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1. Introduction 

In some applications of quantum field theory, the fields must be 

defined, not in whole space, but in finite cavities and with non- 

periodic boundary conditions on the walls. The presence of boundaries 

can give rise to new quantum phenomena, the classical example being the 

Casimir effect in QED.l More recently the bag model for hadrons2 has 

increased the interest in confined field theories. 

In this paper we develop techniques for computing quantum (i.e., 

loop) corrections in charged scalar and gauge theories. The relevance 

to the bag model of a scheme for calculating loop corrections in con- 

fined QCD is obvious. Since our technique is restricted to rectangular 

cavities and does not permit spinor fields, it is, however, not directly 

applicable to most phenomenological bag calculations. It will, though, 

enable us to indirectly check the validity of approximate methods 

frequently used to handle loop diagrams in the bag. 

The main physical motivation for this work is however not to im- 

prove on bag phenomenology, but rather to understand qualitative fea- 

tures of a recently proposed model in which the QCD vacuum is densely 

filled by J PC = o++ two gluon glueballs. The reason for believing in 

such a glueball "condensate" is the large negative colormagnetic inter- 

action energy of two gluons in a 0 -H- color singlet state. In fact, by 

calculating the magnetic part of the diagrams of Fig. la,b in a static 

spherical cavity with radius R, one obtains after correcting for the 

c.m.s. motion of the gluons 3,4 

M2 
0* 

x y - a (R) 
S 

(1) 
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Since the strong coupling constant increases with R we expect 

M2(R) min < 0. The presence of a tachyon signals an instability of the 

perturbative vacuum against creation of 0 -H- glueballs. Of course these 

will interact, but as shown in Ref. 3 the overlap is small, and we are 

thus led to the picture of the QCD vacuum as a condensate of 0 +I- glue- 

balls. It is important to check whether the minimum of Eq. (1) is 

stable against variations of the shape of the glueball; it might, for 

example, occur for a tubelike configuration. Secondly, Eq. (1) is 

based on the approximation of keeping only the magnetic contribution 

to the interaction energy5 but to be more precise we also need the elec- 

tric part of Fig. la,b as well as the self energy diagrams of Fig. 2. 

We hope that the methods developed in the next sections will provide 

means to handle these problems. 

The plan of the paper is as follows. Section II begins with a 

general discussion of confined perturbation theory. We then construct 

propagators for scalar fields in a rectangular cavity with various 

boundary conditions. Next gauge fields are treated and ghosts with 

proper boundary conditions are introduced. A first application of our 

methods is given in Section III where we calculate the Casimir effect 

in a box using a covariant gauge. The second application is to compute 

the energy shift of the lowest confined photon mode in scalar QED in a 

cube, which is done in Section IV. Some integrals needed for this 

calculation are listed in Appendix C, and some intermediate results in 

Appendix D. Appendix A deals with properties of the cavity propagators 

and in Appendix B we derive the boundary conditions for the ghost fields 

using functional techniques. 
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11. Cavity Propagators 

. 
1. General Considerations 

To do perturbation theory, one needs vertices and propagators. The 

vertices are local functions and will not be changed by confining the 

theory to a cavity. The propagators, however, are modified so that the 

fields from a source fulfill the prescribed boundary conditions on the 

cavity walls. A straightforward method to construct the confined Green 

functions is by summing over cavity eigenmodes.6 So is, for example, 

the Feynman propagator for a real scalar field given by 

(2) 

where N labels the solution p,(x) to the field equation with suitable - 

boundary conditions, and uN is the energy of the mode. This way of 

writing the cavity propagator is unfortunately not very well suited for 

calculations of loop diagrams. The reason is that in all such calcula- 

tions one has to deal with divergences arising from the singular short 

distance behavior of the propagator. In unconfined field theory these 

infinities appear as divergent momentum integrals which are handled by 

the usual regularization and renormalization procedures. In the case 

of a confined theory using the propagator in Eq. (2) we instead encounter 

divergent sums which are much harder to deal with. The way to overcome 

this difficulty, as will be discussed and exemplified in Sections III 

and IV is by separating the propagator into two parts: 

A(x,Y) = Ao(x,y) + AB(x,y) (3) 

Here the first term, which is the free propagator, contains the usual 

short distance singularity whereas the boundary term AB(x,y) is regular 
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at x=y except perhaps on the boundary itself. For an arbitrary geometry, 

we do not know how to construct AB, but in the case of rectangular cavi- 

ties the problem can be solved by summing over mirror images as shown 

below. 

