
FASTBUS DEMONSTRATION SYSTEMS*

L. Paffrath, B. Bertolucci, S. Deiss, D. Gustavson, T. Holmes
D. Horelick, R. Larsen, C. Logg and Il. Walz

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

E. Barsotti, M. ~arwill, T. Lagerlund, R. Pordes and L. Taff
Fermilab, P. 0. Box 500

Batavia, Illinois 60510

R. Brown, R. Downing, M. Haney, B. Jackson, D. Lesny, K. Nater and J.
University of Illinois, Loomis lab of Physics
1110 W. Green Street, Urbana, Illinois 61801

SLAC-PUB-2835
October 1981
(E/A)

Wray**

ABSTRACT

This paper will provide a demonstration of basic
FASTBUS hardware and test software. The systems will
include single crate segments, simple computer I/O, a
fast sequencer and memory, some simple diagnostic and
display devices and a UNIBUS to FASTBUS processor
interface. The equipment will be set up to show the
basic FASTBUS protocols and timing transactions, as
well as some of the general initialization software
features.

INTRODUCTION

FASTBUS is a standardized modular 32 bit data-bus
system for data acquisition, data processing, and con-
trol. A FASTBUS system consists of multiple segments
which can operate independently, but also link together
for passing data. FASTBUS operates asynchronously to
accommodate high and low speed devices, using handshake
protocols for reliability. It can also operate
synchronously for maximum data transfer speed.
For a detailed description of FASTBUS, see Ref. 1.

As of October 20, 1981, the prototyping period
will end, and the FASTBUS standard will be firm. This
poster session presents both hardware and software
FASTBUS systems. There are two hardware systems; one
contains a simple computer interface, a fast sequencer
and memory, the other a UNIBUS to FASTBUS interface
together with a memory and simple display. A FASTBUS
System Manager software system is presented as well as
a brief summary of the FASTBUS Diagnostic System
Status.

A FASTBUS BACKPLANE SEGMENT DEMONSTRATION

This demonstration utilizes three early prototype
FASTBUS modules: a memory module, a sequencer, and an
I/O Register to FASTBUS Interface. The software used
to perform this demonstration utilizes the FASTBUS
Diagnostic Operating System (FBDOS) software which is
being developed for use in prototype development and
hardware checkout. Because of recent FASTBUS protocol
specification changes, the hardware used in the demon-
stration does not precisely match the specification,
but the demonstration is still relevant since the basic
concept of a FASTBUS operation remains the same.

Introduction
A 19 inch FASTBUS crate, which can hold up to 26

modules, is an example of a backplane segment. Each
slot in the crate (and thus the module in that slot)
can be uniquely accessed. The address of the slot in
which a module resides is known as the module's
GEOGRAPHIC ADDRESS.

* Work supported by the Department of Energy, contract
DE-ACO3-76SF00515.

** Work supported by the Department of Energy, contract
DE-AC02-76ERU1195.

A FASTBUS backplane segment has two attached
ancillary logic boards. They are the Enable Geographic
(EG line) Generator, and the Arbitration Timing
Controller (ATC).

There are two categories of FASTBUS modules:
MASTERs and SLAVES. A master module is one which can
gain control (MASTERSHIP) of a segment. A slave module
cannot gain mastership of a segment. It can only
assert information on the segment in response to a
specific request by a master. Slave modules, however,
can request servicing by asserting the Service Request
(SR) line. All master modules must have slave
capabilities.

Various recommended and mandatory module design
features have been included in the specification to
facilitate the creation of intelligent software for
handling FASTBUS systems. One specification is the
explicit definition of certain CONTROL and STATUS
REGISTERS (CSRs). One of the mandatory CSRs is CSR 0.
CSR 0, when read, must return the ID (type or model
number) of the module. This mandatory feature makes it
possible to identify the contents of each slot in a
segment and hence generate a map of an entire FASTBUS
system, segment by segment.

Another highly recommended feature is the imple-
mentation of a CSR to hold a software settable address.
This address is known as the LOGICAL ADDRESS. Once
this CSR is loaded and the logical address recognition
enabled, the module can be addressed by asserting this
address instead of the geographical address on the bus.
The primary advantage of logical addressing is that it
allows the allocation of as much address space as is
needed by each module. The logical address can thus
include internal address information which selects a
part of a module, while geographical addressing can
only select the module as a whole. Another advantage
of logical addressing is that the module can be
relocated within any software changes in the masters
(if the masters address modules by their logical
addresses).

