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Summary 

A transverse distribution of injected particles in a storage ring 
is often far from the equilibrium Gaussian distribution. In addition, 
the characteristic size of the injected bunch can be comparable with the 
aperture of the machine. This is especially true of positron injection. 
This situation occurs, for example, in the damping ring of the SLAC 
Single Pass Collider. In such cases one can expect particle losses. 
Questions now arise concerning the magnitude of these losses and their 
dependence on the ring parameters. We suggest here the answers to these 
questions for a one-dimensional particle motion. 
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1. Introduction 

It is well known that in an electron storage ring the combined 
actions of radiation damping and quantum fluctuations bring particles to 
a stationary Gaussian distribution which can be expressed in the 
following manner: 

Let rrad be the radiation damping time, and let D  be the diffusion 
coefficient due to quantum fluctuations of particles having amplitude a. 
Then the stationary distribution 3(a) is: 

#(a) = (1/2naz)exp(-a2/202) (1) 

where 

u2 = DT,.,&? 

It is also known that this result is an approximation, valid only 
in the absence of any boundary. The presence of vacuum chamber walls 
distorts this distribution, especially its tail. Note that this 
distribution has zero value only for infinitely large amplitude a; a 
real distribution function should become zero at the wall, allowing for 
the finite lifetime of the stored beam. 

If the ratio of the vacuum chamber size A to the characteristic 
size of the bunch B is large enough, only a small fraction of the total 
number of particles is in the distribution tails. In this case the 
presence of the wall distorts the distribution only slightly, and 
particle losses and the corresponding quantum lifetime T can be found 
from the unperturbed stationary Gaussian distribution1*2*3: 

T = ?,,d(ot/A2)exp(at/za2) (3) 

where A is the maximum amplitude of particle oscillation, defined by the 
machine aperture. 

A more exact solution of the problem is obtained in reference 4. 
The presence of the wall is taken into account in this work by imposing 
the zero boundary condition on the distribution function: 

$(A) = 0 (4) 

The solution found in reference 4 is valid if the quantum lifetime 
7 is much larger than the radiation damping time 7rad. In the limit A/o 
>>l the expression for T reduces to formula (3). All of these solutions 
have one common drawback in that they essentially deal only with 
equilibrium distributions. Hence they are unable to start from some 
initial distribution and include into consideration the transition from 
it to an equilibrium distribution with the time course. 

The general exact solution of the one-dimensional problem is 

2 



obtained in reference 5. In Section 2 we describe this solution, which 
is valid for any ratio of r/rr*d. Section 3 gives examples of numerical 
computations using the derived formulae. 

2. Distribution Function and Particle Losses 

We consider here the motion of a particle in a plane. The FokKer- 
Planck equation for this case which governs the behavior in time of the 
distribution function 9 of the square of particle amplitude u has the 
following form6p7: 

(w/be) = U(b2+/bu2) + (u+l)(b#/&l) + +J (5) 

where we introduce the dimensionless time variable 8: 

8 = zt/Trad (6) 

and the dimensionless amplitude variable u: 

U = a2/DTrad = a2/2a2 (7) 

which is the ratio of the square of the amplitude of the particle 
oscillation to the rms of the square of the amplitude calculated using 
the unperturbed distribution function (1). The distribution function 
3(6,u) at all t imes 6 satisfies the boundary condition: 

$(fJ,f) = 0 (8) 

with 

s = A2/2u2 

where A is the maximum allowable amplitude of particle oscillation. 
Equation (8) is a consequence of the condition that all particles which 
reach the aperture of the machine are lost. 

Let us count time 6 from the moment of injection. Then at 8=0 the 
distribution function should satisfy the initial condition: 

\L(O,u) q 30(u) (10) 

where +o(u) is the distribution function in u of the injected particles. 

