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ABSTRACT 

The observable fields of QED are used to construct operators which 

project onto states with prescribed configurations of incoming or 

outgoing observable particles. These operators are used to define the 

physical cross sections of QED. It is heuristically argued that the 

cross sections thus defined are free of infrared divergences and in fact 

equal the traditional results. 
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1. INTRODUCTION 

Cross sections in QED are typically calculated by applying LSZ 

scattering theory8 to the gauge-noninvariant photon and electron fields 

A,, and $. The resulting infrared-divergent S-matrix elements are then 

used to compute cross sections. In this paper we describe a procedure 

for computing cross sections (in principle, at least) which does not use 

gauge-noninvariant fields or infrared-divergent quantities. The basic 

idea is to use gauge-invariant fieldsI (e.g., the energy-momentum 

tensor TV' and the electric current Jv) to define operators which project 

onto states whose observable outgoing (or incoming) particles lie in some 

prescribed region of phase space. These phase space projection operators 

(PSPO's) are then used to define cross sections. 

Note that S-matrix elements are not defined in this approach. In 

this and in other ways the procedure resembles results of Araki and 

Haag.l' However, it differs by being applicable to QED, by including 

a definition of cross sections, and, regrettably, by disregarding rigor. 

The PSPO's are defined in Section 2. Their infrared finiteness 

will be obvious on physical grounds since they are physically observable 

operators, (Explicit verification of the infrared finiteness of the 

PSPO's found in certain model theories is given, somewhat disguised, in 

Ref. 2.) 

A definition of cross sections based on PSPO's is given in Section 3. 

This definition does not correspond all that closely to actual laboratory 

procedures and is therefore not manifestly infrared finite. Section 3 

therefore contains a heuristic argument for the infrared finiteness at 

the definition. (Actually, almost all of the arguments in this paper 
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are heuristic, some more than others. Only a few results are rigorous 

and there are some gaps, as will be noted, in the reasoning.) 

In what follows, our attention is restricted to QED mostly for the 

sake of notational simplicity. With obvious modifications, most of what 

follows should apply to any (nongravitational) Lagrangian field theory. 

2. PSPO'S 

In this section, we construct PSPO's which analyze outgoing particle 

content. Trivial modifications yield PSPO's for incoming particles. 

Given a field theory to which LSZ scattering theory is applicable, 

asymptotic-states ]kl . . . kn out> may be defined, where k 1 ,...,k, denote 

particle momenta. The PSPO's densities are then given by 

P Out(kl ,...,k,) : Ikl . ..kn out><kl . ..kn out/ . 

These, when integrated over a region R of n-particle phase space, clearly 

project onto states whose particle contents lie in R. However, LSZ 

scattering theory does not apply to QED, and we must proceed differently. 

To illustrate our approach, we now briefly and sloppily construct 

the PSPO's for a scalar field theory with a single massive spinless 

particle. 

Outgoing particles can have various velocities. Given a region 

nc lR3, purely geometric reasoning yields that a particle with velocity 

in R will for large enough times t lie in the spatial region 

ts2 5 it=] GeR). Therefore, the energy-momentum carried by such 

particles should equal 

P p(n) E lim 
t--f03 

dz T;(t,z) , 

tn 
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where Tuv is the energy-momentum tensor. (I apologize for the dual use 

of the letter P.) 

We define a no-particle (in fi) state -- that is, a state with 

possibly several particles but none with velocity in R -- to be a state 

which is annihilated by PEut(n). The projection operator onto all such 

states we denote by Eo(Q). 

Now, a single-particle state is typically defined as a (normalizable) 

eigenstate of the mass operator J- 
2 -P . (P 1-\ 

is the total energy-momentum, 

and our metric is -+t+.) The physical reasoning behind this definition 

may be found in Ref. 9. For similar reasons, we define a single-particle 

(in 0) state -- that is, a state with possibly several particles but only 

one with velocity in $l -- to be a normalizable eigenstate of 

The projection operator onto all such states we denote by E(R). 

We are now ready to define PSPO's. Let Rl, . . ..nn be disjoint regions 

in IRj. Then R G O1x...xQn is a region in n-particle phase space, and 

we define 

P Out(R) 5 E&l) . ..E(Rn) Eo(w "lU...UQn) . 

