SLAC-PUB-2820 LBL-13413 September 1981 T/E

A STUDY OF THE DECAY $\tau \rightarrow \pi \nu_{\tau}^{*}$

C. A. Blocker, J. M. Dorfan, G. S. Abrams, M. S. Alam,[†]
A. Blondel,[§]A. M. Boyarski, M. Breidenbach, D. L. Burke,
W. C. Carithers, W. Chinowsky, M. W. Coles,^{††} S. Cooper,^{††}
W. E. Dieterle, J. B. Dillon, J. Dorenbosch,[‡] M. W. Eaton,
G. J. Feldman, M. E. B. Franklin, G. Gidal, G. Goldhaber,
G. Hanson, K. G. Hayes,[‡] T. Himel,[‡] D. G. Hitlin,^{‡‡}
R. J. Hollebeek, W. R. Innes, J. A. Jaros, P. Jenni,[‡]
A. D. Johnson, J. A. Kadyk, A. J. Lankford, R. R. Larsen,
M. Levi,[¶] V. Lüth, R. E. Millikan, M. E. Nelson, C. Y. Pang,
J. F. Patrick, M. L. Perl, B. Richter, A. Roussarie,
D. L. Scharre, R. H. Schindler,[‡] R. F. Schwitters,[¶]
J. L. Siegrist, J. Strait, H. Taureg,[‡] M. Tonutti,^{¶¶}
G. H. Trilling, E. N. Vella, R. A. Vidal, I. Videau,[§]

Lawrence Berkeley Laboratory and Department of Physics University of California, Berkeley, CA. 94720

and

Stanford Linear Accelerator Center Stanford University, Stanford, CA. 94305

ABSTRACT

We present a high statistics measurement of the branching ratio for the decay $\tau^- \rightarrow \pi^- \nu_{\tau}$ using data obtained with the Mark II detector at the SLAC e⁺e⁻ storage ring SPEAR. We have used events from the center-of-mass energy region 3.52 to 6.7 GeV to determine that $B(\tau^- \rightarrow \pi^- \nu_{\tau}) = 0.117\pm0.004\pm0.018$. From electron-muon events in the same data sample, we have determined that $B(\tau^- \rightarrow \pi^- \nu_{\tau})/B(\tau^- \rightarrow e^- \nu_e \nu_{\tau}) = 0.66\pm0.03\pm0.11$. We present measurements of the mass and spin of the τ and the mass of the τ neutrino based, for the first time, on a hadronic decay mode of the τ .

(Submitted to Physics Letters B)

^{*} Work supported by the Department of Energy, contracts DE-AC03-760F00515 and W 7405 DNG 40.

All of the properties of the τ lepton that have been measured to date are consistent with the interpretation of the τ as a sequential lepton. If this hypothesis is correct, the decay $\tau^- \rightarrow \pi^- \nu_{\tau}^{(1)}$ proceeds via the standard hadronic weak axial vector current and $B(\tau^- \rightarrow \pi^- \nu_{\tau})/B(\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau})$ can be explicitly calculated from known parameters. ⁽²⁾ A measurement of this ratio is an unambiguous test of the τ 's coupling to the hadronic weak axial vector current.

We present here a measurement of the branching ratio $B(\tau \rightarrow \pi \nu_{\tau})$ based on data taken with the Mark II detector at the e⁺e⁻ storage ring SPEAR. The integrated luminosity of 21000 nb⁻¹ at center-of-mass energies from 3.52 to 6.7 GeV corresponds to 58,600 produced $\tau^{+}\tau^{-}$ pairs. We also present measurements of the spin and mass of the τ and the mass of the τ neutrino based on the $\tau^{-} \rightarrow \pi^{-}\nu_{\tau}$ decay mode.

All aspects of the Mark II detector pertinent to this measurement have been fully discussed elsewhere.⁽³⁾ We summarize here the characteristics relevant to this analysis. Charged particles are detected over 85% of the solid angle by the 16 layers of the central, cylindrical drift chambers. The momentum resolution for tracks constrained to the interaction vertex is $\frac{\delta p}{p} = \sqrt{(0.0145)^2 + (0.005p)^2}$ (p in GeV/c) where the first term is from multiple-scattering and the second term reflects the 200 micron spatial resolution. Outside the drift chambers are 48 time-of-flight (TOF) scintillation counters having a 300 picosecond timing resolution. Next comes the solenoidal magnet coil providing a uniform

field of 4.1 kilogauss. Outside the coil are eight leadliquid argon shower counters covering 65% of the solid angle. The energy resolution is $12\%/\sqrt{E(GeV)}$, and the photon detection efficiency ranges from greater than 95% above 500 MeV down to 20% at 100 MeV. Outside the shower counters is the muon system consisting of layers of iron separated by layers of proportional tubes. One end of the detector is instrumented with a lead-proportional chamber endcap shower counter.