The integral 0f 3(e,U) gives the number of particles which are 
still in the machine at the moment 8. In particular at e=o this 
integral gives the number of injected particles. It is convenient to 
normalize this distribution to 1: 
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s c 
-#'a(u) du = 1 (11) 

0 

Then the fraction of the total number of injected particles which 
stays in the machine until time 6 is: 

s 

t 
n(e) = +(e,u) du (12) 

0 

and the portion of injected particles which is lost up to the moment e 
is l-n(e). 

To solve equation (5) together with the initial (10) and boundary 
(8) conditions we expand $:'(e,u) into the following series: 

+(e,u) = i b,exp(-K,,,e)f,(u) (13) 
n=O 

Here bn and K,, are constants which will be defined shortly. The 
functions f,(u) are the solutions of the following differential 
equation: 

Ufn" + (u+l>f,' + (l+K,)f, = 0 (14) 

To insure that the series in equation (13) satisfies condition (S) at 
all times 0 each function f,(u) should satisfy its own boundary 
condition: 

f,(r) = 0 (15) 

It is easy to see that f,(u) can be defined in terms of a confluent 
hypergeometric function FC-K,,,~,u): 

f,(u) = exp(-u)F(-K,-,,l,u) (161 

Equation (15) implicitly defines the constants K,,: 

F(-~,,l,f) = 0 (17) 

We see from this expression that x,, is uniquely determined by the 
quantity I from equation (9). For each given value of t equation (171, 
in respect to K,, has infinitely many roots. Fig. 1 illustrates the 
behavior of F(-~,l,f) as a function of K for 5=30. Fig. 2 shows the 
dependence of the first four roots, KO through K~, on f. For large 5 
the n-th root tends to the integer n. Hence for large f and for large 0 
all the terms in (13) but the zeroth decrease exponentially. In this 
case we have: 

+(e,u) 2 boexp(-KoO-u)F(-Ko,l,u) (18) 
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where 

(l/~~) = Ei(t) - In(t) - 0.577 (19) 

Function Ei(T) here is an integral exponents. For large .$, Ei(g) z 
exp(()/( and we have as the result for the quantum lifetime: 

T = rradexP(t)/25 (20) 

which after substitution of expression (9) coincides with equation (3). 

For very small K~: 

F(-~~,l,u) = 1 - lEi(u)-in(u)-0.5771/[Ei(tI-ln((I-0.5771 

and the solution (18) coincides with the solution obtained in reference 
4. 

Let us return now to the general expression (18). We still have to 
determine the coefficients bn. To do this we use the initial condition 
(10): 

m  
$0(u) = 1 b,exp(-u)F(-K,,l,u) (21; 

n=O 

As shown in the Appendix, when weighted by the factor exp(-u) the 
functions F(-K ,,,l,u) are orthogonal to each other on the interval IO,tl. 
By using this property we get: 

s' +o(u)F(-~,,l,u) du 
b,= 0 

s 

5 
exp(-u)F2(-K,,l,u) du 

0 

(22) 

so, finally, for the distribution function we have the following 
expression: 

+(e,u) = 
s' $o(u)F(-~,,l,u) du 

exp(-KnB-u)F(-K,,l,u) 0 
(23) 

n=O 

s 

f‘ 
exp(-u)F2(-K,,l,u) du 

0 

The general expression for the fraction of the number of injected 
particles which stays in the storage ring until t ime B is: 
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cf 
cu exp(-u)F(-K,,l,u) du $'o(u>F(-K,,l,u) du 

n(e) = 1 exp(-x,0) .O (24) 
n=O 

s 

5 
exp(-u)F2(-K,,l,u) du 

0 

3. Numerical Results 

In this section we describe the techniques and results of the 
computation of n(e) and $(f3,u) for five different initial particle 
distributions. 