(x, -9 and U denote respectively Cartesian product, complement, and union.) 

Since the E's and E. commute (as will be argued later), Pout(R) is in fact 

a projection operator. Furthermore, any state that it projects onto 

clearly has one particle in each velocity region Ri and no other particles. 

Thus, Pout(R) is the desired PSPO, projecting onto states whose outgoing 

particle contents lie in the phase space region R. 

We are not quite finished. Sets R of the type defined above are 

rather special subsets of phase space. We would like to define P Out(R) 

for arbitrary measurable R. To do this, several approaches might be 
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taken. #For example, PSPO densities could be defined by 

pout + 
(Y , . . . ,=,) 

Pout("lX.*.Xfin) 
- lim  

~ (ni)~O Lml> l * *  la&) ’ 

where v i E Ri and p(Gi) is the volume of fii. (We expect the lim it to 

exist weakly, yielding a measurable function.) The desired PSPO's could 

then be obtained by integrating the densities. Alternately, given a 

disjoint collection of sets Rk each of the above type, one can define 

P 

It is not difficult to show that this definition is meaningful and has 

all the properties a PSPO ought to have. One could then try to define 

P Out(R) f or arbitrary measurable R by approximating (in some sense) R 

by sets of the above form Lk Rk. 

We assume that at least one of the above approaches can be made to 

work. This completes our construction of the PSPO's for the scalar 

field theory. 

Turning to QED, we immediately encounter a difficulty. 

P out(~lx . . . xCZn) clearly projects onto states with only n particles, 

but states in QED often have an infinite number of photons. We there- 

fore adopt the following strategy. The preceding procedure will be 

out used to define PSPO's P, which analyze outgoing massive particles, 

but are inclusive with respect to massless particles. By an entirely 

different method, we will then define PSPO's PiUt which analyze outgoing 

observable massless particles but are inclusive with respect to both 

massive particles and unobservable massless particles. The product 
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P out - bout pOut 
+ 0 will then analyze all observable particles, but be 

inclusive over unobservable massless particles. 

We now turn to the construction of Pyt. Our starting point is 

again the equation 

P ,Out(Q) = lim (1) 
t+- J 

d;: T;(t,;) , 

tn 

[In a mathematical sense, lim J 
t-t- tn 

dz Ti(t,z) is poorly defined even 

before the limit is taken. It can be made meaningful in a natural way 

(which we do not present) but certain assumptions are required. We do 

not discuss these assumptions except to assert that they are physically 

reasonable. In any case, we shall use the present, heuristic form.1 

We now argue that [ P ;Ut(~l),~tut(fi2)] = 0. First, we expect the 

result to hold if "1 f-J R2 = 9, since then, for all t > 0, the two sets 

((t,;) lde tfi,} (i= 1,2) are space-like separated, and 

dgl T;(dl) , J- dz2 T;(t,z2) = 0 . 

tn2 1 
Assuming some sort of strong convergence as t+m (which we do not describe), 

the result follows. It suffices, therefore, to consider only the case 

"1 =Q2. Next, we assume that P yyt (Q) is independent of the position of 

the origin of our space-time coordinates, from which it follows that 

[P;ut(Q),Pvl = 0. Finally, from Pv = Pzut(IR3) , we obtain 

[ 
P ;Ut(n),P;ut(o)] = [P;ut(n),Pv-P;ut(4)] = 0 . 

Let B = GElR31 I;1 cl). Henceforward we tacitly require that all 

R lie in B. Furthermore, until we return to the subject of massless 

particles, the term "particle" will mean "massive particle." 
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We'may now proceed rapidly. We define a no-particle (in L?) state 

to be a state which is annihilated by P yt (Q> , and the projection 

operator onto such states we denote by Eo(fi). A single-particle (in a) 

state is a normalizable eigenstate of JFw with nonzero eigen- 

value, and the projection operator onto such states is E(n). 

We now decompose the space of single-particle (in 0,) states into 

orthogonal subspaces each containing a different type of particle (in n). 