Phases in a FASTBUS Operation
There are basically 4 phases in a FASTBUS opera-

tion. These are the ARBITRATION, the ADDRESS cycle,
the DATA cycle, and the BUS RELEASE phases.

Arbitration is the first phase in which a master .
must participate. Only one master can utilize the bus
of a segment at any time. The arbitration resolves any
contention which there may be for the use of the bus.

Once mastership is gained, the master addresses
the module(s) with which it is going to communicate.
The address cycle results in the establishment of the
link between the master and slave(s). There are four
kinds of address cycles: single-listener data space,
single-listener control space, multiple-listener
(broadcast) data space, and multiple-listener control
space.

Once a master has established the link, it can
proceed to perform any data cycles necessary. There
are four kinds of data cycles: random [used to

(Invited paper presented at the Nuclear Science Symposium, San Francisco, California, October 21-23, 1981.)

transfer one 32 bit word to (write) from (read) a
module], extended address (used to read or write a
module's internal next transfer address), handshake
block transfer, and non-handshake block transfer.

When an operation is complete, the master may
either proceed with another address and data cycle
sequence, or release mastership of the segment so other
masters can have access to it.

The I/O Register to FASTBUS Interface (IORFI)
The IORFI provides a means of interfacing a

computer to FASTBUS. It is connected to a processor
via two 16 bit output registers (ORl,OR2) and two input
registers (IRl,IRZ). One of the output registers (ORl)
is used to specify the interface function that is to be
performed when the interface is accessed via the Data-
in Register (IR2) or the Data-out Register (OR2). The
other input register (IRI) is used to read the direct
status of some of the FASTBUS lines independently of
OR1 (see Ref. 2 for a detailed description of the
IORFI).
The Memory Module

The memory module being used in this demonstration
has 256 words in data space and 4 CSR registers. CSR 0
is the ID register. The other CSRs are used as the
logical address register, a run options register, and
an error counter register. The module can execute
random, extended address, and handshake block transfer
data cycles. See Ref. 3.

The Sequencer
The sequencer module is being used as a master

which can perform high speed FASTBUS operations. The
sequencer has only control space addresses. The con-
trol space is divided into three sections. These are
the status registers, the control memory, and the data
memory. The sequencer is operated by loading encoded
operation words (the sequencer program) into the con-
trol memory. The data memory is used as the source of
the 32 bit AD line values to be used for address and
data write cycles, and as the destination of data read
during FASTBUS read cycles. See Ref. 3.

The FASTBUS Diagnostic Operation System (FBDOS)
This operating system, written in FORTH, is being

developed for use in FASTBUS system and module check-
out. Currently the FBDOS (Ref. 4) contains routines
for performing various kinds of FASTBUS transfers, a
Sequencer Program Assembler (Ref. 5), and facilities
for monitoring FASTBUS operations.

A layered approach has been used in the design and
implementation of the system software. The top layer,
called the Complete FASTBUS Operations (CFO) layer is
composed of words which perform complete FASTBUS opera-
tions. The next layer is composed of FASTBUS Cycle
Operations and is known as the FCO layer. The FCO
words are used to create the CFO words. However, they
are available to the user who wishes to create his own
combinations of FASTBUS Cycle Operations. They can
also be called individually to single step through a
FASTBUS operation. For a complete description of the
FCO and CFO layers, as well as the other layers of the
system, see Ref. 4.

The FBDOS contains several debugging facilities.
The most widely used is the FB command. This command
prints symbolically on the terminal the state of the
bus. The IDRFI NT generation logic facilitates the
development of FASTBUS instruction tracing software.
Thus, via the IDRFI, the operator can single step any
FASTBUS operation.

This demonstration shows many FASTBUS features:
geographical addressing to locate and identify devices,
logical addressing which allows devices to be position-
independent, use of the NT line to monitor the state of
the bus, the various data-cycles including read-modify-

write and the multimaster arbitration capability. Many
of these features were designed into FASTBUS to facili-
tate the development of diagnostic and system software
for multiprocessor environments.

