. The 

QW technique was developed for a spin model, where one cannot define 

classically meaningful "fast" and "slow" modes. The distinction between 

these modes is, however, the cornerstone of our method. Both techniques 

can be applied to more complicated models than those they were tested 

for. 

The plan of this paper is as follows: in Section 2 the adiabatic 

method is explained. In Section 3 our model is introduced and solved and 

its relevant symmetries pointed out. In Section 4 we apply the new method 

to the model, keeping one "slow" variable per two-site block. In Section 

5 we apply it keeping two variables, again with two-site blocks. In 

Section 6 we summarize our conclusions. We find it useful to work in 

the momentum basis, due to long-range effects. 

2. ITERATIVE BLOCKING-TRUNCATION METHODS 

In a blocking scheme, one begins from a theory defined on a spatial 

lattice, and groups the lattice into blocks of two or more sites each. 

One then truncates away some block states or degrees of freedom. The 

choice of these states is based on energy: one would like to reject the 

(in some sense) "higher" excited states. The assumption underlying the 

truncation procedure is that the higher excitations will not affect the 

ground state by much. 

Let us consider a Bose field theory. One can talk of field variables 

rather than states, and the problem of choosing low-lying block states 

becomes that of identifying "slow" and "fast" (low- and high-frequency) 

variables. 
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In, the "simple-blocking" schemesS3 the Hamiltonian is split into terms 

involving a single block and terms coupling the blocks. This decomposition 

is obviously not unique, creating a certain ambiguity in the procedure. 

This ambiguity will disappear when we introduce our improved blocking 

method; but let us proceed with the description of the conventional method. 

The single-block Hamiltonian is solved, exactly or approximately, and the 

block modes are identified. One defines "slow" and "fast" modes; the 

latter are frozen in their approximate ground state. All operators are 

next truncated by computing their expectation values with respect to these 

fast modes. These modes thus drop out of the theory, leaving an effective 

Hamiltonian in the remaining variables. This Hamiltonian is defined on a 

new lattice, with the blocks serving as the new sites. The new theory has 

a larger lattice spacing, and correspondingly a smaller ultraviolet cutoff, 

than the old one. Hence the theory undergoes a scale transformation. 

This is called a renormalization-group transformation.4 

By truncating operators, we may express their trial ground-state 

expectation values, or Green's functions, in terms of their counterparts 

in the resealed theory. We refer to these relations as "mappings," or 

renormalization group equations. The ground-state energy, for example, 

is computed by repeated mappings of the Hamiltonian. One repeats the 

mapping until the physics of Heffective becomes either trivial, or so soft 

it does not affect the results any more.5 

The difference in our new method is in its truncation prescription. 

Instead of using only the single-block terms in H to determine the fast- 

variable wave function, we allow the block-block terms to influence it. 

This is done by letting the fast variables in a block oscillate about 

mean values that change adiabatically with the slow modes in the sur- 

rounding blocks. 
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It 'is easy to understand how this can economize on the number of 

states we need to keep, since the adiabatic state of the fast modes is a 

superposition of many non-adiabatic (isolated-block) states. 

The adiabatic state is a "wave packet" in the fast variables. We 

determine its center and shape variationally by combining 

with a mean-field approach. Namely, at each step we "look ahead" a certain 

number n !?I of iterations, after which some parametrized mean field trial 

state, 

n I'P>j 

sites j 

is used. -lo> is the same state for all j. Then the parameters of (cp>, 

and of all previous nil. wave packets, are varied to minimize the trial 

energy <tlH\t>. It> is now a completely specified trial state, in the 

modes of the last H effective and in all higher-frequency modes previously 

frozen. But having thus determined the variational parameters, we dis- 

card the mean field state and the last (na - 1) look-ahead iterations, and 

use only the wave-packet parameters needed for a single mapping. The 

mapping thus proceeds one step at a time. 

The intermediate trial states, It>, are never used to compute the 

final physical quantities; these are computed in the final trial state, 

which we denote Itrial>. It is obtained in the limit of an infinite 

number of blockings (for an infinite-volume lattice). 

3. THE MODEL 

The model we treat has a scalar field xr defined on each site r of 

the one-dimensional lattice, together with its canonically-conjugate vari- 

able p r' The Hamiltonian is (for a system of volume L sites) 
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H = Ei pt +g d(r - s) xrxs (3.1) 

r=O r,s=O 

where d(r - s) is some form of the lattice Laplacian. We work in units 

in which the lattice spacing is unity, and use periodic boundary-conditions. 