Before discussing the various propagators in detail, we comment on 

the relevance of considering rectangular cavities. Although the presence 

of sharp edges and comers are unphysical features, we have reason to 

believe that these are not very important. So is, for example, the 

energy of the lowest mode of the e.m. field in a cubical conducting 

cavity of volume V 

cube 
EO 

4.44 = 
vl13 

while the corresponding lowest energy in a sphere is 

Esphere 4.42 - 
0 vl/3 

(4) 

Also if we compare the "inside" (cf. the discussion in Section IV) con- 

tribution to the Casimir energy in the two cases 

cube 
EC 

0.091 _ 
$13 

sphere 
EC 

0.104 =- 
VU3 

(6) 

(7) 

the similarity is striking, and strongly suggests that the finite part 

of the energy is insensitive to the shape of the cavity. 

ii. Scalar Fields 

In order to construct the propagator for a scalar field, confined 

in a rectangular cavity, we use the image charge method introduced by 

Lukosz.7 Here, the boundary conditions are fulfilled by adding the 
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contributions of direct propagation from the source point to those from 

an infinite number of mirror sources obtained by reflections in the 

walls. This is a particularly simple case of the more general method 

of multiple scattering expansion of propagators. Because of the simple 

geometry we can obtain analytic expressions for the propagators, which 

is usually not possible. In Ref. 8 the electromagnetic field is treated 

in a general cavity using the multiple reflection method. 

For a box with sides Ri centered around origo, the positions of the 

mirror charges are given by (index i not summed over) 

y; = (-l)ni yi + ni Ri (8) 

where N = (n 1y n 2,n3L Y is the position of the original source (y! = y,) 

and the-n .th i the number of reflections in the 1 direction. The solution 

to the Neumann boundary value problem 

ocx> A(x,y) = -6 (4) (x - y) 

& A(x,Y) = 0 on 
1 x 

i i = +y Ri 

(94 

(9b) 

is given by9 

A(x,Y) = 
c 

A; (x - yN) (10) 

N 

where A, is the free propagator and the sum runs over all integers. 

As it stands, the N-sum in Eq. (10) is only conditionaLLy conver- 

gent, and a prescription must be given in order to define this and 

similar expressions that will occur below. Such a prescription essen- 

tially involves a redefinition of the sum by grouping several terms 

together in such a way that the new sum is absolutely convergent. This 
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is described in detail in Appendix A. Similarly the Dirichlet boundary 

value problem 

Ocx) A(x,y> = -6 (4) (x - y) (lla) 

A(x,y) = 0 on xi = k$ Ri (lib) 

is solved by 

A(x-y) = c C-1) 
nl+n2+n3 

Aoh-yN) (12) 

N 

The generalization to mixed boundary conditions is straightforward. It 

is obvious that Eqs. (10) and (12) separate out the free part AO(x-y), 

since y("'oyo) = y, Singularities occur.for yN = x, which means that 

all terms with two or more reflections in any direction are'regular. - 

Terms with one reflection in one direction are only singular on a sur- 

face, etc. (see Fig. 3). Of course it does not matter which point is 

considered as source, i.e., 

c 
A(x- YN> = c 

A(xN-y) (13) 

N N 

iii. Gauge Fields and Ghosts 

Now consider a Yang-Mills field 1.0 (QCD) in a covariant gauge defined 

by 

2, + P,, = -+ Gvv Gvv - $(aUAP)2 (14) 

where A = AaT a Guv , = GyTa, Ta being the generators of the gauge group, 

and 

G =a A -a A 
I-iv lJv vp - ig [Au, Avl (15) 
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The field equations read 

au G”’ + + ‘2’ a A' = ig[Gvv,AFi] (16) 
u 

Again consider a rectangular cavity, and impose the gauge invariant "bag" 

boundary condition 

nU Guv = 0 on r (17) 

where n 
?J 

= (0,:)) -+ n being the outside unit normal vector on the boundary 

r of the cavity. This boundary condition is "confining" in the sense 

that the normal component of the (color) current 

Ii", = ig[Gou, Aola (18) 

vanishes on the cavity walls in all gauges. Written in terms of E- and 

B-fields Eq. (18) reads 

-5 
n .&o (194 
+ 
nxX=O 

on .T 
(19b) 

which are recognized as the boundary conditions on a perfect magnetic 

conductor. It is easy to convince oneself that for a rectangular cavity 

the boundary conditions Eqs. (17) or (19) can be realized in terms of 

potentials as 

-t n . I= 0 

G l v);txii=O on r 

+ n l VA0 = 0 

(204 

(2Ob) 

(2Oc) 

The propagator is the solution of Eq. (17) for a point source, i.e.,ll 

ocx) D’;:, (X,Y> i- a';x, a (x) I$?-)) (X,y> = g'l' d4) (X - y) 
(5 (21) 
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All propagators are diagonal in color, i.e., (Dl$)ab = 6abDyi) etc. 