I> Techniques: 

In each case we compute an approximation of n(e) by truncating the 
infinite series of (24) after an appropriate number of terms. Rewriting 
(24) we have: ii 

s s 
n(e) = 1 b,exp(-K,e) exp(-u)F(-K,,l,u) du (25) 

n=D 0 

where ii is chosen so that the total computing time in each case is less 
than 30 minutes. (It turns out that, in each case, ii is 10 or 11 and 
that the magnitude of the first truncated term is less than lo-*.> 

Our program needs only to compute n(e) for one particular value of 
8; we used Go= 1.0. We compute n(e') for any other time 6' in the 
following way: 

s t N(Boln f bnexp(-K,eo) exp(-uIF(-K,,l,u) du (261 
0 

then 

n(eo) = ; N(801, 
n=O 

and hence 

n(e') = t exp~-K,(e~-eo)lN(eO). (27) 
n=O 

We begin our computation by generating a table of values of 
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F(-~,l,l) as a function of the parameter K. The values from this table 
are shown plotted vs K in fig. 1. We create this table by integrating 
the following differential equation subject to the given initial 
conditions (see equation (Al) in the Appendix): 

uF" + (I-u)F' + KF = 0 

I 
(28) 

F(O) = 1 ; F'(O) = -K 

(note that we cannot integrate (28) to 5 starting at u=D; we actually 
integrate from u=l.O~lO-~~ without significant loss of precision). 

We then use a simple bisection technique to find the zeros of the 
function of K shown in fig. 1, thereby finding the values Kn for which 
F(-an, l,r) satisfies the boundary condition (17). Using a standard 
numerical integration routine and the appropriate initial particle 
distribution function we then compute b, from (221, and then NCDo),., from 
(26); summation then yields n(Oo). 

Next, we generate plots of n(e) vs 8 by implementing (27) and 
finally, using the values of Kn that we computed previously, we generate 
plots of *(eeqru) by using (231. (e,, will be defined below...) 

II) Results: 

Our results are presented in the form of plots: n(e) vs 0 and 
+(e,,,u) for 0 < u < ( where Deq is defined in such a way that the 
particle distribution function has reached equilibrium at some time 
8 < eeq; i.e. particle losses due to the transition from the initial 
particle distribution to the equilibrium distribution have occurred well 
before De4. (We'll see that in all cases investigated particle losses 
due to this transition have pretty much died out by 0~1.0; we used 
e .,=lO to insure that equilibrium had been reached.) He performed our 
computations for five different initial particle distributions. 

Initial Particle Distribution 81: -#n(u) Uniform in u: 

This distribution function (uniform in the square of particle 
amplitude) has the form: 

$0(u) = M  for 0 5 u < < 

where M  is some constant. We normalize this distrib1Atio.c by 
implementing (111 and have for -#O(U): 

30(u) = l/c 

A plot of n(e) vs e (ii=111 for this initial distribution is .s;luwn 
in fig. 3. We note that the contributions from higher order terms in 
(27) decrease quickly and n(e) rapidly approaches the value N(Bo)o. For 
5=30, Kg = 10-l’ which means that n(e) decreases only very slowly after 
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the equilibrium particle distribution has been reached. For this 
particular initial distributidn: 

n(e) = 0.9654 for 8 2 Oeq 

A comparison of the initial particle distribution with the 
equilibrium distribution for O=O,, is shown in fig. 4. 

For the reader's further edification we present in fig. 5 a 
histogram plot of the relative magnitudes of the first 12 terms in the 
series of equation (26) for this initial particle distribution and 4~30. 
We note some mathematically interesting behavior in the higher order 
terms, but only on a scale which is insignificant when compared to the 
zeroth order term which has a magnitude of order unity. 