Since we shall be working in the momentum basis, we rewrite H in that 

basis:6 

$ p(k) p*:(k) + d(k) x(k) x*(k) (3.2) 

d(k) can be made a symmetric function of k. In particular, for a field 

of mass u and a nearest-neighbor definition of the gradient, we have 

d(k) = $ u2 + (1 - cask) . (3.3) 

H has the following three symmetries which will concern us: 

a> Parity invariance 

x(k) -t x(-k) 
P: (3.4) 

p(k) + PC-k) 

b) Field-translation invariance: this is the continuous symmetry 

x(k) + x(k) + rSk o 
, 

G(T) : (3.5) 
p(k) -f p(k) 

for arbitrary real r. This symmetry is equivalent to the statement that 

the field is massless, and is valid only if d(0) = 0.7 

4 Site-translation invariance: this is the invariance under the lattice 

symmetry of relabeling the j-th site as the j f m-th, or in momentum basis 

(3.6) 
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for any integer m. This symmetry can, in fact, be generalized to transla- 

tions by a non-integer number of lattice spacings. 

Throughout our blocking treatment of the model, we will demand that 

P and G(r) be conserved by the truncation. The breaking of Tm is inherent 

in the blocking approach, and we will encounter it in various forms. 

The solution of (3.2) is trivial: the ground-state wave function is 

<{x)lg.s.> = exp (- qdq x(k) x*(k)) 

and the ground-state energy density is 

2lT 

Pg. s. dk m 

(3.7) 

in the large-volume limit. The equal-time, two-point Green's functions we 

shall study are 

G(k) = <x(k) x*(k)>g s = 1 
. . 2m 

(3.9) 

R(k) = <p(k) p*(k)>g s = d(k) 
. . 

2 

4. A ONE-VARIABLE ADIABATIC SCHEME 

Let us group the lattice sites into blocks, so that the j-th block 

contains the sites 2j and 2j+l. We define sum and difference block 

variables, 

x+(j) = + (x2j + x2j+l) 

x-(j) = A=- (x 
Jz 2j - x2j+l) 

P+(j) = P 2j + '2j+l 

(4.1) 

p-(j) = 2 ('2j - '2j+l) 
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To get an effective Hamiltonian with one variable per site, one of the two 

block modes must be frozen; in the simple blocking schemes that mode is 

x-(j) (essentially because it has a higher wave-number).8 

In the momentum basis, Eqs. (4.1) assume the form (Eq. (A.3)) 

.-ik/2 x(k) = fi cos(k/2) x+(2k) - i sin(k/2) x-(2k) 

(A.3) 
.-ik/2 

p(k) = + cos(k/2) p+(2k) - i sin(k/2) p-(2k) 

The fast modes (x-1 will be frozen to a product of Gaussians over the 

blocks, with a Gaussian "wave-packet" at each block having as its center 

a function of the slow modes: 

<Ix}ltrial> = 
I-H exp - 3 (~-1~ (x-(j) - Fj (IX+})) '1 ores (4.2) 
j 

where $res depends on the residual (slow) modes. As explained in Section 1, 

renormalization-group calculations are concerned with unraveling, step-by- 

step, the physics of the various length-scales in the problem; the physics 

that is of concern right now is that which is interior to a block, i.e., 

that of the fast variables. Therefore, Q,,, need not be specified at this 

point. Nevertheless, some crude guess-form of $,,, will have to be used 

for the purpose of variationally determining the wave-packet parameters - 

this is the essence of the look-ahead method (see Section 2). We shall 

come back to the look-ahead aspects of Jlres at the end of this section. 

Let us now further specify the fast-variable wave-function appearing 

in (4.2). Fj may, in general, be a non-linear function, and (Y-)~; Fj may 

depend explicity on j, but we will use a linear form that does not: 

- 
Fj((x+)) = >; i p(j -j’> x+CiO (4.3) 

.t J 
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and a j-independent (yJj = y,. 9 p is an n-dependent function, and when 

we wish to emphasize this dependence we will write p,. We may then re- 

write Eq. (4.2) in the momentum basis 

<{xIjtrial> = - $ Y- G-(k) '-r x W 1 Qres (4.4) 

where we have gone over to shifted variables via the canonical trans- 

formation 

x-(k) = ir_(k) + i p(k) ic+(.k) 

x+(k) = G+(k) 

p-(k) = tJ4 

p+(k) = c+(k) f i p(k) c-(k) . 