Together with the boundary conditions of Eq. (20) this completely deter- 

mines Dyg)(x,y). Now choose Fermi gauge (a=l), i.e., 

Ocx) D"(x,y) = g"' 6 (4) (x - y) (22) 

Using the same method as in the scalar case we get 

DPv(x,y) = -guv D (lJ) (X,Y> (23) 

where 

D(')(x,y> = c AN+yN) 

N 

D(i)(x,y) = c (-l)ni AN(x - yN> 

N 

From Eqr (8) we immediately have the useful identities: 

acx) D(u)(x,y) = -aLy) D(')(x,y) 
1-I 

aCx> D(O) 
lJ 

(x,y) = -aiy) D('l)(x,y) 

(244 

(24b) 

(254 

(25b) 

To get to an arbitrary covariant gauge characterized by c1 we make the 

gauge transformation 

where A' is given in Fermi gauge. From the requirement 

$ (au A’-‘)2 = 3 (au A’1)2 , 

one obtains 

04 = (Li - 1) au A' 

Now it follows from Eqs. (20) and (22) that 

(27) 

(28) 

G .v>a Al-l=0 on r 
1-I 

(29) 
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so Eq, (28) can be inverted to 

4 = (I& - l)D(') a A' 
u (30) 

Now, 

iD"(x,y) = (0 1 P(A'(x) A'(y)>1 0) (31a) 

iDt'(x,y) = (0 IP(x'(x) x'(y))/ 0) (31b) 

where P stands for T, [ , ] etc., together with Eqs. (25), (26), and (30) 

gives after some algebra 

D~;(x,Y) = D’?x,y) + (1-a) ayx, aTyj D ("(x,z) D(')(z,y) (32) 

Here the product D WD(0) is to be understood in the sense of matrix 

multiplications. In a similar way we can obtain the propagator in other 

gauges,as for example, Coulomb gauge. 

It is well known that in order to quantize a gauge theory in a co- 

variant gauge ghosts are needed. For an Abelian theory, the ghosts do 

not couple to anything and are usually neglected, but in this case we 

must consider them as dis$ussed in Section III. In Appendix B we show 

how to modify the conventional Faddeev-Popov procedure in order to take 

the boundary conditions Eq. (20) into account, and here only the result 

is stated. The ghost Lagrangian is 

Lz Gh = -(au c+) (a’c - ig [Au,c]> (33) 

and is now supplemented with the boundary condition 

i- n l VC = 0 on r 

giving the propagator 

S(X,Y) = D(‘)(x,Y> 

(34) 

(35) 
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Ghost loops as usual carry a minus sign. Note that the contribution to 

the current from the ghostfields is 

.P 
JGh = ig [ap C+,C] (36) 

so Eq. (34) is consistent with nPju = 0 on the boundary. 

We shall finally comment on another possible set of boundary condi- 

tions. As pointed out earlier the boundary condition Eq. (20) corresponds 

to a perfect magnetic conductor. In the case of QED the dual condition, 

i.e., that of a perfect ordinary conductor, is more interesting 

=n E 'Vu' G = 0 on r 
1-I UX (37) 

or 

-?- 
nxZ=O 

;t.'if=o On r 

(384 

(38b) 

An analysis like the one above gives in this case the propagator 

i?'(x,y) = gpv D (u) (x ,Y> (39) 
where 

Ink 
E(o)(x,y> = -x(-l)k A(x-yN) 

N 

C.nk 
i+i) (x,y) = -c (-l)kfl A (x _ yN) 

N 

(40a) 

(4Ob) 

while the ghost propagator is still given by Eq. (35). Transformations 

to other gauges can be carried out as above. 



III. The Casimir Effect in a Box 

The ground state energy of a quantum field theory is usually 

quartically divergent. For example, in the case of a massless scalar 

field with periodic boundary conditions a box with volumn V one has 
0 

E= 
s 

d3x (0 (X&t) IO) = ~+IJ~ 

VO ii 

(41) 

where w+ are the eigenfrequencies in Vo. This divergence is usually 
k 

handled by normal ordering of the Hamiltonian density LW'(z,t>. As first 

noted by Casimir (in the case of QED), this simple prescription does not 

work if the theory is defined in a cavity with nonperiodic boundary 

conditions. Here one should instead consider a regularized form of 

Eq. (41), e.g., 

c 
1 

-w T 
N . 

