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ABSTRACT 

This paper will provide a demonstration of basic 
FASTBUS hardware and test software. The systems will 
include single crate segments, simple computer I/O, a 
fast sequencer and memory, some simple diagnostic and 
display devices and a UNIBUS to FASTBUS processor 
interface. The equipment will be set up to show the 
basic FASTBUS protocols and timing transactions, as 
well as some of the general initialization software 
features. 

INTRODUCTION 

FASTBUS is a standardized modular 32 bit data-bus 
system for data acquisition, data processing, and con- 
trol. A FASTBUS system consists of multiple segments 
which can operate independently, but also link together 
for passing data. FASTBUS operates asynchronously to 
accommodate high and low speed devices, using handshake 
protocols for reliability. It can also operate 
synchronously for maximum data transfer speed. 
For a detailed description of FASTBUS, see Ref. 1. 

As of October 20, 1981, the prototyping period 
will end, and the FASTBUS standard will be firm. This 
poster session presents both hardware and software 
FASTBUS systems. There are two hardware systems; one 
contains a simple computer interface, a fast sequencer 
and memory, the other a UNIBUS to FASTBUS interface 
together with a memory and simple display. A FASTBUS 
System Manager software system is presented as well as 
a brief summary of the FASTBUS Diagnostic System 
Status. 

A FASTBUS BACKPLANE SEGMENT DEMONSTRATION 

This demonstration utilizes three early prototype 
FASTBUS modules: a memory module, a sequencer, and an 
I/O Register to FASTBUS Interface. The software used 
to perform this demonstration utilizes the FASTBUS 
Diagnostic Operating System (FBDOS) software which is 
being developed for use in prototype development and 
hardware checkout. Because of recent FASTBUS protocol 
specification changes, the hardware used in the demon- 
stration does not precisely match the specification, 
but the demonstration is still relevant since the basic 
concept of a FASTBUS operation remains the same. 

Introduction 
A 19 inch FASTBUS crate, which can hold up to 26 

modules, is an example of a backplane segment. Each 
slot in the crate (and thus the module in that slot) 
can be uniquely accessed. The address of the slot in 
which a module resides is known as the module's 
GEOGRAPHIC ADDRESS. 

* Work supported by the Department of Energy, contract 
DE-ACO3-76SF00515. 

** Work supported by the Department of Energy, contract 
DE-AC02-76ERU1195. 

A FASTBUS backplane segment has two attached 
ancillary logic boards. They are the Enable Geographic 
(EG line) Generator, and the Arbitration Timing 
Controller (ATC). 

There are two categories of FASTBUS modules: 
MASTERs and SLAVES. A master module is one which can 
gain control (MASTERSHIP) of a segment. A slave module 
cannot gain mastership of a segment. It can only 
assert information on the segment in response to a 
specific request by a master. Slave modules, however, 
can request servicing by asserting the Service Request 
(SR) line. All master modules must have slave 
capabilities. 

Various recommended and mandatory module design 
features have been included in the specification to 
facilitate the creation of intelligent software for 
handling FASTBUS systems. One specification is the 
explicit definition of certain CONTROL and STATUS 
REGISTERS (CSRs). One of the mandatory CSRs is CSR 0. 
CSR 0, when read, must return the ID (type or model 
number) of the module. This mandatory feature makes it 
possible to identify the contents of each slot in a 
segment and hence generate a map of an entire FASTBUS 
system, segment by segment. 

Another highly recommended feature is the imple- 
mentation of a CSR to hold a software settable address. 
This address is known as the LOGICAL ADDRESS. Once 
this CSR is loaded and the logical address recognition 
enabled, the module can be addressed by asserting this 
address instead of the geographical address on the bus. 
The primary advantage of logical addressing is that it 
allows the allocation of as much address space as is 
needed by each module. The logical address can thus 
include internal address information which selects a 
part of a module, while geographical addressing can 
only select the module as a whole. Another advantage 
of logical addressing is that the module can be 
relocated within any software changes in the masters 
(if the masters address modules by their logical 
addresses). 

Phases in a FASTBUS Operation 
There are basically 4 phases in a FASTBUS opera- 

tion. These are the ARBITRATION, the ADDRESS cycle, 
the DATA cycle, and the BUS RELEASE phases. 