From parity and hermiticity, p(k) must obey 

p*(k) = -PC+) = p(k) . (4.6) 

For later convenience, we choose to rescale the slow modes, 

G+(k) = 2 -1'4 z(k) 

i+(k) = 21'4 I;;(k) 

(4.5) 

(4.7) 

The shift, resealing and truncation together define the mapping of 

operators. We will only be interested here in mapping bilinear operators: 

xx* and pp*. Hence we only need the following rules: 

(+d)tru = (t-04) tru = 0 

(4.8) 

(;Jk) i)*W))tru = $&’ $ 
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where the subscript denotes "truncated." The following mapping results: 

(x(k) x*(k)) tru = -i- (fi 
zi 

cos(k/2) + p(2k) sin(k/2))2 z(2k) ;*(2k) 

-&- (1 - cos k) 
+ 4Y- 

(p 04 p” 04) tru 
=1(1+ 

2fi 
cos k) &2k) &2k) + $ ; cos(k/2) p(2k) 

2 
- sin(k/2) (4.9) 

Note that a pair of momenta k, k+r, correspond to the same wave number 2k 

of the new lattice; this is an umklap phenomenon, related to the artifi- 

cially imposed block boundaries. We introduce a notation for sums of 

contributions from such an umklap pair: for any function f(k), denote 

Cf(k/2)1 = f(k/2) + f(k/2+R) (4.10) 
U 

Then from Eqs. (3.2) and (4.9) we obtain the mapping of the Hamiltonian 

00 L 
tru = 2 '- +% fi (4.11) 

Here c- is the zero-point energy per block of the frozen fast modes, L is 

the volume,1° and ?i is the mapped Hamiltonian: 

271 

8nc = y 
-SC 
W dk l+ +p(k)2 +1 l 

0 
,(n> U 

g= 3 ;(k) G*(k) + ;i(k) f;(k) z*(k) (4.12) 

;T(k) = [(fi cos(k/4) + p(k) sin(k/4))2 d(k/2)lu 

We have mapped the Hamiltonian, and we now want to determine the wave- 

packet parameters characterizing the renormalization group transformation. 
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(4 These parameters, y- and p(k), will be determined variationally via the 

look-ahead prescription. 

First, we realize that due to the simplicity of the model under 

consideration, the task is easier than it could in general be. Namely, 

(n) because "H does not depend on y- but only on the shift p, we may 

ignore g for the purpose of solving for y-, no matter what the look-ahead 

method used. (This is a feature unique to the free-field case). The 

point is, of course, that y _ depends on p(k), which does appear in E, and 

thus the fast and slow modes interact through p and the results are sensi- 

tive to the look-ahead scheme employed. We may, however, eliminate y- 

from our equations, and we proceed to do that. Minimizing c- with respect 

to p gives (from (4.12)) 

cos(k/2)) d(k/2)ludk f 
l/2 

,(n> = 
l/2 

(4.13) 

1 - cos(k/2)) d(k/2)lu dk 

(4.14) 

For a single look-ahead (na = 1 in the notation introduced in Section 2), 

we use the Gaussian mean-field guess for $,,, 

qres"' = II exp(- 3 Y~(~j)2} = v exp{- 3 y:;(k);"(k)} 
(4.15) 

j 

The intermediate trial state It> for this scheme is obtained by substituting 

(4.15) in (4.2) or (4.4). The residual energy expectation value <ii> in the 

state $,,, is 
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<ire, liril l/J,,> = (4.16) 

Combining with (4.11) and (4.14) we find the total trial energy for this 

step (in the n !2 = 1 scheme); 

Wit> = QJresl~H)&,,,> 

= 2 {& A"'(&+ -$(k)2dk)1'2+ -&+ 2fi:' 2~ T,(k) d$) 
0 n 0 

(4.17) 

where the dependence of 2 on p is given in (4.12), and A is a constant in 

this variational problem: 

2lT 

A= 
J [( 

l- cos(k/2)) d(k/2)lUdk (4.18) 

0 

Minimizing <t\Hlt> with respect to y: is trivial; the remaining minimiza- 

tion with respect to p(k) depends on how long-range we wish to make the 

shift. Finally, if a number n R > 1 of look-ahead steps is desired, the 

mapping should simply be carried out nil times before a mean-field Gaussian 

is used in the residual variables. (4 All intermediate y- values are given 

by (4.13), and one minimizes <tlH\t> with respect to all intermediate 

p,(k) --so 

From here on the variational problem is essentially numerical. We 

have solved it for various look-ahed schemes and various forms for the 

initial lattice-Laplacian, d (O)(k). Before reporting the results, we 

assume that the mapping parameters have been determined, and turn to the 

mapping of Green's functions. 
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The'recursion relations for Green's functions follow from Eq. (4.9) 

by taking expectation values in the state Itrial>. Defining for the n-th 

iteration 

,W (k) = <I x(n)*(k)>trial 

R(n)(k) = <I p(n)*(k)> trial 

(4.19) 