E(r) = 2 'N e 
N 

(42) 

where the eigenfrequencies w N depend on the boundary conditions and the 

geometry of the cavity. The ultraviolet (r+O) divergent parts of E(r) 

can by general arguments be shown to be simply related to the geometry 

of the cavity. For the case of QED in a box (volume V, sides Ri) with 

boundary conditions of a perfect conductor Eqs. (20) or (39) we have7 

3 v 1 % + R2 + R3 ---- lim E(T) = T2 T4 
T-+0 

4T 
T2 

+ EF($) (43) 

where E in 
C is r-independent, and can also be shown to be independent of 

the cutoff procedure. Except for the quartic divergence proportional 

to the volume, discussed above, there is a quadratic divergence related 

to the edges of the box.* (For a smooth surface the l/-c2 term is a 
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surface integral of the mean radius of curvature.12) If the cavity is 

thought of being placed inside a large normalization volume, it is clear 

that the regular piece EF(Xi) is the "inside" contribution to the 

Casimir energy.* We shall now show how the methods of Section III allow 

for a simple calculation 

Choose Fermi gauge, 

g2? -$ 

where FVv is the Abelian 

Hamiltonian density 

of E in 
c - 

that is, take the effective Lagrangian 

F F1-lV 
I.lV - + (au A”j2 - (all c+) ap c (44) 

field tensor. From Eq. (44) we construct the 

x= d?aoAu) + nCaoc + .Ea,c+ -2 

with 
- 

which gives 

Tr” = -aoA() 

IT k = FkO 

=C = -a,c+ 

x= -(aoAo12 + (akAo - aoAk)aoAk - 2(a, c+)a, c + 

++a A 
2 uv 

- avAv)au A’ + 3 (au A~>~ + (ap c+)av c 

In order to relate X'to the Greens function of the previous set 

regularize this expression by 

A$4 AJx> + A p(&$Av(:,-+ 

- AU(x) Av(x') (48) 

(45) 

(464 

(47) 

ion, we 
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This regularization corresponds in k-space to the one of Eq. (42) and it 

is easy to see from the explicit expressions that D 
FrV 

(x,x') and its de- 

rivatives are finite for 'c # 0. From Eqs. (32) and (47) we get 

(cw,(il)) = $ (a, ai + ai a;) C dk)bd> + 

k 

+ D(')(x,x') - 2S(x,x') 1 
where a; denotes derivative w.r.t. x'. Equation (36) gives 

LqG:, = 3 (a,ad + aia;) c D(k)(x,x') - D(')(x,x') 

k I 

and this together with Eq. (25) and the explicit expression 

iAo(x,x') = -1 
- 4n2(x-x92 

gives for the regularized energy 

(E(T)) = j- d3x Je,(;) 
box 

In the r-+0 limit 

lim E(T) 3 v 1 5 
+ 

R2 
+ 

I3 = T+O 7 7 - 4?r - 2 T 

+ (m2L212 + (m3R3j2 1 -2 
+ 

+zi(++*+t) 
where in the summation C' the point,M = (O,O,O) is excluded. This 

result agrees with earlier calculations using other methods.7 It is 

clear that the term V/r 4 comes from the tree propagators which are 

(49) 

(50) 

(51) 

(52) 

(53) 
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singular'in the whole volume, while the (Rl + R2 + R )/r 2 
3 term arises 

from propagators with two reflections which are singular only on the 

edges, as discussed in Section II. The possible Area/r3 divergence from 

the surface is canceled between different terms. By comparison with 
. 

Eq. (43) we identify Ei as the two last terms of Eq. (53). 

The contributions of ghosts, with the particular boundary condition 

Eq. (35), was crucial in order to get the correct resultI (taking, i.e., 

C+ = 0 on P would have given a different answer). The result thus serves 

as a check of the formalism developed in Section II. 

Since ghosts, though always formally present in covariant gauges, 

are usually neglected in QED calculations a comment on their importance 

here might be in order. The reason for not considering the ghosts in 
- 

Abelian theories is that they have no coupling to the gauge field (or 

any other field) and thus do not contribute to S-matrix elements. There 

is, however, one possible ghost diagram, namely the single ghost loop, 

and this contributes to the vacuum energy. Usually this is subtracted 

away as are all other zeropoint contributions, but in the confined case 

it is these very terms that give rise to the Casimir effect and must be 

included. Physically this is not surprising that the ghost terms are 

important, since one has already included effects of other unphysical 

degrees of freedom (longitudinal gauge fields) which must be compensated 

for. 

The above calculation clearly shows the advantage of the separa- 

tion of the propagator into a free and a boundary dependent part, 

although in this simple case the result can be obtained by direct cal- 

culation of the sum in Eq. (42). 
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IV. Energy Shift of Confined Photons in Scalar QED 

In this section we shall illustrate the use of the techniques 

developed earlier, by calculating the energy shift at the lowest cavity 

mode of an Abelian gauge field confined to a cube and coupled to a like-: 

wise confined scalar field (i.e., confined scalar QED). 

Since the mass shift of an unconfined photon is zero due to gauge 

invariance, we expect only a finite energy shift of type 6E 5 const./V l/3 . 