Arbitration is the first phase in which a master . 
must participate. Only one master can utilize the bus 
of a segment at any time. The arbitration resolves any 
contention which there may be for the use of the bus. 

Once mastership is gained, the master addresses 
the module(s) with which it is going to communicate. 
The address cycle results in the establishment of the 
link between the master and slave(s). There are four 
kinds of address cycles: single-listener data space, 
single-listener control space, multiple-listener 
(broadcast) data space, and multiple-listener control 
space. 

Once a master has established the link, it can 
proceed to perform any data cycles necessary. There 
are four kinds of data cycles: random [used to 
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transfer one 32 bit word to (write) from (read) a 
module], extended address (used to read or write a 
module's internal next transfer address), handshake 
block transfer, and non-handshake block transfer. 

When an operation is complete, the master may 
either proceed with another address and data cycle 
sequence, or release mastership of the segment so other 
masters can have access to it. 

The I/O Register to FASTBUS Interface (IORFI) 
The IORFI provides a means of interfacing a 

computer to FASTBUS. It is connected to a processor 
via two 16 bit output registers (ORl,OR2) and two input 
registers (IRl,IRZ). One of the output registers (ORl) 
is used to specify the interface function that is to be 
performed when the interface is accessed via the Data- 
in Register (IR2) or the Data-out Register (OR2). The 
other input register (IRI) is used to read the direct 
status of some of the FASTBUS lines independently of 
OR1 (see Ref. 2 for a detailed description of the 
IORFI). 
The Memory Module 

The memory module being used in this demonstration 
has 256 words in data space and 4 CSR registers. CSR 0 
is the ID register. The other CSRs are used as the 
logical address register, a run options register, and 
an error counter register. The module can execute 
random, extended address, and handshake block transfer 
data cycles. See Ref. 3. 

The Sequencer 
The sequencer module is being used as a master 

which can perform high speed FASTBUS operations. The 
sequencer has only control space addresses. The con- 
trol space is divided into three sections. These are 
the status registers, the control memory, and the data 
memory. The sequencer is operated by loading encoded 
operation words (the sequencer program) into the con- 
trol memory. The data memory is used as the source of 
the 32 bit AD line values to be used for address and 
data write cycles, and as the destination of data read 
during FASTBUS read cycles. See Ref. 3. 

The FASTBUS Diagnostic Operation System (FBDOS) 
This operating system, written in FORTH, is being 

developed for use in FASTBUS system and module check- 
out. Currently the FBDOS (Ref. 4) contains routines 
for performing various kinds of FASTBUS transfers, a 
Sequencer Program Assembler (Ref. 5), and facilities 
for monitoring FASTBUS operations. 

A layered approach has been used in the design and 
implementation of the system software. The top layer, 
called the Complete FASTBUS Operations (CFO) layer is 
composed of words which perform complete FASTBUS opera- 
tions. The next layer is composed of FASTBUS Cycle 
Operations and is known as the FCO layer. The FCO 
words are used to create the CFO words. However, they 
are available to the user who wishes to create his own 
combinations of FASTBUS Cycle Operations. They can 
also be called individually to single step through a 
FASTBUS operation. For a complete description of the 
FCO and CFO layers, as well as the other layers of the 
system, see Ref. 4. 

The FBDOS contains several debugging facilities. 
The most widely used is the FB command. This command 
prints symbolically on the terminal the state of the 
bus. The IDRFI NT generation logic facilitates the 
development of FASTBUS instruction tracing software. 
Thus, via the IDRFI, the operator can single step any 
FASTBUS operation. 

This demonstration shows many FASTBUS features: 
geographical addressing to locate and identify devices, 
logical addressing which allows devices to be position- 
independent, use of the NT line to monitor the state of 
the bus, the various data-cycles including read-modify- 

write and the multimaster arbitration capability. Many 
of these features were designed into FASTBUS to facili- 
tate the development of diagnostic and system software 
for multiprocessor environments. 