We get 

,(n> (k) = L(ficos(k/2)+ I sin(k/2))2 G(n+l) (2k) + ~ 
Jz 

4y:n) Cl- cos k) 

b-d 
(n)(2k) - sin(k/2) 

2 
,b-d (k) = 1 -is- cos(k/2) p 

26 
(l+ cos k) R("+l)(2k) + + 

bm 
(4.20) 

If these recursion relations are iterated ad infinitum, we get for G (0) 

and R(O) pathological functions of k that are nowhere smooth; this is just 

a reflections of the block umkl'ap problem mentioned earlier.ll What is 

happening is that an uncareful application of (4.20) causes the scaling 

behavior of G and R to be masked by these artificial umklap singularities; 

the way out of this problem is to consider G (d (k), R(n)(k) only at the 

discrete momenta values k = 7~ l 2-r. The recursion relations (4.20) are r 

then solved on this subset of the real axis. This is possible because they 

relate G(n) and R(n) at kr to Gcn+‘) and R(n+l) at krVl, and moreover this 

trick causes the recursion to terminate when r reaches 0, k. = r. A 

demonstration of how we have solved recursion relations of this type is 

furnished in Appendix C. 

Once the power laws for the Green's functions have been found at the 

discrete momentum values k,, we can interpolate to all k values; this is 

a convenient way to smooth the non-analytic behavior of G and R. Note 

that the discrete sequence {k,) has an accumulation point at k=O, which 
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is the region of interest (long-range). Physically, {k,} are the 

elementary harmonics quantized in the blocks oft sizes 2r.12 

We next present the results of this one-variable adiabatic method 

for various forms of p(k), d(k) and look-ahead procedure. 

The Results For One-Variable Schemes 

The results of several one-variable schemes, of the type described 

above, are summarized in Tables I and II. In these tables, nshift is the 

range of the shift in number of blocks; for a given range, the most 

general shift function compatible with parity is (see Eq. (4.6)). 

n shift 

P 04 = 
c 

rj sin(jk) 

j=l 

(4.21) 

For schemes with nearest-neighbor shifts, nshift = 1, we recorded the limit 

r = lim rin) (4.22) a, 
n+m 

of the shift parameter as the number of iterations tends to infinity; it 

is a measure of the amount of adiabatic shifting in the large-scale 

limit. Pg.s. is the ground-state energy density, while yG and yR are the 

asymptotic large-distance exponents as computed at the points kr = IT l 
2 -r 

from (4.20): 
G(k,) - $1 

YG 

as r >> 1. Since yR = -yG for all the schemes we considered, we recorded 

Only yG' 

Both tables refer to a model with the nearest neighbor lattice deriva- 

tive given in Eq. (3.3). Setting the shifts p(k) to zero gives the simple- 

blocking scheme with mean field, i.e., with a one-step look-ahead; the no- 
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Cd mean-field scheme results when we determine the Gaussian parameters y- 

by diagonalizing the block Hamiltonian. Both these schemes give 

YG = -1/2,13 but the energy density is better with mean field than 

without it. 

We see that allowing nearest-neighbor shifts improves both main 

physical quantities (energy and asymptotic exponent). Taking more look- 

ahead steps further improves them (except for nR = 2), until beyond nR = 4 

the results change very little. Increasing the range of the shift improves 

them even more, but only when nR is at least 2.14 The best scheme we have 

tried was that with a range-two shift and three look-ahead steps, giving 

YG = -.998. 

Table II .shows ratios of the trial energy density and Green's func- 

tions to their exact values, for various masses and momenta. The nearest- 

neighbor gradient (Eq. (3.3)) was again used. For large masses, where 

simple blocking works well because the field is localized, the shift does 

not change the results much, but as the mass decreases the new method 

becomes superior both for pg s and Green's functions.15 . . 

Finally, we have checked the sensitivity of the above results to 

changes in the form of lattice gradient used (including for the so-called 

"SLAP derivative that is infinite-range and is designed to give a rela- 

tivistic spectrum). Both the exact and trial energy densities changes, 

and the shift again improves the agreement, even though on the whole 

blocking is slightly less successful for longer-ranged derivatives. The 

asymptotic shifts and yG do not depend on the form of d(k). The fixed 

form of the gradient is given in Eq. (A.7); why this form is of range 4 

lattice sites is also explained there. 
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5. TWO-VARIABLE SCHEMES 

A. A Two-Variable Formulation of the Model 

In the last section we saw how a nearest-neighbor adiabatic shift 

much improves on the simple Gaussian-truncation blocking scheme. The 

scheme can be made even more accurate by keeping more variables per site 

in the effective Hamiltonian, thus truncating away less of the dynamics. 