We shall go into some detail about how to handle the short-distance 

singularities, and our main result in this section is an explicit demon- 

stration that all divergences disappear and that we obtain a finite well 

defined result for the energy shift.14 

Although this calculation has no direct physical relevance, the 
- 

structure of the diagrams involved is very similar to that of the QCD 

case (cf. Figs. 2 and 4). So even though the latter is more complicated 

because of the tensor structure, we expect the methods used below to be 

applicable also to the QCD calculations. 

Consider scalar QED, i.e., 

(54) 

where 

D =a -ieA 
1-( !J !J (55) 

The diagrams contributing to the energy shift are shown in Fig. 4. For 

the gauge field we take the confining boundary conditions of Eq. (21) 

and specifically consider one of the lowest modes given by 

(564 
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Al(x) = -L cos 
TX 1 ITX 2 -iwx 0 
- cos - e 

a& a a 

A2(x) = A3(x) = 0 (56b) 

where a is the side of the cube and w = fin/a the energy of the mode. 

For the scalar field, we demand 

v  l 3=0 on r (57) 

where the conserved current is given by 

Since the boundary condition on Au ensures nUAu = 0 on I' the condition 

Eq. (57) can be realized as either 

$0 onr = (59) 
- 

or 
+ 
n l V$=O onr (60) 

or as a mixture of these. Either choice will do, and we shall take the 

second which means the propagator 

Cn 

c 

.i 
iA(x,y) = C-1) IL A,(- yN) 

N 

The energy shift 6E is given by 

(61) 

4ri6(0)6E = II (62) 

where 

II= II1 + l-I2 (63) 
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n1 = e2' d4x d4y All(,)[au iA (“(x,y> a: iA(2)(~,y> - 

- a a' iA(2)(x,y)iA(1)(x,y) - 3 a' iA(')(x,y) iAc2)(x,y> + 
u v 1J- v 

+ a iA(2)(x,y) a’ iA 
1-I V 

(x,y)l A'*(y) = c I11(N1,N2) 

N1N2 

II2 = 2ie2 
f 

d4x A'(x) iA(x,x) A+ (x) = c l-I2 (N) 
0 N 

(644 

(64b) 

Here 1 and 2 refer to contributions from Figs. 4a and b, respectively. 

The image charges in A(l), A(2) and A are labeled by Nl, N2 and N, re- 

spectively. The symbol 0 denotes x and y integration over the cube and 

the prime derivatives w.r.t. y. It is easy to see that there are pos- 

sible short-distance singularities in II' for 

- (ni 1 < 1 and 1 n: 1 F 1 (65) 

and in II2 for 

Ini/ 5 1 (66) 

All other terms are regular at x=y.15 The tricky part of the calcula- 

tion is to show that these singularities cancel. To do that, some care 

has to be taken to regularize the integrals without destroying gauge 

invariance. 

Before explicitly demonstrating how this is done, we shail briefly 

discuss the remaining explicitly nonsingular terms. First, we notice 

that the sums over image charges in Eq. (64) are only conditionally 

convergent. If, however, the summations are carried out symmetrically 
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around origo, and in such a way that the total image charge does not 

grow, the sums are well defined as discussed in Appendix A. 

It turns out to be convenient not to consider the singular terms 

alone, but the sums rIi and I'$ defined as 

I-I = l-Is + l-INS = II; + il; + l-INS 

where 

(67) 

(684 

(68b) 

The set Si is shown in Fig. 5. Rs includes all the possible short- 

distance singularities of It. The remaining terms are all finite, and 

their sum is absolutely convergent, as can be easily checked. Now go to 

momentum space by 

Cn. 

A(')(x,y) = c (-l)i = 14 e 
-ip(x-yN) 

N (2r) P2 

(2) and similarly for A . Then change to the summation variables 

giving 

1 n i = n! 1 

2 n. 1 = ni + (-l)‘li n' i 

il; = c 2 II(N,N') 

(69) 

(704 

(7Ob) 

(71) 
n .=-2 n!=-co 

1 1 
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Also make the variable change 

n! 
?i = (-1) l yi + nia 

which gives 

42 
dyi + d? i 

-a/2 

(72) 

(73) 

By using the wavefunctions in Eq. (56) one can also show 

(59 A'($)a; + A'(G) av (74) 

We can now trade the N'- summation for an extension of the y integral to 

all space, i.e. (again letting y-t?) 