Charged pions were identified as particles which (1) were not muons according to the muon system, (2) were not electrons according to the lead-liquid argon shower counters, (3) were not kaons according to the TOF system (relevant for momenta less than 1.3 GeV/c, and (4) were not protons according to the TOF system (relevant for momenta less than 2.1 GeV/c). The requirement that the particle be distinguishable from a muon rejects all particles with momenta below approximately 700 MeV/c, the range threshold for muon identification. The efficiency for identifying pions was measured with known pions from ψ and K_s^0 decays. The probability of misidentifying an electron as a pion was measured with known electrons from radiative Bhabha events and gamma conversions. For momenta above 700 MeV/c, the pion efficiency ranges from 82% to 90%, and the electron misidentification probability is less than 4%.

-3-

Events were selected if they had a charged pion and exactly one other, oppositely charged particle (X). The requirement of exactly two charged particles takes advantage of the low multiplicities typical of τ events and dramatically reduces contamination from hadronic events. To reduce background from events involving neutrals, particularly the decay $\tau \rightarrow \rho \bar{\nu}_{\tau} \rightarrow \pi \bar{\pi}^{0} \nu_{\tau}$, we rejected any event having a photon with energy above 100 MeV. Photons less than 36 cm from a charged particle, measured at the liquid argon module, were ignored because of potential pattern recognition problems. To minimize beam-gas contamination, we required that the event vertex be within 10 cm, along the beam direction, of the beam crossing point. To reduce backgrounds from misidentified Bhabha and µ-pair events, we accepted only events with acoplanarity angle greater than 20° . The acoplanarity angle is 180° - $\Delta \phi$ where $\Delta \phi$ is the difference in azimuthal angles of the two charged particles.

There were 2150 π^+ X⁺ events satisfying the above criteria. Events in which both particles were identified as π 's were counted twice. The estimated backgrounds are given in Table 1. The feed-down from events with more than two produced charged particles was measured with events satisfying the same criteria as the π^+ X⁺ events except that the two particles had the same charge. Assuming the probability of missing a particle was independent of the charge of the particle, ⁽⁴⁾ the feed-down to π^+ X⁺ events was twice⁽⁵⁾

- 4 -

the number of $\pi^+ X^+$ events. The beam gas background was calculated from the number of $\pi^+ X^+$ events with a vertex between 15 and 25 cm, along the beam direction, from the interaction point. The other backgrounds were calculated from a Monte Carlo simulation program. The errors in these backgrounds are a combination of uncertainties in the models and uncertainties in the simulation of the detector by the Monte Carlo program. The net number of $\pi^+ X^+$ events was $1138^+46^+174^{(6)}$ events.

The number of πX events after background subtraction (N_{πX}) is related to the branching ratio (B_{π}) for $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$ by

$$N_{\pi X} = 2 B_{\pi} \sum_{i}^{\Sigma} \sigma_{\tau \tau}^{i} L^{i} \sum_{j}^{\Sigma} B_{j} \varepsilon_{\pi j}^{1}$$
(1)

where the first sum (index i) is over center-of-mass energies and the second sum (index j) is over decay modes of the τ . The quantity $\sigma_{\tau\tau}^{i}$ is the radiatively corrected τ -pair production cross section, L^{i} is the integrated luminosity, B_{j} is the branching ratio to decay mode j, and $\varepsilon_{\pi j}^{i}$ is the efficiency for detecting a πX event when one τ decays to πv_{τ} and the other τ decays via decay mode j. The branching ratios assumed are shown in Table II. Since the sum over decay modes includes the decay $\tau^{-} \neq \pi^{-}v_{\tau}$, Equation (1) is a quadratic equation in B_{π} , which was easily solved once the $\varepsilon_{\pi j}^{i}$'s were determined by a Monte Carlo program. It was necessary to correct the efficiencies for loss of events due to the creation of spurious "photons" by the pattern recognition program from a combination of real deposited energy and electronic noise. This correction was measured in events with the same topology as the πX events (two charged particles and no real photons), namely μ -pairs $(e^+e^- \rightarrow \mu^+\mu^-)$, Bhabha events $(e^+e^- \rightarrow e^+e^-)$, and cosmic rays. After a 3% correction of the Bhabha events for real, radiative photons, all three types of events agreed within 1%, giving an average correction of 6%. The average efficiencies were $\epsilon_{\pi\pi} = 0.154$ and $j_{\#\pi}^{\Sigma} B_{j} \epsilon_{\pi j} = 0.0654$ yielding ⁽⁶⁾