A DEMONSTRATION OF A FASTBUS SYSTEM USING
A UNIBUS TO FASTBUS INTERFACE

This demonstration shows data acquisition using a
UNIBUS Processor Interface (UPI). See Ref. 5. The UP1
allows a processor on the UNIBUS to execute any FASTBUS
operation (except non-handshake block transfers), to
transfer data between UNIBUS and FASTBUS, and to detect
errors. The UP1 will also respond to FASTBUS inter-
rupts and Service Requests, interrupting the processor
on the UNIBUS, and enabling the processor to determine
the source of the interrupt and thus to respond to it.

The UP1 has two functional components:
1) Two FASTBUS Segment Drivers (FSD) which allow the

processor to execute any FASTBUS operation and
inspect the results. Each FSD is capable of list
processing. Several processor words are required
to start each operation or list of operations, but
once started each FSD will operate on its own and
signal the completion by setting a Ready bit in a
register. This bit can optionally cause an
interrupt. list elements are stored in processor
memory and fetched as they are executed via DMA
transfers. Results of the execution of each list
element are returned to a separate status block in
memory. FSD Block Transfer operations are
performed by hardware logic capable of multi-word
transfers, either between UNIBUS memory and FASTBUS
devices, or from one FASTBUS slave to another (via
a hardware-controlled read cycle followed by a
write cycle for each word transferred, or via a
"burst" mode involving internal buffering of more
than one word. The FSD's are controlled by micro-
code stored in a prom in the FSD.

2) A "FASTBUS Interrupt Receiver" (FIR). This
responds to interrupt messages from FASTBUS devices
and to FASTBUS Service Requests (SRs) by inter-
rupting the processor (if the interrupt is
enabled). There are two FIR ports and one SR port,
each with a separate interrupt vector and
interrupt-enable bit, and each jumperable to any
UNIBUS vector level.

The UP1 consists of two FASTBUS modules (or one
double-width module) and one relatively simple UNIBUS
module. One FASTBUS module, the FSD, consists of the
FSD hardware and is interfaced by microcode. 'lhe
second module, the FASTBUS Master Interface (FMI),
contains the FIR and the FASTBUS and UNIBUS interfaces.
There is a data-plus-control bus between the FASTBUS
modules and the UNIBUS module. The UNIBUS module is
called the UNIBUS Master Interface (UMI).

The demonstration shows data acquisition from a
FASTBUS system using the FSD list processor interface
between a PDPll UNIBUS and FASTBUS. The system demon-
strates that the FASTBUS speed can be used in real t ime _
systems to gather data. The efficiency of block trans-
fers, and the use of list processing devices on FASTBUS
host interfaces, can reduce UNIBUS overhead. This
relieves the high level processor of the t ime-consuming
task of data gathering.

In the demonstration, lists of FASTBUS operations
are performed by the UPI after being initiated by the
PDP-11. Once the list is started, there need be no
more intervention by the PDPll processor until its
completion.

The FASTBUS crate contains the two-module UPI, a
FASTBUS memory module with 240 data locations, and a
simple display module. The simple display module is
used to monitor the state of the FASTBUS lines to show

7

that the FASTBUS segment is active and data is being
transferred.

The memory module is addressed using a logical
address. This address is written into control register
1 of the memory module, at initialization time, by the
PDP-11.

In the demonstration, data are written and read
from the memory module in block transfer mode. A
program in the PDP-11 first downloads the microcode for
the UPI into a read only memory, and resets the UPI.

A modified version of the data analysis program
MULTI is used to read and write data to the memory
module. The data read is displayed in graphical form.
The data transfer routine of MULTI uses the standard
routines for FASTBUS to construct the FASTBUS operation
lists to be executed by the UPI, and to instruct the
UP1 when to begin its operations.

Parameters in MULTI may be set during the demon-
stration to change the data written to the memory
module, and to change the mode of the FASTBUS reads
being done. The data from FASTBUS to UNIBUS memory may
be transferred in 32 bit or 16 bit mode. In this
latter mode only the low order 16 bits of each data
word are transferred to the UNIBUS. The UP1 may be
instructed to ignore a particular FASTBUS operation or
to change the burst size of each block transfer.

.Parameters may also be set in MULTI to instruct
the data transfer routine to give a user defined list
of FASTBUS operations to the UP1 for execution.