2 - 
I$ = c 

n.=-2 

(-l)'nie2[d4x f md4y A%) $ -$f$$ 
--m 

1 

n 
x [ - C-1) 

V 
P,P{ + (-on\) PLP:, +PP p v -P&)1 & 

PP 

x expi[(p+p')ixi - (p+ (-1) 
ni 

P'.)i Yi - (P+P')O (x-Y)o - 

- p;nial A’*(Y) 
(75) 

The x0, Y, and PA integrations can easily be done, and by writing 

A"(;;) = 
s 

.+ -f 
d3, e-lq'Y A 

(2r) 3 
V*cY) (76) 

also the y and p' integrations can be performed. By using the Fourier 

representation of 6 (4) (x - y) similar manipulations can be made on the 

term I$. The final result is 
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x, = 2ae2 S(O) 2 fd3x A’(x) $ -f$ A’*(;) e-i(-l)“lsixi 

n.=-2 0 IT 
1 

n. 

J i 
d4pe 

i(-1) lqinia 
X 

cm4 
[P,(2P+dv + wnp (P + 41p (2P + 4, 1 

+ 

- 2(-l) 
nl+n2+nU 

where n+ = n 
u 1-I if qv # 0, otherwise n+ = 0, and 

v 

H i 
i; i 

The momentum integral can now be done using the formulas in Appendix C. 

(P+q)2 guv 
f 

eiPiXi 

P2(P+d2 
(77) 

= 2nia for ni = 2mi (784 

= 2x i - nia for- n i = 2mi + 1 G'8b) 

From Eqs. (77)-(78) it is clear that we must distinguish between odd (0) 

and even (e) ni and treat the different combinations N = (e,e,e),(e,o,e) 

etc., separately. The results are listed in Appendix D. From Eqs. (Dl)- 

(D8) we obtain the numerical result 

l-Is = c ITS(N) = ie26(0) 5 (79) 
N 

Since the N-summation includes a substantial part of the ni - nf plot 

and the sum is supposed to converge rapidly (when performed symmetrically) 

we make the approximation II N IIs 

6E = 0.374 (80) 

where 



-22- 

We have by explicit calculation verified that all short-distance 

singularities disappear in the final results. In order for this to 

happen, the dimensional regularization method described in Appendix C 

is important. A typical example is the integral 

1 
(w>' dx2 cosx2 sinx 1 

2 2 l-E/2 
-2 0 x2 

(81) 

which we encounter in the calculation of II (1,0,1) . This integral is 

convergent for e 2 1, (E = 4 - D) and we define it for E = 0 by analyti- 

cal continuation. The only place where we pick up poles is in the term 

p,o,o) which however give no contribution to BE. 

V. Conclusions 

We have shown how perturbative calculations can be done in boxes 

by using the image representation of the propagators. This expansion is 

to be preferred over mode expansions since in the image method singulari- 

ties are present only in a finite number of terms, which can be handled 

analytically. This feature was exemplified by a recalculation of the 

Casimir effect in a box using a covariant gauge and by a calculation of 

the one loop energy shift of a confined photon in scalar QED. Although 

the image representation only exists in closed form for boxes, the 

multiple reflection expansion is its direct analog for general cavities, 

so the method has a wider applicability. 
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Appendix A 

In this appendix some properties of the cavity propagators defined 

in Section III are 

Dirichlet boundary 

discussed. First consider the scalar propagator with 

conditions on all walls 

Cn 

A(x,y) = -&- 
c 

.i 
(-l? 

1 

41T2 N b- YN12 
(A.1) 

For large ni we can expand 

1 1 (x - 
=-+4 

(-l)ni y)i 

(x-yN)2 1;: I2 Cl4 
(A.21 

When summing over N, neither of the two first terms gives an absolutely 

convergent series, but both are conditionally convergent. In the first 

one, there is a cancellation between even and odd values of ni and in 

the other, an exact cancellation between the ni and -ni terms. All re- 

maining terms in the expansion (A.2) give absolutely convergent series. 

If we look at the derivatives of the propagator 

. Cni x 
all A(x,Y) = 5 

c 
(-l)= 1-I 

- (-l)nu y 
?J 

- nu RV 
(A.3) 

4' N (x-yN)4 

the only possible divergence comes from the sum Eni/ z I4 which is 
N 

conditionally convergent as discussed above. Higher order derivatives 
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of the propagator give only absolutely convergent sums. It is thus 

important that whenever the propagator itself or its first derivative 

occurs, the infinite N summation is taken simultaneously over both even 

and odd and both positive and negative values of ni. This can be formally 

achieved by grouping these terms together, and redefining the summation 

which is now absolutely convergent. From a physical view, this is an 

obvious condition. It simply means that in order to satisfy the boundary 

conditions well, one must sum the contributions from all the image charges 

inside a large box centered around the cavity, and, for example, not all 

contributions from one side of the cavity. Almost everything said so 

far holds also for propagators with Neuman or mixed boundary conditions. 