We will demonstrate this for a particular class of schemes in which two 

variables are kept per site. First we will cast the model in its two- 

variable form, by blocking once without truncation. 

We start from Eq. (3.2), and decompose x(k), p(k) in terms of block 

variables according to Eq. (8.3). We redefine for convenience 

y(k) = x+(k) , z(k) = x-(k)lJZ- 

pyW = p+(k), pz(k> = f?- p-(k) 
(5.1) 

H then assumes the form 

$ PyP; + + P,P; + (Y d (5.2) 

here dyy(k), dyz(k) and dzz(k) are functions given in Eq. (A.4). 

We now take Eq. (5.2) as our starting point. It is an effective 

Hamiltonian, but is equivalent to the original one. It is defined on a 

new lattice of volume L/2 and with a two-component scalar field at each 

site -- a parity-even component y and a parity-odd component z. Under 

the symmetry G(T) ((Eq. (3.5)), we have 

y(k) -f y(k) + ~6 k,O 
G(T) : 

z(k) + z(k) 
(5.3) 

(py, p, unchanged) 
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Since zadoes not transform, it is allowed to have an effective mass term 

without violating any symmetry, and indeed there is such a term from the 

outset (Eq. (A.5)). 

B. A Two-Variable Adiabatic Scheme 

We group the sites in pairs to form blocks (which are 4-site 'super- 

blocks" in the original sites), and define four block variables: the sum 

and difference variables for y and z, denoted as y f and z+ (see Eq. (A.6) - 

for their exact definition). y-, z+ and z- are the three fast block 

modes, and y + is the slow mode (intuitively; since it corresponds to a 

k=O mode inside the superblock). 

Within one block there can occur a mixing between the four modes. 

Parity invariance implies that the two even variables, y+ and z-, may 

only mix with each other, and so can the odd variables y- and z+. We 

will keep one even mode, and one odd mode which is a mixture of y- and 

z+' The other two modes will be truncated to adiabatic wave packets, 

with centers that are shifted to track the retained modes. Note that 

Y+ and z- cannot actually mix (at least not orthogonally), because that 

would give a mass to y+ and break the G(r) invariance; hence we take the 

retained slow mode as simply y+. 

Let 6 be the mixing angle between the odd modes, defined such that 

the fast and slow mixed modes are, respectively, 

M z+ E cz+ - sy- 

M - 
Y- sz+ + cy 

Here c and s are shorthand for cosg and sing, respectively. We now 

invoke the most general linear adiabatic shifts among the four modes 
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M M * 'z Y+' Y-9 +9 z- that are consistent with the symmetries of the model. The 

M fast modes z+, z each shift by a linear combination of the two slow modes 

y+, y"; as in the one-variable calculation, we work in momentum basis and 

the shift coefficients are k dependent. We thus define 

Y+ = Y+ 

G- = Yy I 

(unshifted slow modes) 

; = Mu M 
+ z+ - iPlY+ - p2Y- 

(shifted fast modes) 
; =z _ - p3y+ - iP4Y_M 

Disentangeling the original variables in terms of $,, i+ we find 

Y+ = ?+ 

6 

Y- = Cc - sp2) Y- - ipl s$+ - ~2, 
(5.4) A 

z+ = cz + + ipl 4+ + (s + p2 c> i 

Z = i- + p3F+ + ip4jr 

where the shift coefficients pi are functions of k. it + and g- are the fast 

modes that we truncate away. 

If we assume that the shifts are all nearest-neighbor, then parity 

and G(r) symmetries restrict them to the following forms, parametrized by 

five real numbers: 

pi(k) = rl sink 

p2(k) = r2 + r3 cask 
(5.5) 

P3(k) = r4(l - cask) 

p4(k) = r5 sink 

The six mix-shift parameters 5, {ri} will be determined variationally. 
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The truncation is done with a product-Gaussian state: 

<I$,i)(trial> = n 
- + ylji+(k) I2 - + y21"ZJ4 I2 

e e 1cI (5.6) 
k > res(IF+H 

where +res is the wave function in the remaining variables, and yl, y2 

are two more variational parameters. The guess-form we use for a 

one-step look-ahead is a product over single-site Gaussians, 

-$ Y31;+(k) I2 - + y41$-(k) 1’). TO complete the definition of the 

mapping we rescale 
l/4 

?=2 Y+ 

z= 2-1/4 A 
y- 

py = 2 -l/4 r;+ 
Y 

;, = 2 l/4 A- 
pY 

(5.7) 