A DEMONSTRATION OF A FASTBUS SYSTEM USING 
A UNIBUS TO FASTBUS INTERFACE 

This demonstration shows data acquisition using a 
UNIBUS Processor Interface (UPI). See Ref. 5. The UP1 
allows a processor on the UNIBUS to execute any FASTBUS 
operation (except non-handshake block transfers), to 
transfer data between UNIBUS and FASTBUS, and to detect 
errors. The UP1 will also respond to FASTBUS inter- 
rupts and Service Requests, interrupting the processor 
on the UNIBUS, and enabling the processor to determine 
the source of the interrupt and thus to respond to it. 

The UP1 has two functional components: 
1) Two FASTBUS Segment Drivers (FSD) which allow the 

processor to execute any FASTBUS operation and 
inspect the results. Each FSD is capable of list 
processing. Several processor words are required 
to start each operation or list of operations, but 
once started each FSD will operate on its own and 
signal the completion by setting a Ready bit in a 
register. This bit can optionally cause an 
interrupt. list elements are stored in processor 
memory and fetched as they are executed via DMA 
transfers. Results of the execution of each list 
element are returned to a separate status block in 
memory. FSD Block Transfer operations are 
performed by hardware logic capable of multi-word 
transfers, either between UNIBUS memory and FASTBUS 
devices, or from one FASTBUS slave to another (via 
a hardware-controlled read cycle followed by a 
write cycle for each word transferred, or via a 
"burst" mode involving internal buffering of more 
than one word. The FSD's are controlled by micro- 
code stored in a prom in the FSD. 

2) A "FASTBUS Interrupt Receiver" (FIR). This 
responds to interrupt messages from FASTBUS devices 
and to FASTBUS Service Requests (SRs) by inter- 
rupting the processor (if the interrupt is 
enabled). There are two FIR ports and one SR port, 
each with a separate interrupt vector and 
interrupt-enable bit, and each jumperable to any 
UNIBUS vector level. 

The UP1 consists of two FASTBUS modules (or one 
double-width module) and one relatively simple UNIBUS 
module. One FASTBUS module, the FSD, consists of the 
FSD hardware and is interfaced by microcode. 'lhe 
second module, the FASTBUS Master Interface (FMI), 
contains the FIR and the FASTBUS and UNIBUS interfaces. 
There is a data-plus-control bus between the FASTBUS 
modules and the UNIBUS module. The UNIBUS module is 
called the UNIBUS Master Interface (UMI). 

The demonstration shows data acquisition from a 
FASTBUS system using the FSD list processor interface 
between a PDPll UNIBUS and FASTBUS. The system demon- 
strates that the FASTBUS speed can be used in real t ime _ 
systems to gather data. The efficiency of block trans- 
fers, and the use of list processing devices on FASTBUS 
host interfaces, can reduce UNIBUS overhead. This 
relieves the high level processor of the t ime-consuming 
task of data gathering. 

In the demonstration, lists of FASTBUS operations 
are performed by the UPI after being initiated by the 
PDP-11. Once the list is started, there need be no 
more intervention by the PDPll processor until its 
completion. 

The FASTBUS crate contains the two-module UPI, a 
FASTBUS memory module with 240 data locations, and a 
simple display module. The simple display module is 
used to monitor the state of the FASTBUS lines to show 
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that the FASTBUS segment is active and data is being 
transferred. 

The memory module is addressed using a logical 
address. This address is written into control register 
1 of the memory module, at initialization time, by the 
PDP-11. 

In the demonstration, data are written and read 
from the memory module in block transfer mode. A 
program in the PDP-11 first downloads the microcode for 
the UPI into a read only memory, and resets the UPI. 

A modified version of the data analysis program 
MULTI is used to read and write data to the memory 
module. The data read is displayed in graphical form. 
The data transfer routine of MULTI uses the standard 
routines for FASTBUS to construct the FASTBUS operation 
lists to be executed by the UPI, and to instruct the 
UP1 when to begin its operations. 

Parameters in MULTI may be set during the demon- 
stration to change the data written to the memory 
module, and to change the mode of the FASTBUS reads 
being done. The data from FASTBUS to UNIBUS memory may 
be transferred in 32 bit or 16 bit mode. In this 
latter mode only the low order 16 bits of each data 
word are transferred to the UNIBUS. The UP1 may be 
instructed to ignore a particular FASTBUS operation or 
to change the burst size of each block transfer. 