There is one exception though. In the case of Neuman boundary conditions 
- 

on all sides, 

A(x,y> = i 1 

47r2 c N b-YN12 
(A. 4) 

Cn. 
ii 

there is no (-1) -factor to allow for a cancellation between odd and 

even terms so the leading linear divergence remains. The physical 

origin of the divergence is clear. In this case all image charges have 

the same sign as the original charge, so an infinity in the field is 

generated by the infinite image charge, while in the Neuman or mixed 

cases, the average mirror charge is zero. To get rid of the infinity, 

we simply put in compensating charges of opposite sign 

1 1 -- (x-yNj2 1 ii I2 1 (A. 5) 

Of course, the precise way in which the infinity is subtracted plays no 

role since the Neuman b.c. only specifies the derivative of the field. 
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Appendix B 

The generating functional of unconnected diagrams, Wg[J], for a 

non-Abelian gauge theory can by standard path integral methods be written16 

W&J1 = f dEAFi ASIA,1 ~[~,(Av)l x exp i 
f 

d4x[S m + Jli ApI 03.1) 
V 

where 

A-;[Ai] = 
J d[gl 6[~a(g$)l (B. 2) 

and g is a gauge transformation. sa(Ap), which appears inside the 

d-functional, is a gauge condition which we shall take as 

S,(AJ = Ba - all A”a (B-3) 

for arbitrary constants Ba. Let S(AP) 2 0, then as usual because of the 

B-functZona1, only infinitesimal gauge transformations g = 1 + o 

gAP = A' - Diiu (B-4) 

contributes to the integration. Here c1 = aaTa and the covariant deriva- 

tive are given by 

Dlia = ava - fg[A,yl (B.5) 

We can now replace d[g] by d[a] and extend the o-integration to all 

space. Then substitute Eqs. (B.3)-(B.5) into Eq. (B.2) and rewrite the 

6-functional as a functional integral over the dummy field B(x) = Ba(x)Ta 

A-l[A,] = 
s 

d[a,Bl exp i 
f 

d4x B(x) au D%(x) @. 6) 

V 

To this point everything follows as in the free case, but now notice 

that in our case only those g where gA' satisfy the boundary conditions 
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Eq. (2l)'are to be integrated over. A necessary and sufficient condi- 

tion for both Ap and (1+a) A" to satisfy Eq. (21) is 

G l V)a(x)=O ; xcr (B.7) 

To cast Eq. (B.6) into a more familiar form, we impose the same boundary 

conditions on the dummy field, i.e., 

G 00) B(x)=0 ; xfr 03.8) 

By the variable change 

a=afb (B.9a) 

B=a-b (B.9b) 

and the subsequent contour relation b -t ib we can write 

A+AP] = 
f 

d[C,C+] exp i J 
d4x C+ aP D'C (B.lO) 

V - 
where we identify 

C =a+ib (B.ll) 

and consequently 
-b 
n l vc=o ; xcr (B.12) 

Using this boundary condition and integrating by parts gives: 

A+AP] = Id [C,C+] exp i 
f d4x L?,,(x) (B.13) 

V 

9 Gh = -(au C+) Du C (B.14) 

As usual we now go from A-'[Au] to A[AP] by treating C and C' as anticom- 

muting fields which introduce a minus sign for each closed ghost loop. 

Since A[A'] is independent of Ba, we can make the replacementI 

6[B a - 8 A']-+expi 
v a / d4x ?ZGF (B.15) 

V 
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where * 

Liz? GF = -$ (auAP)2 

and finally 

(B.16) 

W[J] = 
J 

d[A',C,C+] exp i 
s d4x C-Z,, + 9G, + gG, + JUAli) (B.17) 

V 

This completes the proof that to quantize a Y&theory in a covariant 

gauge fixed by Eq. (B.16) and with the boundary conditions Eq. (21), one 

needs the usual ghost Lagrangian, Eq. (B.14), together with the boundary 

conditions, Eq. (B.12). 

Appendix C 

In this appendix we list some useful integrals and discuss shortly 

the regularization procedure used. The following integrals in D = 4 - E 

euclidian dimensions can be obtained by standard methods: 

s dDp e-+X 
= i (2~)“~ rE f 1 . -f-f 

(2~)~ p2(p+q)2 8a2 
da ?-E,2(qar) eiaqox (C.la) 

0 

f 
dDp e-iPx 

= L (2~)~‘~ rE 
1 

(2dD p2(p+q)2 " 8s2 f [ da -0. it -E,2(y$ qp + 
0 

. - + = K1-E,2(q,r) 
5 .io<mF: 

r2 1 
s dDp e-ipx 

= i (&p 
(2~9~ p2(p+q)2 "" BITT 

u2 E-,,2(qclr) q q - 1-I v 

-ii 1-E/2 (q($ [ ia 
x&)+4x g !J v+ WJ - - 

2 r r2 1 

(C.lb) 