Initial Distribution 82: $~(IJ) Uniform in Ju: 

This distribution (uniform in particle amplitude) has the form: 

$o(Ju) = M  for 0 I u < 6 

As before, we normalize this distribution according to (11) and 
have for +0(u): 

90(u) = (4ruI-"2 

A plot of n(B) vs 8 tii=lo) for this initial distribution is shown 
in fig. 6. We see the same qualitative behavior that we saw in case #l; 
the initial decrease due to the transition to the equilibrium 
distribution is faster since the initial distribution is closer to the 
equilibrium distribution than in case #I. For our second initial 
distribution we have: 

n(e) s 0.9820 for 8 > e,, 

A comparison of the initial and equilibrium particle distributions 
for e=e,, is shown in fig. 7. 

Initial Distributions #3,4,5: $n(u) Gaussian: 

These distributions have the form: 

90(u) = M  exp(-u2/ao21 for 0 I( u < .$ 

where uo=at; a is a parameter which determines the width of the initial 
Gaussian distribution. Normalizing in the usual manner using (11) we 
have for 3o(u): 

PO(U) = [u0C~l-1exp(-u2/uo2) 

where 



s l/U 
Ca = exp(-x2) dx 

0 

We consider now three different cases: 

i1 Narrow initial distribution (a=113 , f&=0.8862) 

A plot of n(e) vs e (ii=io) for this initial distribution is shown 
in fig. 8. Again we see the same qualitative behavior that we've seen 
in the previous cases; the value of n(8) after the transition to the 
equilibrium particle distribution is: 

n(e) e 0.9999 for e 2 e,, 

We note that for this case particle loss is quite small, since at 
all times the particles are far away from the boundary. 

A comparison of the initial and equilibrium particle distributions 
for e=e,, is shown in fig. 9. 

ii) Medium width initial distribution (a=1 , C0=0.7468) 

A plot of n(G) vs e (ii=111 for this initial distribution is shown 
in fig. 10. The qualitative behavior of n(e) for small 8 is as seen 
previously; in this case n(e) is: 

n(e) y 0.9818 for e > ees 

A comparison of the initial and equiiibrium particle distributions 
for e=e,, is shown in fig. 11. 

iii) Broad initial distribution (a=3 , Co=0.3214) 

A plot of n(e) vs e (ri=li) for this initial distribution is shown 
in fig. 12. The qualitative behavior for small 8 is as before. For 
this case n(e) is: 

n(G) y 0.9677 for e 2 eeq 

This value is smaller than in the previous two cases due to the 
increased width of the initial distribution. 

A comparison of the initial and equilibrium particle distributions 
for S=G,, is shown in fig. 13. 

Our final plot (fig. 14) illustrates the effect that the machine 
aperture parameter 4 has on the fraction of injected particles remaining 
in the beam at time Oeq; i.e. the portion of the injected bunch 
remaining in the machine after the transition from the initial to the 
equilibrium distribution. For this plot we have used the broad Gaussian 
distribution (a=31 as the initial particle distribution. 
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Appendix 

Orthoqonality of the confluent hyperqeometric functions 

A confluent hypergeometric function F(-K,,~,u) satisfies the 
following differential equations: 

uF" + (I-u)F' + K,F = 0 (Al) 

It is easy to show that the function f(u) = exp(-u)F(-K,,l,u) 
satisfies a similar equation: 

Uf" + (l+U)f' + (l+K,)f = 0 (AZ) 

Let us multiply equation (Al) by f and equation (AZ) by F and 
subtract the second equation thus obtained from the first. We get: 

(Km-K,>fF = d[u(fF'-f'F-fF)l/du (A31 

Now we integrate both sides of equation (A31 over u from 0 to (. 
Each of the functions f and F satisfies its own boundary condition: 

F(-~,,l,r) = 0 (A41 

f(-K,,,,l,() = 0 (A51 

Hence, by integrating (A31 one gets: 

s t 
(K~-K,) fF du = 0 

0 

or 

s c 
eXP(-U)F(-K,,l,U)F(-K,,l,u) du = N&n,, 

0 

where Sri,,, is the Kroneker symbol: 

I 1 if n=m 
6 n,m = 

0 if nfm 

(A61 

(A71 

(~8) 

and Nn is some constant. 
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