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A number of authors have considered the possibility that the vacuum 

of quantum chromodynamics (QCD) is a nonperturbative vacuum with 

<Giv> # 0.l Fukuda and Kazama2 have offered an ingenious proof of this 

conjecture for QCD with massless quarks. Unfortunately, a key part of 

this proof is in error due to an incorrect manipulation involving the 

Legendre transform. 

In their proof, Fukuda and Kazama introduce a constant external 

source J coupled to G2 
lJV 

in the Lagrangian so that (for bare quantities) 

aw(J) -= 
aJ i-i G2 !JV (1) 

where exp(iW) is the generating functional and fi the spacetime volume. 

They point out that the (bare) Lagrangian with the term J* G2 added is 
PV 

equivalent to a (bare) Lagrangian without such a term if one rescales 

the (bare) field and coupling constant: 

2 
gJ 

=A!- 
l+J 

(2) 

A; = Au fi . 

They further identify W(J)/n as s(J), the vacuum energy density, to 

obtain 

They then employ the trace anomaly equation 

tensor of Collins et a1.,3 to conclude that 

. (3) 

for the stress-energy 

ds 
dJ ' (4) 
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This equation is the key to their argument: by a solely mathematical 

argument without any other physical input, they use the Legendre transform 

to argue that (4) implies that ds/dJ [which equals <G2 uv> by (3)l must be 

nonzero. We have no quarrel with (4) itself: it is the mathematical 

manipulation of (4) which we will show to be in error. 

Before discussing this error, we must mention that the Fukuda-Kazama 

derivation just described has generated criticism concerning the identi- 

fication of E with W [and therefore Eq. (4)1 and concerning the passage 

from bare to renormalized quantities.4 These criticisms can largely be 

avoided by an alternative derivation: (3) and (4) taken to refer to 

renormalized quantities can be shown to be logically equivalent to the 

trace anomaly equation combined with the assumption that c(J) scales 

according to its nayve engineering dimension. 

Let gi = g2/(1+J) where g and gJ are now renormalized coupling con- 

stants defined at the same renormalization point ho, Now, resealing the 

physical g2 at constant A0 is equivalent to holding g2 fixed while 

changing the renormalization point A: that is, going from g2 to gg is 

equivalent to simply changing the characteristic length scale A.. 

(J is now just a resealing factor and is not assumed to have any physi- 

cal meaning.) 

Now, suppose that s(J) is the (possibly zero) vacuum energy density. 

Since, in a massless theory, A is the only length scale, by dimensional 

analysis we must have, if E is a physical quantity with the correct naive 

dimension, 

(5) 
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Thus, 

and 

ds *dE 1 dgJ 
dJ= dA dgJ dJ 

( -) A dA 

1 gJ = 2c--- - 
8(gj) '+J ' 

But the trace-anomaly equation gives 

s(J) = 
2B(gJ) 

gJ 

We see that (6) and (7) imply 

B(gJ) 

c(J) = - 
2gJ 

(l+J) p 

= (I+ J) y 

(6) 

(7) 

(8) 

(9) 

which are superficially the same as (3) and (4)--except that (8) and (9) 

refer directly to renormalized quantities. One can trivially reverse 

the reasoning to show that (8) and (9) imply both the trace-anomaly 

equation and the statement that E scales with its nayve engineering 

dimension. 

We do not assert that this equivalence proves (8) and (9): one' 

might deny that c(J) is a physical quantity with the correct engineering 

dimension or question whether the trace-anomaly equation is correct or 

even meaningful for a nonperturbative vacuum0 [Such strictures also 

apply to Fukuda and Kazama's proof for (8) and (9).1 
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We are agnostic as to whether (8) and (9) are true. The above alter- 

native derivation of (8) and (9), aside from being simpler and less open 

to criticism than Fukuda and Kazama's, will be of use in showing that, 

even if (8) and (9) are true, (8) and (9) do not imply <G iv> # 0 as 

Fukuda and Kazama assert. 

Fukuda and Kazama now form the Legendre transform 

de(J) = E(J)-J --dj-- 

so that they can use the standard formula 

V' g = -J 
c ) 

(10) 

(11) 

to eliminate J from (8). 

This elimination of J via (11) produces an equation all solutions Of 

which can be shown to have dc/dJ # 0 for J = 0. 

One can easily show that there must be an error in this reasoning. 

For, since it involves a purely mathematical transformation of (8) without 

any additional input, any solution of (8) must, if the reasoning is valid, 

be also a solution of the transformed equation: (8) alone cannot be used 

to show that one of its solutions is not a solution. Yet, E(J) E 0 is 

manifestly a solution of (8) but does not satisfy the criterion de/dJ # 0 

at J = 0 which is supposedly derived from (8). Therefore, the argument 

which derives 

at J = 0 from (8) must be invalid. 

While this suffices, strictly speaking, to prove that Fukuda and 

Kazama's argument is in error, we should also point out which specific 

step is wrong and why. 
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Since the purpose of the proof is to show that de/dJ # 0, any step 

which requires one to assume ds/dJ # 0 is an invalid step. We will now 

show that Eq. (11) is such a step. 

Now, from (lo), 

dV = ds-dJ $ -Jdj$ 

= -J d s . (12) 

If d g does not vanish, one can divide through by d $ and conclude 

with Fukuda and Kazama that V’ = -J. If d g does vanish, dividing 

through by d L!C is dividing by zero and is impermissible. _ dJ In short, 

one can obtain (11) only if one is allowed to assume that d g does 

not vanish. 

However, ds one can easily show that to assume that d - is nonzero dJ 

requires one also to assume that ds/dJ J=. ' is nonzero--thereby begging 

the point to be proven. 

For, if ds/dJ J=. vanishes, 
I 

by (8) we have s(g2) = E(J=O) = 0. 

Therefore, K in (5) is zero, and E(J) and hence de 
dJ and d de are dJ 

identically zero for all J: WdJ J=O 
I 

=0 implies that d s vanishes 

for all J. By contraposition, d g # 0 for any J implies ds/dJ J=o#O; 

to assume d % # 0 is therefore to assume ds/dJ J=. # 0, thus begging 
I 

the question. 

Indeed, unless one assumes that ds/dJ J=. # 0, one does not even 

know that (11) is meaningful; for, if e(J) z 0 (which is so unless 

ds/dJ 
I 
J=. + 01, de/dJ assumes only a single value. There would then be 

only a single point in the domain of V and the derivative of Vwould not 

exist. Equation (11) cannot be shown to even be meaningful without 

assuming the point to be proved. 
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Fukuda and Kazama's error in their derivation of (11) from (8) and 

(9) is not simply a technical loophole in the proof which might somehow 

be plugged: we have proved that (8) and (9) alone cannot imply <G2 uv> # 0. 

Only if one knew on some other basis that <CL Uv> # 0 might one make use of 

(8) and (9) to calculate <GEv>. 

We have argued that, while (8) and (9) can be put on a firmer 

footing, <Gtv> # 0 cannot be derived from (8) and (9). Of course, it is 
n 

still possible, though unproven, that <Gtv> # 0: it remains an open 

question. 

The author thanks F. J. Gilman and H. Quinn for numerous discussions 

and S. Gupta for bringing this subject to his attention. 
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