We begin by diagonalizing J -P Out (i-2) 2 , yielding subspaces corresponding 

to particles (in a) of different mass. On these subspaces, we diagonalize 

Q Out(,) E lim J d; J'(t,;) , 

where 5' is the electric current, y ielding subspaces corresponding to 

particles (in a) of different mass and charge. (This diagonalization 

is possible only because Q Out ($2) commutes with P Out u-0, 1-I 
as may be 

established by mimicking similar considerations above.) Finally, we 

further diagonalize the spin operator S3 Out(Q), yielding subspaces 

corresponding to particles (in LI) of different mass, charge, and spin 

orientation. 

[The subject of spin merits a paper in itself, and we do not define 

lout here. We nevertheless assume that some natural definition can 

be given, that 3 Out (i-l) commutes with P ;Ut($2) and Qout(n), and that 

CS~ut(a),S~ut(0)l = ieijkSpt(R).12 The reader dissatisfied with this 

is free to refrain from making the S3 Out(,) diagonalization. Almost all 

of the following considerations will still apply, and we shall point out 

those which do not.1 
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We 'label the various subspaces obtained by the final diagonalization 

above by the index i, and we let Ei(fi) projectonto the i-th subspace. 

In QED, we expect i=l,..., 4, corresponding to two spin states for the 

electron and two spin states for the positron. For those skipping the 

S;ut(fi) diagonalization, i= 1,2. In either case, we define the PSPO'S 

P out u-$x . . . xan) 2 Ei (nl) . ..Ei (fin) Eo(B N filu...U$) Y (2) 
+il...i, 1 n 

where the fii are disjoint and B-R = - {;eBI f:tfi). The PSPO densities 

and P out 
+il...i, (R) for arbitrary measurable R are obtained as in the 

previously considered scalar field theory. 

This completes our derivation of the PSPO's Pyt which analyze 

massive particles. 
out 

Before we turn to the construction of PO , we first 

switch over from velocity variables to momentum variables; that is, in 

the PSPO densities, we switch over from the variable 2 to the variable 
-f p = rn$ /r 1-G2. Furthermore, we shall use the covariant integration 

measure dp : d$/(2r)32po and the covariant 6-function T(p-q) G 

(21~)~2p~&($-G), where p" = @-z. 

The construction of PEut proceeds along entirely different lines 

from the above construction of Pyt. In fact, it resembles the LSZ 

formalism. 

We define a massless particle state to be both annihilated by J-- -P2 

and orthogonal to the vacuum. In QED, the massless particles are just 

photons. We next need a field with nonvanishing matrix elements between 

massless particle states and the vacuum. We choose the electromagnetic 

field F 
PV' 

By taking appropriate strong limits in lightlike directions, 

the free field F;zt may be constructed.13 (It follows that F;tt commutes 
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with P+ '?) G' lven moderate assumptions, one can then extract from F out 
IJV 

annihilation operators a yUt 09 and define n yUt(k) = aiut(k)? ayut(k) 

away from k=0.14 (A labels photon helicity.) 

For a given experiment, some photons will have too little energy to 

be observed. The observable photons are called hard, and we take our 

photon phase space to include only hard momenta. 

out 
pO is uniquely defined if we require 

co 
c 
n=O 

-$- c 
x1... 

$ dkl . ..dkn P;yt h (kl,--,kn) = 1 
An hard . . . ln 

and 
n 

nyut(k) P~~tm..x (kl,...,kn) = c 6Ax z(k-kj) Piyt x (+..,k,) , 
ln j=l j . . . ln 

where all momenta shown are hard. 

straightforward combinatorics that 

From these requirements it follows by 

:n Out(k,) 
5 

. . . nyut(km) : 
m 

= 2 -$- c 
n=O al...a 

fi$...da, P;;'...~ (T 
n hard 1 

~ (kl,..~,km,~l,...'Rn). 
m 1"' n 

out This equation may be solved for PO , yielding 

out 
'OAl...A (k19"*'km) 

= c co s 
n=O 

xrn Jx,...zn :n~~t(kl)...n~~t(k,)n~lft(al)...nmf(an): l 

al...on hard 

(3) 
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Finally, if Rl and R2 are phase space regions for the (observable) 

massless and massive particles respectively, we define P Out(Rl xR2) = 

out P;%l) Pyt(R2). PO out and P+ commute (since F out out 
W 

and P+ commute), 

so P out is in fact a projection operator, and it can be shown to have 

all the properties desired of a PSPO. The definition of Pout(R) for 

arbitrary R is again assumed to proceed as in the previously considered 

scalar field theory. 