We have studied three equal-time Green's functions, 

Gl(k) = <y(k) Y"Wtrial 

G2(k) = i<y(k) z*(k) >trial 

G3(k) = <z(k) z*Wtrial 

(5.8) 

which are arranged as a vector of rank 3, and their canonically conjugate 

counterparts, the vector s(k). The mapping of bilinear operators gives a 

tensor version of the renormalization group equations encountered in the 

one-variable case; e.g., 

@(k) z++“)(k) l ++')(2k) + $n)(k> * (5.9) 

where the matrix F(") and the vector z(n) depend on the mix-shift 

parameters. This equation is easily obtained from Eqs. (5.8),~ (A.6), 

(5.4) and (5.6) upon integrating out the fast "shift-mixed" variables, i ?. 
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We iterated these equations for the momenta k = kr, using parameter 

values obtained variationally through a look-ahead procedure. The 

mapping of the Hamiltonian is of the form Eq. (4.11), with the new 

Hamiltonian being again of the form Eq. (5.2). The fixed form of H 

has functions d , d , dZz 

reason the rangyof iTn) 

of range four lattice spacings, for the same 

was 4 in Section 4 (see Eq. (A.7)). As in the 

one-variable calculations, this fixed form is independent of the exact 

form of the lattice gradient we start from, and so are the values of the 

Green's function exponents, defined as follows 
. 

Gi(kr) - (k,) 
G 

i (5.10) 

Rick,> - (k,) 
YR 

where 1 < i 2 3 and r >> 1. 

Table III summarizes the results and compares them with the simple- 

blocking scheme: without mean field (Ref. 16) and with mean field. The 

adiabatic scheme is for n R = 2, and we see that vh, yi and y 1 R agree with 

the exact values up to -1 part in lG4. The other exponents are incorrect, 

as in the conventional schemes. We expect them to, because they involve 

the z mode, which is "faster" than y and so the truncation affects it 

more. This is again traceable to the lack of translational (T,) invariance 

in blocking schemes; for in any trial state that obeys that invariance, 

one can prove that 

3 
YG 

3 
YR 

-2+ 1=y; . 

(5.11) 
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For the case of only one look-ahead step, an anomalous phenomenon 

occurs: the ^z + mode, that in the no-shift schemes lies above ST-, crosses 

below it. Therefore, choosing y- repeatedly as a "slow mode" has a 

disastrous effect - it causes the I oscillator to keep increasing 

its effective mass with n, and it eventually decouples from y b-d . Thus, 

the n R = 1 scheme reproduces, in effect, the results of the one-variable 

scheme. This could be avoided by allowing $- to lower its frequency too, 

by shifting with the slowest mode $+. But for nil 2 2 the level ordering 

Ey+ < Ey- < Ez- < Ez+ (5.12) 

remains intact throughout the iterations. 

We also applied the scheme in which the three fast modes in a block 

are adiabatically shifted by the y+ mode; that did not give a much better 
. 

than the one-variable schemes, and did not improve y' and y i Pg.s. G R' 

C. Possible Improvements 

After having demonstrated that the results of the one-variable 

adiabatic scheme can be improved impressively by keeping two variables per 

site, we briefly discuss the generality of the procedure used in B. The 

two even modes in a block, y+ and z-, are not allowed to mix orthogonally 

if one of them (i.e., z-) is then truncated by a Gaussian, since that 

would give y+ a fictitious mass. But Y+ could still shift by an amount 

proportional to z- (i.e., a non-orthogonal mixing is allowed.). One may 

also choose a different resealing than Eq. (5.7).17 A no-shift, several- 

look-ahead calculation we did indicates that in such an approach the i- 

mode crosses below $-, suggesting that perhaps the two even modes should 

be kept per block. To avoid such breakdowns in a blocking scheme as this 
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or what'happens for n R = 1, one should not predetermine at all which of 

the four modes are to be truncated. Their energies should be allowed 

to determine that anew at each step of the iteration. One should also 

allow for more general shifts, as discussed in Section B. But the calcu- 

lations presented here suffice to make the point that systematic improve- 

ment within our approach is possible. 