.Parameters may also be set in MULTI to instruct 
the data transfer routine to give a user defined list 
of FASTBUS operations to the UP1 for execution. 

FASTBUS SYSTEM MANAGER 

The FASTBUS System Manager is a software system 
which assigns each device an address or a range of 
addresses and specifies the communication paths over 
which any two modules in the system can comumnicate. 
To do this the system manager must maintain a data base 
that describes system topology as well as details of 
each component module in the system. In the long run 
the system manager will evolve to include facilities 
for error recovery, module diagnostics, module 
initialization and system verification procedures to 
ensure that the actual physical configuration agrees 
with its description in the data base. Through the 
system manager the experimenter will then be able to 
bootstrap the system, configure around faulty modules, 
and enable/disable experiment data collection runs. 

The System Manager presently consists of the 
following major components: 
(1) Virtual Memory Data Base Access Mechanisms 

The System Manager data base is partitioned into 
two files. The Network file describes system topology, 
and the Name file gives infrequently used detailed 
information about each system component. Each file is 
a random file of fixed length records with variant 
record types. These files can be very large, perhaps 
several hundred kilobytes. To simplify access to these 
files a small number of record buffers are maintained 
in memory. Records are paged into these buffers on a 
demand basis. This allows the access to file records 
as if they were present in a large memory resident 
array of records. The number of the record requested 
is first passed through a function which takes care of 
paging, replacement, and buffer management. Then the 
function returns the number of the buffer in which the 
requested record was found or placed. 

(2) Data Base Linked List Processor 

The records in the files are linked together into 
linked lists of several types such as a list of seg- 
ments, a list of modules on each segment, etc. A 
simple linked list processor was implemented to provide 
a uniform access mechanism. The functions provided 
are: (a) get the head of the list, (b) get the next 

record in the list, (c) insert a record in middle of 
the list, (d) remove a record from a list, and (e) find 
a record in a list. Each of these routines takes the 
list type as an argument in order to know how to find 
and manipulate the lists' l inkage pointers. 

(3) Route Map Generator 
The route map generator uses three square matrices 

and an iterative approach to find the shortest rever- 
sible unique route between every possible pair of 
segments. Where there is a choice it takes the route 
that has the smallest window, i.e., has the largest 
minimum size SI in the path. This conserves address 
space for reasons beyond explanation here. The three 
matrices are as follows. The PATH matrix shows at each 
row/column intersection which segment to go through 
first to get from the segment represented by the row to 
the segment represented by the column. Initially PATH 
contains nonzero entries only where there is a direct 
connection between segments via an SI. PATH also shows 
what size the smallest SI is on that path (i.e., an 8 
bit SI is smaller than a 12 bit). After each iteration 
the PATH matrix is updated, and another matrix called 
NEWS shows what new paths were found. The NEWS is OR'd 
with a running total matrix (RTM) to see if any routes 
remain to be found. The algorithm continues until the 
RTM is all ones, success, or RTM is not all ones and 
NEWS is all zeros, failure. 

(4) Address Space Allocator 
Address space is allocated for modules within 

segments and for segments within systems using the same 
procedures. After initializing data structures we have 
a list of fixed segments/modules and their sizes 
chained together in order of a&ending address. Also, 
we have a list of mobile segments/modules that can be 
plugged in anywhere they fit. The mobile ones are 
chained together in order of descending size. The 
algorithm then takes the largest mobile one and plugs 
it into the first hole between fixed ones that it will 
fit. The process is repeated until all mobile objects 
have been merged. The algorithm is not optimal, but it 
will serve until larger system issues regarding 
multiple SI sizes are solved. 

(5) Data Base Editor 
The data base editor parses command lines into 

keyword strings (three characters each) after removing 
noise words and ignorable characters. After recog- 
nizing a keyword it branches immediately to the pro- 
cessor for that keyword and looks for additional quali- 
fier keywords. If something is missing or a parameter 
is out of range, input file processing is stopped with 
an operator error message. By observing a small set of 
vocabulary and syntax rules the user can issue editor 
commands in a format approaching 'FASTBUS hglish'. 
Commands may be concatenated on one line or they can 
span multiple lines because the command stream is 
considered as a long text string terminated by an EOF. 