FASTBUS SYSTEM MANAGER

The FASTBUS System Manager is a software system
which assigns each device an address or a range of
addresses and specifies the communication paths over
which any two modules in the system can comumnicate.
To do this the system manager must maintain a data base
that describes system topology as well as details of
each component module in the system. In the long run
the system manager will evolve to include facilities
for error recovery, module diagnostics, module
initialization and system verification procedures to
ensure that the actual physical configuration agrees
with its description in the data base. Through the
system manager the experimenter will then be able to
bootstrap the system, configure around faulty modules,
and enable/disable experiment data collection runs.

The System Manager presently consists of the
following major components:
(1) Virtual Memory Data Base Access Mechanisms

The System Manager data base is partitioned into
two files. The Network file describes system topology,
and the Name file gives infrequently used detailed
information about each system component. Each file is
a random file of fixed length records with variant
record types. These files can be very large, perhaps
several hundred kilobytes. To simplify access to these
files a small number of record buffers are maintained
in memory. Records are paged into these buffers on a
demand basis. This allows the access to file records
as if they were present in a large memory resident
array of records. The number of the record requested
is first passed through a function which takes care of
paging, replacement, and buffer management. Then the
function returns the number of the buffer in which the
requested record was found or placed.

(2) Data Base Linked List Processor

The records in the files are linked together into
linked lists of several types such as a list of seg-
ments, a list of modules on each segment, etc. A
simple linked list processor was implemented to provide
a uniform access mechanism. The functions provided
are: (a) get the head of the list, (b) get the next

record in the list, (c) insert a record in middle of
the list, (d) remove a record from a list, and (e) find
a record in a list. Each of these routines takes the
list type as an argument in order to know how to find
and manipulate the lists' l inkage pointers.

(3) Route Map Generator
The route map generator uses three square matrices

and an iterative approach to find the shortest rever-
sible unique route between every possible pair of
segments. Where there is a choice it takes the route
that has the smallest window, i.e., has the largest
minimum size SI in the path. This conserves address
space for reasons beyond explanation here. The three
matrices are as follows. The PATH matrix shows at each
row/column intersection which segment to go through
first to get from the segment represented by the row to
the segment represented by the column. Initially PATH
contains nonzero entries only where there is a direct
connection between segments via an SI. PATH also shows
what size the smallest SI is on that path (i.e., an 8
bit SI is smaller than a 12 bit). After each iteration
the PATH matrix is updated, and another matrix called
NEWS shows what new paths were found. The NEWS is OR'd
with a running total matrix (RTM) to see if any routes
remain to be found. The algorithm continues until the
RTM is all ones, success, or RTM is not all ones and
NEWS is all zeros, failure.

(4) Address Space Allocator
Address space is allocated for modules within

segments and for segments within systems using the same
procedures. After initializing data structures we have
a list of fixed segments/modules and their sizes
chained together in order of a&ending address. Also,
we have a list of mobile segments/modules that can be
plugged in anywhere they fit. The mobile ones are
chained together in order of descending size. The
algorithm then takes the largest mobile one and plugs
it into the first hole between fixed ones that it will
fit. The process is repeated until all mobile objects
have been merged. The algorithm is not optimal, but it
will serve until larger system issues regarding
multiple SI sizes are solved.

(5) Data Base Editor
The data base editor parses command lines into

keyword strings (three characters each) after removing
noise words and ignorable characters. After recog-
nizing a keyword it branches immediately to the pro-
cessor for that keyword and looks for additional quali-
fier keywords. If something is missing or a parameter
is out of range, input file processing is stopped with
an operator error message. By observing a small set of
vocabulary and syntax rules the user can issue editor
commands in a format approaching 'FASTBUS hglish'.
Commands may be concatenated on one line or they can
span multiple lines because the command stream is
considered as a long text string terminated by an EOF.

(6) System Loader/Initializer Simulation
The system loader simulates the overall sequence

of events that take place when a system is initialized. _
That is, it 'resets' segments, 'loads' their modules,
then 'loads' their SI route map tables in the order
they would be handled in a real system initialization.
This is a very specific order that represents a depth-
first scan through the system. This approach is
required to ensure that all segments get loaded, and so
that we always build our bridges to the next segment as
we go without burning any behind us. When real SI
hardware is available and other software issues have
been resolved, these simulated actions can be replaced
by real FAST'RUS operation sequences.