6. CONCLUSIONS 

We have seen how the adiabatic truncation method can be used to 

improve the accuracy of real-space renormalization group techniques on 

the lattice for the case of a free scalar field. The improvement is 

especially noteworthy for large-distance behavior of trial Green's 

functions. The same method can be generalized to interacting field 

theories, and to any number of dimensions. We expect it to yield better 

results for phase transition locations, critical exponents, etc., than 

was possible with conventional methods. 
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APPENDIX A 

In going from position to momentum basis we used the following 

relations: 

d(r) = $x eikr d(k) 
k 

x(r) = 1 C e -ikr 

&k 
x(k) (A. 1) 

. 
p(r) = 1 C e-lkr 

6k 
p(k) 

where L is the volume of the system in the current iteration, and k 

ranges over the values HIT mk/L, 0 I mk S L - 1. The canonical connnuta- 

tion relations are 

[x(k), p*(k)1 = i 6k k, 
, (A. 2) 

and since x is a real field, x*(k) = x(-k), and likewise for p. 

To get the blocking relations in momentum basis, start from Eq. (4.1). 

Multiply both sides of each equation by e +2jik and sum over 0 I j < L/2 - 1. 

using for the block variables x ?, p, Fourier transformations similar to 

Eq. (A.l), but with L replaced by the decimated volume L/2, we find the 

relations 

.-ik/2 x(k) = fi cos(k/2) x+(2k) - i sin(k/2) x-(2k) 
(A.3) 

.-ik/2 
p(k) = 2 cos(k/2) p+(2k) - i sin(k/2) p-(2k) 

For the two-variable schemes, the "Laplacian matrix" appearing in 

Eq. (5.2) has the components 

dyy(k) = [(1 + cos(k/2)) d(k/2)lU 

dyz(k) = -2[sin (k/2) d(k/2)lu 

dzz(k> = [(l - cosW2)) d(W)] u 

(A.4) 
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Using the definition (4.10) for the umklap sum. For the zero-mass nearest- 

neighbor gradient, d(k) = 1 - cask and 

dyy(k) = 1 - cos k 

dyz(k) = 2 sin k (4.5) 

dzz(k) = 3 + cos k 

The definitions of the four block variables and their canonical momenta 

e-ik'2 y(k) = fi cos(k/2) y+(2k) - i sin(k/2) y-(2k) 

,-ik/2 
z(k) = cos(k/2) z+(2k) - i sin(k/2) z (2k) 

.-ikj2 
py(k) = -iz- 

(A-6) 

Jz- 
cosW2) p;(2k) - i sin(k/2) pi(2k) 

e-ik'2 pz(k> = cos(k/2) pL(2k) - i sin(k/2) pi(2k) . 

Fixed forms: In the one-variable scheme with nshift = nR = 1, any model 

with a gradient of range four lattice spacings or less has the fixed-form 

gradient 

d(n) 04 - C n+= 0 [ (1 - cos k) - .24 (1 - cos(2k)) + 0.35 (1 - cos(3k)) 

+ .OOl (1 - cos(4k))] (A.?') 

where C o decreases exponentially with n. It is easy to prove that, 

starting with a lattice Laplacian d (O)(k) of range 24, d(n)(k) reaches the 

maximal range of 4. An interaction term of range r lattice sites becomes, 

upon blocking, of the range r-2 
1 I 2 +1, where LxJ is the largest integer 

smaller or equal to x; this range rapidly iterates to nearest-neighbor, 1. 

But with a nearest-neighbor adiabatic shift, ';; j-l knows about g j+l through 

G-(j) so we must add 2 to the iterated range: 
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r = 
r-l 

it 1 1 2 +3 

which iterates to 4 for all r initial 2 4. 
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APPENDIX B 

A QUALITATIVE EXPLANATION FOR THE AN&iALOUS MASS GAPS 

Simple-blocking schemes tend to give the massless model fictitious 

mass-gaps, decreasing as the -l/2 power of the block volume; this is 

responsible for asymptotic exponents (yG in the one-variable schemes and 

yi in the two-variable schemes) coming out to be -l/2. Why this occurs 

may be understood in a qualitative way as follows: consider a superblock, 

formed after n iterations, of volume V = 2n sites; we look at the part HV 

of the original Hamiltonian that involves only fields inside this super- 

block, and add to it two symmetric surface terms to represent the effects 

of the rest of the system: 18 

V-l 
1 

C( 
2 

? xj+l - xj > 
+$(x:+<) . 0.1) 

j=l j=l 

The freedom in choosing the surface terms stems from the arbitrary 

nature of the decomposition into "block energy" and "block-block inter- 

action," pointed out in Section 2. The surface terms will cause the field 

xj 
quantized in this volume to have an effective mass am, which scales 

with the anomalous power -l/2 (a being of order unity). The particular 

choice c1 = 1 corresponds to the choice of block Hamiltonian of Ref. 19. 
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APPENDIX C 

We now demonstrate the method used to solve the recursion relations 

(4.20) for the values of Green's functions at k = kr. The example to be 

worked out in detail is the no-shift, one look-ahead case, i.e., p,(k) - 0. 