(C.lc) 
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where q2 
2 '<O,r =-x2 > 0 for x 0 = 0 and 

9: = q2a(ct -1) cc.21 

it(x) = xv KV(x) (C.3) 

where KY(x) is a Bessel function of second kind. As usual we must intro- 

duce a factor 1-1~ to fix the dimensions. For an on-shell particle, as in 

our case, we take the limit q2 + 0, i.e., qi + 0 and use 

lim Kv(x) = (?j) 
l-b4 r(v)xv-lvi 

x-+0 
(C.4) 

Then the parametric integrals in Eq. (C.l) can be explicitly performed and 

for E I 2 we get the two important integrals 

- 

lim f 
elP l x  dDp 

.+ + 

2 cm4 P2(P +d2 
(2P+q)ll (2P+dv - 2(P+q)2 gll, I. = 

4 +o 

= ( 4,q, - +J12 J RE (9,3 + 

+L 
8n2 

(27r>E'2 rE ( l-e-iz l Z 
)I 

4+ + x 9 
I.lv+ 

(2 l z)r2 

.-+ -f -14 l x +--& l-elq'x ( .+ -f gpv + 8i - - (lWe-i$*z 

q l x r2 d*Z 
(C.5a) 

and 

.-+ -+ 

dp e 
Ip .x 

lim = 
q2+0 s 

D 

(2d4 P2(P +d2 [ 
qu(2P+q) 

V 
- 2(p+d2 g,, 1 

= ( 4&) - guvq2 ) r$ (s3 + 

‘P~V + 4 & 
<x'*$r2 r2 I 

(C.5b) 
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In the limix z -f 0 one can show that flc(x,q2) is the usual free vacuum 

polarization IIE(q2) and n'(q2) is a closely related function. 

In most of the calculations of Section V we can directly put s = 0, 

but as discussed in the text, there are a few integrals which are defined 

only when E 2 1 in Eq. (C.5). The final z integration, however, is 

essentially only over the physical subspace of the D-dimensional space 

(we keep % in 3 dimensions so the extra E dimensions contribute only an 

overall volume factor that goes to 1 as E -t 0). After the x integration 

has been performed the result is analytically continued to E = 0. 

Appendix D 

Here we list the 8 different contributions to fls which are obtained 
- 

after a lengthy calculation using Eqs.(56) and (77) and the formulas of 

Appendix C. 

with 

epepe) = K . 

K = ie26(0) 
2fi n2a 

CD.11 

The term ns (o,o,o) is excluded from the sum denoted X1 and can be shown 

to vanish identically (it is essentially the free vacuum polarization 

contribution) 

epe90) = K . 3m2 -ml 1 
m +m 12 

03.2) 
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e,o,e) 
= K l 2 t): dx2 osx; p ..sx; - 

ml,m3=-1 

1 . 
-Y 'lnxi ( 

2 
ml+x2 + 2 

x2 
- 2 

X2-ml ) 
(D.3) 

2 
8.1 1 ml 1 

-T 'lnx2 ml+ x 12 2 m2, + rn?j + (x2 - 7j) I 
m21fmi+(x -L) 

2 
2 2 

where x' 2 = ITX 2 

1 312 
o,e,e) =K. 

1 1 x1 1 
- ; sinxl 2 2 i 2 12 

x1 - m2 m2 + rni + (xl - 2> 

o,e90) = K . K 21 cos x 1 
1 - ; cosx’ 1 sinx' l 1 

(D.4) 

(D.5) 



I 

+ 2 .0.x; osx; (cosi cosx; - $ (si*xi cosxi xtix: - 

- cosx' sinx; 2 x2 
1 2 

x1 - x2 )I 1 
0.6) 

(x 1 - $)' + (x2 - $' + m; 

312 

rJ (e90,0) 
S 

= K . 
ZJ- 

3 cos; - 

ml -312 

4 o,o,o) 

2 
8.1 1 ml 1 

- 
- Tr 

'lnx2 
ml + x2 m2 

1 
+ m2 

3 I 
2 

ml+ 
2 

x3 

=K ' [+J( dxl[dx2 ldx3 
1 

2 x1 + x; + x; 

CD.71 

CD.81 
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Figure Captions 

Fig. 1 Lowest order diagrams giving rise to magnetic attraction between 

2 gluons. 

Fig. 2 Lowest order gluon self energy diagrams. 

Fig. 3 a) The free part AO(x-y) of the propagator in Eq. (12); 

b-d) Terms in Eq. (12 with one reflection in each direction. 

Fig. 4 Lowest order photon self energy diagrams in scalar QED. 

Fig. 5 The ni-nf-plane. Possible short-distance singularities occur 

for points in the square. The ni and nt-summation in Eq. (71) 

is shown by the circled and crossed straight lines. 
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