3. CROSS SECTIONS 

One of the key difficulties in defining cross sections in QED is the 

preparation of the initial state. Consider, for example, electron-electron 

scattering. Ideally, we would like an initial state consisting of a pair 

of electrons and nothing else. However, charged particles are inevitably 

accompanied by soft photons.7 Furthermore, it is not possible to construct 

a charged state by applying observable fields to the vacuum.' Thus, to 

consider states of nonzero charge, we must depart from the context of 

Wightman field theory. This we choose not to do. It follows that the 

nicest initial state we can prepare for the purpose of electron-electron 

scattering contains two electrons, two positrons, and an! infinite number 

of soft photons. 

Thus, we are faced with the problem of unwanted particles in the 

initial state. Before attacking this problem, we first consider theories 

which, unlike QED, have an S-matrix. For such theories, we provide a 

derivation of cross sections from S-matrix elements which perhaps improves 

upon those found in the literature. 3-6 After demonstrating that this 

derivation yields the usual results, we rephrase it in terms of PSPO's. 
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We then reconsider the problem of unwanted particles in the initial state 

and propose a solution. We conclude with a heuristic argument that the 

proposed solution encounters no infrared divergences and in fact yields 

the traditional results. 

We now present our derivation of cross sections from S-matrix 

elements. In any quantum mechanics experiment, one prepares a state 

and measures some observable. In our case, the observable 67 to be 

measured is just whether or not the outgoing particles lie in a given 

region R of phase space. That is, 

6 = J da Ia out> <a out1 . 
R 

To prepare the-initial state, we begin with almost any two particle 

state 

-- 
> = Idk dR cp(k,R) Ik R in> . 

(We have suppressed the indices that label particle type. Also, the 

meaning of "almost any" will be discussed later.) Anticipating the 

collision of an incident particle with momentum K against a target 
-- 

particle with momentum L, we restrict the dk dR integration to a small 

regionh = AlxA2Cl!8 with (z,z) c A. The state obtained by this 

restriction we call IA>. 

In a real scattering experiment, one uses a beam of incoming 

particles with differing impact parameters. To incorporate various 

"impact parametersIr in our initial state, we need operators that 

translate the incident particle transverse to the beam direction while 

leaving the target particle alone. Without going deeply into the matter, 

we simply make the reasonable assertion that the operator that generates 
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translations of a collection of particles is just the momentum of those 

particles. In this case, the incident particle is translated along the 

vector a by the operator 

exp -iap s 
Al 

dk kU nin(k) 1 
Applying this operator to IA> yields a factor e -ik*a in the integrand, 

and we call the resulting state 1 Aa>. 

To form a beam, we must average over vectors a transverse to the 

beam direction. For definiteness, we take d and x to lie along the 

z-direction, so we want a= (0,a l,a2,0>. Averaging over an area A in 

the x-y plane yields (using "A" for both a region in R2 and its measure) 

A-l / 
a2a <Aal @'I Aa> 

A <AI A> ' 

The incident "flux" is clearly one particle per area A, so dividing 

-1 by the flux simply eliminates the factor A . We may now allow A to be 

all of lR2. Finally, we are interested in the limit as the initial 

particles become momentum eigenstates, which we achieve by shrinking 

the region A down to a point (always keeping (%,T) E A). Calling this 

limit lim , we obtain 
A-SO 

(4) 

That Eq. (4) yields the usual results is easily demonstrated. 

Assuming (as we must) that the phase space regions R and A are disjoint 

yields that 

<a out I kR in> = i(2T) 4 G(Pu-k-R) Tu kR 
, 
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where P$ is the total momentum of the phase space point c1 and Ta kR , 

is the usual T-matrix element.3 <Aal@'] Aa> then equals 

/ 
-- 
dk dR / dk' dR' e -ia*(k-k')(2~)4 G(k+R-k'-R') cp(k',R')* cp(k,R) 

A A 

X da (27~)~ G(Po-k-R) T; k,R, To kR . 
R , , 

The d2a integration replaces e -ia*(k-k') with (28)2S(k1-k’1)S(k2-k’2) 

which, combined with (21~)~6(k+R-k'-R'), is just 

6(k-k') 'B(R-a') f I k3Ro -k"g3 -l I . 