 $B(\tau \rightarrow \pi^{-}\nu_{\tau}) = 0.117^{+}0.004^{+}0.018.$ (2) The systematic errors are 15% for the background subtraction, 6% for the luminosity measurement, 5% for initial state radiative corrections, 5% for electron-pion separation, 5% for muon-pion separation, 1% for the spurious photon correction, and 5% for uncertainties in the branching ratios in $j_{\#\pi}^{\Sigma} B_{j} \varepsilon_{\pi j}^{i}$. When these errors are propagated through Eq. (1), the net systematic error on $B(\tau \rightarrow \pi^{-}\nu_{\tau})$ is 15%.

To reduce some of the systematic errors, such as the luminosity, in the ratio $B(\tau \rightarrow \pi \nu_{\tau})/B(\tau \rightarrow e \bar{\nu}_{e} \nu_{\tau})$, we have measured the τ leptonic branching ratio from the same data sample used for the $\tau \rightarrow \pi \nu_{\tau}$ analysis. We selected events having an electron identified by the liquid argon system, an oppositely charged muon identified by the muon system, and no other particles. There were 294 $e^{\pm}\mu^{\mp}$ events of which 5^{\pm} 3 were estimated to come from charm production, 30^+7 from other τ decays, and 2^+1 from multiprong hadronic production. This gives a net signal of 257^+17^+8 $e^+\mu^+$ events. The average efficiency for detecting $e\mu$ events was 0.071, giving

$$B(\tau \rightarrow e \bar{\nu}_{e} \nu_{\tau}) B(\tau \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}) = 0.030 - 0.002 - 0.004.$$
 (3)

The systematic error comes from the following added in quadrature: 6% for the luminosity, 5% for radiative corrections to the τ -pair production cross section, 3% for the efficiency calculation, 5% for electron identification, 5% for muon identification, 3% for the background subtraction, and 1% for the spurious photon correction. Assuming that $B(\tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau})/B(\tau \rightarrow e \bar{\nu}_{e} \nu_{\tau})$ is equal to the theoretical⁽²⁾ value of 0.973, we have

$$B(\tau \rightarrow e^{-}\bar{\nu}_{e}\nu_{\tau}) = 0.176^{+}0.006^{+}0.010$$

$$B(\tau \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}) = 0.171^{+}0.006^{+}0.010$$
(4)

This is in excellent agreement with the world average⁽⁷⁾ of $B(\tau \rightarrow e^{-}\bar{\nu}_{e}\nu_{\tau}) = 0.170^{+}0.011$ and $B(\tau \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}) = 0.179^{+}0.015$.

Combining Equations (2) and (4) gives

$$B(\tau \to \pi \nu_{\tau})/B(\tau \to e \nu_{e} \nu_{\tau}) = 0.66^{+}0.03^{+}0.11.$$

This is in good agreement with the theoretical⁽²⁾ prediction of 0.58 and with previous measurements⁽⁸⁾ by Mark I (0.53⁺0.23), PLUTO (0.51⁺0.17), and DELCO (0.46⁺0.18). In order to demonstrate that these πX events are consistent with τ production and subsequent decay, we have performed several additional measurements on the data. A subset of these events having an identified lepton opposite the π were studied. The lepton could either be an electron identified by the liquid argon system or a muon identified by the muon system. The lepton energy spectra for the $e\pi$ and $\mu\pi$ events, Fig. 1, are in good agreement with the hard spectra expected from τ decays. Semi-leptonic decays of charmed particles give considerably softer decays.