(6) System Loader/Initializer Simulation 
The system loader simulates the overall sequence 

of events that take place when a system is initialized. _ 
That is, it 'resets' segments, 'loads' their modules, 
then 'loads' their SI route map tables in the order 
they would be handled in a real system initialization. 
This is a very specific order that represents a depth- 
first scan through the system. This approach is 
required to ensure that all segments get loaded, and so 
that we always build our bridges to the next segment as 
we go without burning any behind us. When real SI 
hardware is available and other software issues have 
been resolved, these simulated actions can be replaced 
by real FAST'RUS operation sequences. 
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The system manager software requires several 
enhancements before use in a real FASTBUS system. As 
mentioned, real FASTBUS drivers must be added. The 
work on specification of standard FASTBUS subroutine 
packages will guide the FASTBUS driver effort. The 
system manager data base is open-ended at this time 
pending further study of how to include diagnostic, 
error recovery, and initialization procedures with a 
general solution. Work remains to be done to specify 
how the device addresses are communicated to linkage 
editors that service various intelligent modules within 
a system. Then we need an integrated linkage editor 
approach that produces quasi-device-independent load 
modules for use by a generalized device initializer/ 
loader. Perhaps most important is the need to 
generalize the address space assignment and route map 
generator algorithms to handle systems which have many 
different sixes of segment interconnects. Such systems 
present subtle constraints on the allocation of address 
space which in turn affects route map generation. 
Finally, some effort is needed to find ways to make all 
such algorithm implementations transportable to the 
many research labs. 

FASTBUS DIAGNOSTIC SYSTEM STATUS 

The FASTBUS diagnostic system is currently under 
development. The prototype hardware has been delayed 
from the original expectations for many reasons. 

Now that the specification has stabilized, the 
circuit board layout is being digitized for producing 
the printed circuit artwork on a computerized photo- 
plotting system. Meanwhile, wire-wrapped partial 
implementations are being fabricated which will allow 
testing of the microprocessor and network-related 
features, using the actual MC68000 processor and serial 
network hardware. 

While awaiting completing of the real hardware, 
software is being developed on substitute hardware 
which simulates parts of the final system. 

Low-speed implementations of the serial network 
hardware were added to existing 280 microprocessor 
systems, and the basic network control algorithms were 
developed and debugged. 

The system is being written in FORTH, an inter- 
active language which combines compiling, interpreting, 
assembling, editing and operating system features in a 
very compact package. The needed interrupt-driven 
multitasking system was implemented in FORTH, using a 
version called FIG (FORTH Interest Group) FORTH, which 
is widely available and is in the public domain. 

This multitasking system was first implemented on 
the Heath H89 intelligent terminal/microprocessor 
system, which will be the console and floppy disk 
storage device for the diagnostic system. It was then 
ported to the 280 network test machines, and then the 
FORTH nucleus was ported to the Motorola RDM MC68000 
development board. 

We recognized a need for a standard version of 
FORTH which could work on a wide range of machines, 
which would make portability of programs and pro 
grammers easier. In particular, a different version of 
FORTH from an earlier branch of FORTH's evolution was 
being used widely on LSI/ll's at SLAC, for CAMAC based 
systems and miscellaneous test-bench work. 

The FORTH community has been working toward a 
standard to solve these same problems of portability. 
The current version, called FORTH 79, seems to us to be 
the best base to use for a standardized FORTH system. 

FORTH 79 has now been implemented on the 280 (H89 
stand-alone and under the CPM operating system), the 
LSI/ll, and the MC68000. 

The multitasking system is now being ported to the 
MC68000 and documentation is being prepared. This work 
should be complete in the next month or two, at which 
time the wire-wrapped Snoop prototype should be 
available for testing. This will provide a more useful 
model of the final Snoop hardware for our software 
development than we have had to date. For detailed 
descriptions of the Snoop and diagnostic system 
(see Refs. 6 and 7). 

SUMMARY 

This demonstration has shown some of the major 
features of FASTBUS and the current state of the 
prototyping effort, which will be completed in FY '82. 
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