The dk'w integrals are now trivial. Dividing the result by <A( A> = -- 
dk aR lq(k,a)12 and letting A+0 yields 

A 

0 =A K3Lo_KoL3 
4 de (27~)~ "(Pa - K - 

R 

Since K"L3 I - K3LO/ =J;m , this is the desired result.3 

[In the preceding argument, we have tacitly assumed that the wave- 

function cp behaves reasonably at (K,L). Letting A denote both a region 

and its measure, it suffices to require 

0 < lim-l- 
J 

-- 

A-to' A 
ak a& Ip(k,a)12 < -1 (5) 

Equation (4) may readily be expressed in terms of PSPOs. B is of 

course just P Out (RI, -- 
dk aR e -ik*a * Pln(k,R)> , 

and Eq. (5) may be expressed as 

O<liml<AlA><= . 
A+OA 
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We how attack the problem of extra particles in the initial state by 

considering electron-electron scattering. As noted earlier, we must 

consider states containing not only a pair of electrons, but also a pair 

of positrons and an infinite number of photons. Intuitively, we should 

solve the problem by sending the unwanted particles far away ("behind 

the moon"), but it is not clear how to implement this idea. 

Perhaps the.first idea to come to mind is to use behind-the-moon ideas 

to construct charged states containing only the desired incoming particles. 

Without going deeply into the matter, we note that the idea is ruined by 

infrared divergences: long range interactions between the unwanted and 

desired particles result in soft photon emissions and Coulomb distortion 

factors which do not settle down as the unwanted particles go off to 

infinity. To lessen these difficulties we proceed as follows: First, 

we define B and Iha> as before except that we include the unwanted 

particles. They, after forming the quantity /d2a <Aal @IAa>, we ,trans- 

late the unwanted particles infinitely far away. This procedure lessens 

the infrared difficulties for the following reasons. First, soft photon 

emissions cause no problem because d is insensitive to them. (All our 

PSPOs are inclusive with respect to unobservable particles.) Second, 

Coulomb distortion should have less effect on a beam than on a single 

particle, since a beam is to some extent translation invariant. 

Remarkably enough, the above procedure not only avoids some infrared 

difficulties, but in fact seems to avoid them altogether. To see this, 

we first describe the procedure in more detail, step by step. 

1. Choose for the incoming electrons K, L, and A as before. Choose 

also d = a, X x2 C lR6 for the incoming positrons. 
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2. 'Given > c x, define 

IA> -1 ,,J-- dp aq J+%O p,q)> ~, 

[We have suppressed the indices which label particle type. The first two 

particles are electrons and the second two positrons.] Find a state >, 

obtained by applying observable fields to the vacuum, such that 

a) O< lim $<AIA><m 
A+0 

b) the energy available to incoming photons in IA> is less than 

the minimum energy of an observable particle. (This may be 

arranged by limiting the sizes of A, b, and the range of 

energies in >.) 

3. We take our experimental question to be whether or not the 

collision products of the two electrons lie in a "phase space" region R. 

Choose R. Make sure that no point in R contains an electron in either Al 

or A 2 or a positron in either a 1 or a,. Define the phase space region R. 

to consist of all particle configurations obtained by adding a positron 

pair in a to a particle configuration in R. Set 6'= Pout(Ro). 

4. As before, translate the incident electron along the vector a 

by inserting the factor e -ik l a into the integrand of (A>. Also insert 

.-iXal l p and .-iXa2 l q , which translate the positrons along the non- 

collinear spacelike vectors a and a Finally, insert e -iXa3 l (k+ R) 
1 2' , 

which simultaneously translates the two electrons. (This is simpler than 

translating the soft photons and, since B is translation invariant, 

physically equivalent.) Call the result lAa>. 

5. u= lim A+0 (;pm/d2a Y$iP) 
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Wenow present a heuristic argument that the cross section u thus 

defined is finite, independent of a, >, and ai, and 

as the result traditionally obtained using S-matrix 

infrared cutoff. 

is in fact the same 

elements with an 

The gist of our argument is as follows. Although the PSPOs are 

unambiguously defined in Section 2, the definitions are, at present, un- 

suitable for practical calculations. On the other hand, given LSZ scatter- 

ing theory, the PSPOs are trivially obtained. (See the second paragraph 

of Section 2.) Therefore, for the purposes of calculation only (and only 

in the context of a heuristic argument), we introduce an infrared cutoff 

and use LSZ scattering theory to compute the PSPOs. We may therefore 

calculate u in terms of cut diagrams. (After each step of the following 

procedure, we will argue that the infrared cutoff may be released with- 

out encountering divergences. Unfortunately, however, in the procedure 

itself, the infrared cutoff is to be left on until the final result is 

obtained.) 