For a nearest-neighbor gradient d (O)(k) = l-cask (Eq. (3.3) for u=O), 

we find from (4.13) 

y(n) E 43 cc. 1) 

In this case, Eq. (4.20) simplifies to 

&)(k) = ’ z (l+cosk) G(n+1)(2k) + - -cask) 
4h Cl 

cc.21 

R(n)(k) = -$ (l+cosk)R("+l)(2k) + + (l- cask) 

Using l+cosk = %[sin2k/sin2(k/2)], we find upon iterating (C.2) ad - 

infinitum 

G(k) = G(')(k) = & l-cask+ c [l-cos(2%)](-$$ $2;;;;) ) 
m=l 

m 

1 l-cask + 1 zosk c (8) 
-m/2 =- 

4A 
sin4(2m-1k) 

m=l (C.3) 

4 2 (32)-m'2 sin4(2m-1k)/ 
l- cask m=l 

These are non-analytic functions, but at k = kr = ITX 2 
-r the sums terminate 

and we obtain 
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r 
G(k,) = L 

4J5i t 
' - 'Oskr + 1 _ ,40sk 

-m/2 sin 4 7Tx2 m-l-r 

(C.4) 
r 

c;sk c (32) 
-m/2 sin 4 

( nx2 m-l-r 

r m=l 

These are the types of sums that appear in all our truncation schemes. 

For large r, the first terms (low m) behave approximately as a geometric 

series, with some ratio c. If c1 > 1, the large-m part of the sum dominates, 

whereas if c1 < 1 the low-m terms dominate. For the case at hand, a > 1 

for both sums (C.4), so they are dominated by m = r: 

G(k,) N + (8)-r'2 N (kr)-"2 
0-Q 

Nk,) N -+ (32)-r'2 'v (kr)1'2 
$1 

(see Table I). 
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Table I. Results from one-variable schemes~in the massless model. 

Scheme 52 n shift Pg.s. YG r co 

Simple-blocking without field 0 0 .773 -. 5 0 mean 

Simple-blocking 
with mean field 1 0 .670 -. 5 0 

Adiabatic 
truncation 
schemes 

1 1 .643435 -.984 -.384 

2 1 .643447 -.979 -.388 

3 1 .643425 -.987 -.380 

4 1 .643424 -.989 -.378 

5 1 .643424 -.989 -.378 

1 2 .643933 -.91 -- 

1 03 .643878 -.93 -- 

2 2 .643399 -.997 -- 

3 2 .643377 -.998 -- 

Exact values -- .6366 -1 -- -- 
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Table II. Ratios of trial to exact quantities for various masses 
and momenta k, = IT 2-r. a) For the adiabatic truncation scheme 
with n,hift = nk = 1, and b) for the no-shift scheme, i.e., simple 
blocking, with a mean-field look-ahead. 

a> 
$ v2 pg.s.(trial)/pgSs.(exact) Gtrial(kr)'Gexact(kr) 

r= 5 r = 14 

10 1.000095 .99998 

lo-6 1.01 .518 .828 

1o-g - 1.01 .518 .472 

b) 
3 v2 pg.s.(trial)/pg.s.(exact) Gtrial(kr)'Gtrial(kr) 

r= 5 r = 14 
- 

10 1.00025 .995 .99999 

1O-6 1.05 .249 .082 

1O-g 1.01 .249 .Oll 



Table III. Results for the various two-variable schemes. The numbers in the 
first column are the ratios of trial to exact ground-state energy densities. 
5 is the mixing angle of the two odd-parity modes within a block, and the 
y parameters are the asymptotic exponents, defined 'in Eq. (5.10). 

pg.s.(trial)/pg.s.(exact) 5 2 3 1 2 3 
YG yG YR 'R 'R 

Two-look-ahead 
shift-mix adiabatic 
truncation 

1.002 66.7' -1.00022 -.00022 0 .99991 1 0 

No shift, one-look- 
ahead, mixing 

I 
1.04 17O -. 5 1 0 .5 0 0 8 

I 

Simple-blocking, 
no look-aheads 1.06 3o" -1 0 0 .5 0 0 

Exact exponents -1 0 11 2 3 