3

The system manager software requires several
enhancements before use in a real FASTBUS system. As
mentioned, real FASTBUS drivers must be added. The
work on specification of standard FASTBUS subroutine
packages will guide the FASTBUS driver effort. The
system manager data base is open-ended at this time
pending further study of how to include diagnostic,
error recovery, and initialization procedures with a
general solution. Work remains to be done to specify
how the device addresses are communicated to linkage
editors that service various intelligent modules within
a system. Then we need an integrated linkage editor
approach that produces quasi-device-independent load
modules for use by a generalized device initializer/
loader. Perhaps most important is the need to
generalize the address space assignment and route map
generator algorithms to handle systems which have many
different sixes of segment interconnects. Such systems
present subtle constraints on the allocation of address
space which in turn affects route map generation.
Finally, some effort is needed to find ways to make all
such algorithm implementations transportable to the
many research labs.

FASTBUS DIAGNOSTIC SYSTEM STATUS

The FASTBUS diagnostic system is currently under
development. The prototype hardware has been delayed
from the original expectations for many reasons.

Now that the specification has stabilized, the
circuit board layout is being digitized for producing
the printed circuit artwork on a computerized photo-
plotting system. Meanwhile, wire-wrapped partial
implementations are being fabricated which will allow
testing of the microprocessor and network-related
features, using the actual MC68000 processor and serial
network hardware.

While awaiting completing of the real hardware,
software is being developed on substitute hardware
which simulates parts of the final system.

Low-speed implementations of the serial network
hardware were added to existing 280 microprocessor
systems, and the basic network control algorithms were
developed and debugged.

The system is being written in FORTH, an inter-
active language which combines compiling, interpreting,
assembling, editing and operating system features in a
very compact package. The needed interrupt-driven
multitasking system was implemented in FORTH, using a
version called FIG (FORTH Interest Group) FORTH, which
is widely available and is in the public domain.

This multitasking system was first implemented on
the Heath H89 intelligent terminal/microprocessor
system, which will be the console and floppy disk
storage device for the diagnostic system. It was then
ported to the 280 network test machines, and then the
FORTH nucleus was ported to the Motorola RDM MC68000
development board.

We recognized a need for a standard version of
FORTH which could work on a wide range of machines,
which would make portability of programs and pro
grammers easier. In particular, a different version of
FORTH from an earlier branch of FORTH's evolution was
being used widely on LSI/ll's at SLAC, for CAMAC based
systems and miscellaneous test-bench work.

The FORTH community has been working toward a
standard to solve these same problems of portability.
The current version, called FORTH 79, seems to us to be
the best base to use for a standardized FORTH system.

FORTH 79 has now been implemented on the 280 (H89
stand-alone and under the CPM operating system), the
LSI/ll, and the MC68000.

The multitasking system is now being ported to the
MC68000 and documentation is being prepared. This work
should be complete in the next month or two, at which
time the wire-wrapped Snoop prototype should be
available for testing. This will provide a more useful
model of the final Snoop hardware for our software
development than we have had to date. For detailed
descriptions of the Snoop and diagnostic system
(see Refs. 6 and 7).

SUMMARY

This demonstration has shown some of the major
features of FASTBUS and the current state of the
prototyping effort, which will be completed in FY '82.

ACKNOWLEDGEMENTS

I would like to thank all the co-authors for their
contributions, and especially R. Larsen and C. Logg for
their many helpful suggestions.

1.

2.

3.

4.

5.

6.

7.

REFERENCES

Working Group Document - Tentative Specification,
U.S. NIM Committee, "FASTBUS Modular High Speed
Data Acquisition System for High Energy Physics and
Other Applications," available from
L. Costrell, NBS, Washington, D.C., August 20,
1981.
C. Logg and L. Paffrath, "I/O Register to FASTBUS
Interface," SIAC-Internal Note, August 1981.
B. Bertolucci and D. Horelick, "Design of a FASTBUS
Programmable Sequencer Module and Memory Module,"
Paper 253, this conference.
c* -gg, "FASTBUS Diagnostic Operating System,"
SLAC Internal Note, August 1981.
"Unibus Processor Interface," Fermilab Document
FBN008.
R. Downing and H. Walz, "FASTBUS Snoop Diagnostic
Module," IEEE Trans. Nucl. Sci. NS-28, No. 1
(February 1981), pp. 380-384.
D. Gustavson, T. Holmes, L. Paffrath and
J. Steffani, "A 'Front Panel' Human Interface
for FASTBUS," ibid, pp. 343-345.