To begin, <Aal @(Aa> is expressed in terms of cut diagrams in 

Figure 1. The right-hand dot with particles coming out is sympolic 

for <ka pq y in\>. From bottom to top, the lines coming out symbolize 

a pair of electrons, a pair of positrons, and a collection of soft 

photons. (We use y to label both the collection of photons and its 
-- 

total momentum.) The rightmost cut represents the integrals I,dk dR, 
-- 

$dp dq, and an integral over all photon momenta (this being a consequence 

of requirement b. in step 2 above.) T is the usual infrared cutoff 

T-matrix element associated with <cl outIkE pqy in>. The middle cut /da 

runs over the observable particle phase space region R 0 and is inclusive 
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over soft photons. T*, the leftmost cut, and the left-hand dot are 

defined similarly to their right-hand counterparts. Suppressed in the 

diagram are the factors 

(21T)4 B(P&- k-i-p-q-y) (2~)~ 6(k+R+p+q+y-k'-R'-p'-q' -Y’> 

e-i(k-k') l a .-iXa1 * (p-p') 
e -iXa2* (q-q') .-iXa3 l (k+R-k'-R') . 

As noted above, it is reasonable to expect that no infrared 

divergences arise in the construction of the PSPOS.~ Hence <Aa]@ lAa>, 

and consequently Figure 1 summed over all contributions, is infrared 

finite. 

We would next like to do the .fd2a integration, but we must first 

argue that <Aal d lAa> fallsoff rapidly enough as a'+ m for the integral 

to converge. Our argument proceeds on physical grounds: Because the 

outgoing phase space region R contains no electrons in A 1' the incident 

electron must interact if <Aal @/Aa> is to be nonvanishing. As a2 gets 

large, the incident electron moves away from all the incoming particles, 

SO the question is whether or not the interactions are sufficiently long 

range to prevent the d2a integral from converging. To test this, we 

consider nonrelativistic Coulomb scattering. Appropriately modifying 

the above definition of u so that it applies to potential scattering 

(which isn't difficult), we ask whether or not the d 2 a integral converges. 

Using the results of Ref. 15 and 2, it can be rigorously proved that the 

integral converges and, in fact, that the usual exact Coulomb cross 

sectionI is obtained. 

So, we expect the d2a integration to be well defined. The resulting 

&function, combined with the factor (2~r) 
4 6(k+.R+p+q+y-k'-RI-p'- 

4' -y'), may be used to do the dk'dR' integrals. To remind ourselves 



-18- 

that the integrals have been done, we put a pair of dots on the relevant 

cut lines. Furthermore we. use the factor (2~)~ 6(Pn -k-R-p-q-y) 

to partially do the da integral, denoting this graphically with a "6" 

near the da cut. This yields the equation 

J d2a <Aal dlAa> = Figure 2 . 

Before taking the behind-the-moon limit A + 03, it is useful to 

decompose Figure 2 into the sum of two contributions: those graphs of 

the form shown in Figure 3 plus those graphs which are not. For the 

moment, let us consider the graphs in Figure 3. With these, the behind- 

the-moon limit is trivial: the graphs contain d-functions setting p = 

p' and q = q', and the dots set k' = k and R' = R. Thus the A dependent 

phase factors are all unity. Furthermore, by the unitarity of the cutoff 

S-matrix, we may replace Figure 3 by Figure 4. But Figure 4 is simply 

pq-- ap aq <Pin(k,b,p,q)> t lk3Ro - k"g31D1W(k,il) , 

where W(k,R) is defined graphically in Figure 5. Now, the graphs in 

Figure 3 were chosen precisely because they contain the &functions 

required to eliminate the A-dependent phase factors. The remaining con- 

tributions to Figure 2 do not have this property and vanish as X -+ ~0, as 

may be shown by using Riemann-Lebesgue arguments. (This is true only 

because we required in step 3 that no point in R contain an electron in 

A2' Without that requirement, graphs of the form shown in Figure 6 would 

contribute to Figure 2. Such graphs are A-independent but are not of 

the form shown in Figure 3.) 

Thus, the A + m limit leaves us with Figure 4, which is infrared 

finite. (The infrared finiteness of W(k,&) is proved for example in 
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Ref. 17.') Finally, dividing by 

<Ala> = i dk dR /, dp dq d%,R,p,qD 

and letting A + 0 yields 

o=+ lK3L0-KL 1 ' 3 -lW(K,L) , 

which is the usual result. 

This completes our heuristic argument that u defined above is 

finite, independent of h, >, and ai, and equal to the traditional 

result. Two comments: 

Had we considered (perturbative) quark-quark scattering rather than 

electron-eiectron scattering, the above argument would have failed. In 

particular, the QCD analog of W(k,R) is infrared divergent.l* Thus, we 

have failed to define o for quark-quark scattering. This is as it should 

be: physical arguments indicate that the quark-quark cross section 

simply does not exist. (We should perhaps point out that the results of 

Lee and Nauenberglg do not guarantee the existence of cross sections or, 

for that matter, of any physically observable quantity.) 

Also, those readers who refrained from making the S3(n) diagonaliza- 

tion in Section 2 will obtain results slightly different from those above. 

Without the S3(0) diagonalization, the PSPOs cannot be used to specify 

the spins of the incoming electrons. Thus, cross sections which are 

sensitive to the spins of the incoming electrons will be >-dependent. 

This work was supported by the Department of Energy, contract 

DE-AC03-76SF00515. 



-2o- 

REFERENCES 

1. The theory of observable (i.e., local, bosonic, gauge-invariant) fields 

acting on the vacuum is, at least at the level of perturbation theory, 

an entirely acceptable Wightman field theory. Not one axiom is 

violated. Thus, the frequently encountered assertion that QED 

necessarily lies outside the framework of Wightman field theory is 

at best grossly misleading. 

2. B. Weeks, SLAC-PUB-2764 (June 1981). 

3. Bjorken and Drell, Relativistic Quantum Mechanics, M. Perl, High Energy 

Hadron Physics. 

4. Bogoliubov and Shirkov, Introduction to the Theory of Quantized Fields, 

Sakurai, Advanced Quantum Mechanics. 

5. F. Low, Brandeis University Summer School, 1959. 

6. Itzykson and Zuber, Quantum Field Theory. 

7. F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937), D. Zwanziger, 

Phys. Rev. D 11, 3481 (1975). 

8. H. Lehmann, K. Symanzik, W. Zimmermann, Nuovo Cimento I-, 425 (1955). 

9. D. Robinson, Brandeis University Summer School, 1965. 

10. H. Araki and R. Haag, Comm. Math. Phys. 5, 77 (1967). 

11. S. Weinberg, Gravitation and Cosmology (2nd ed.) for gauge-invariant 

T1-lV . 

12. These assumptions are motivated by the spin operator defined in 

Gasiorwicz, Elementary Particle Physics. 

13. D. Buchholz, Comm. Math. Phys. 52, 147 (1977). 

14. J. Frijlich, G. Morchio, F. Strocchi, Ann. of Phys. 199, 241 (1979). 

15. J. Dollard, J. Math. Phys. 2, 729 (1964), I. Herbst, Comm. Math. 

Phys. 35, 181 (1974). . 



-21- 

16. E. gerzbacher, Quantum Mechanics. 

17. D. Yennie, S. C. Frautschi, H. Suura, Ann. Phys. 13, 379 (1961). 

18. R. Doria, J. Frenkel, J. C. Taylor, Nucl. Phys. B 168, 93 (1980). 

19. T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964). 



-22- 

FIGURE CAPTIONS 

Fig. 1. <Aal@lAa> expressed diagrammatically. 

Fig. 2. J- d2a <Aal@lAa> p ex ressed diagrammatically. 

Fig. 3. Some contributions to Fig. 2. 

Fig. 4. Figure 3 reexpressed. 

Fig. 5. Definition of W(k,R). 

Fig. 6. A graph which fortunately does not contribute to Fig. 2. 
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