There were 372 (231) $e^{-\pi} (\mu^{-\pi})$ events of which 168^+29 (77⁺15) were calculated to be background (primarily from other τ decays, as with the πX events). The average efficiency for detecting $e^{\pi} (\mu^{\pi})$ events from τ decays was 0.0955 (0.0542) which gives

$$B_{e}B_{\pi} = 0.018^{+}0.002^{+}0.004$$
(5)
$$B_{u}B_{\pi} = 0.024^{+}0.002^{+}0.006.$$
(6)

Dividing (5) by (6) gives $B_{\mu}/B_{e} = 1.33^{+}0.18^{+}0.36$ in agreement with the theoretical expectation⁽²⁾ of 0.973. Setting B_{μ}/B_{e} equal to 0.973 and using Equation (4) gives

$$B_{\pi} = 0.119^{+}0.009^{+}0.020$$
(7)
$$B_{\pi}/B_{e} = 0.68^{+}0.07^{+}0.10.$$
(8)

There is good agreement with the results obtained from the πX events.

In Fig. 2 we plot the product of $B(\tau \rightarrow \pi \nu_{\tau})$ and the τ production cross section (calculated from Eq. (1),

- 8 -

assuming $B_{\pi} = 0.117$ in the sum over j) as a function of the center-of-mass energy. We have fit the production cross section to the hypothesis that the τ is a point-like particle⁽⁹⁾ with spin 0, $\frac{1}{2}$, or 1. The free parameters in the fit were m_{τ} , $B(\tau^- \rightarrow \pi^- v_{\tau})$, and, for the spin 1 case, two additional parameters described in Ref. 9. Since the branching fraction is a parameter in the fit, it serves as the normalization, and hence the fit constitutes a test of the shape of the production cross section. The spin 0 and spin 1 hypotheses are eliminated at the 95% confidence level ($\chi^2/DOF = 27/8$ and 48/6). On the other hand, the data are well fit by the spin $\frac{1}{2}$ hypothesis ($\chi^2/DOF = 8/8$). The fit to the spin $\frac{1}{2}$ hypothesis yields $m_{\tau} = 1.803^{\pm}0.016 \text{ GeV/c}^2$, in agreement with measurements⁽¹⁰⁾ by DELCO ($1.782^{+0.002}_{-0.007}$), DESY-Heidelberg ($1.787^{+0.010}_{-0.018}$), and DASP ($1.807^{\pm}0.020$).

The pion energy spectrum, after bin-by-bin background subtractions and efficiency corrections, is shown in Fig. 3 for different center-of-mass energies. Since $\tau \rightarrow \pi \nu_{\tau}$ is a two-body decay, the expected pion energy spectrum is flat for monoenergetic τ 's produced at a fixed center-of-mass energy. All spectra are flat and do not peak at high energies as expected for Bhabha and μ -pair events or at low energies as is typical of hadronic and two-photon events.

The end point of the pion energy spectrum is determined by the pion, τ , and τ neutrino masses. We have fit the pion spectrum to obtain an upper limit for m_{v_{τ}}. Since this fit is sensitive to systematic variations in efficiencies and back-ground subtraction for data from different center-of-mass energies, we used only data from the largest block of fixed

-9-

energy running (5.2 GeV) in the fit. In Fig. 4, we plot the upper limit on m_{v_τ} as a function of the assumed τ mass. For m_τ = 1.782 GeV/c², the result is m_{v_τ}² = 0.010⁺0.025 GeV²/c⁴, which gives a two-standard deviation upper limit on the τ neutrino mass of 0.25 GeV/c². The DELCO group has obtained a similar limit⁽¹¹⁾ from the electron spectrum from $\tau^- \neq e^- \bar{\nu}_e \nu_{\tau}$.

In summary, we have measured $B(\tau \rightarrow \pi \nu_{\tau})$ to be 0.117⁺0.004⁺0.018. From the same data, we have measured $B(\tau \to e^{-}\bar{\nu}_{e}\nu_{\tau}) \cdot B(\tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau})$ to be $0.030^{+} 0.002^{+} 0.004$. Assuming the ratio of the electronic and muonic decay rates of the τ to be the theoretically expected value, these results were combined to give $B(\tau \rightarrow \pi \nu_{\tau})/B(\tau \rightarrow e \bar{\nu}_{e} \nu_{\tau}) =$ $0.66^{+}0.03^{+}0.11$. This is in good agreement with previous experiments⁽⁸⁾ and with the theoretical prediction⁽²⁾ of 0.58. The τ production cross section favors a spin $\frac{1}{2}$ assignment for the τ and disfavors spin 0 and spin 1. From the τ production cross section, we measure m_{τ} to be 1.803⁺0.016 GeV/c², in agreement with previous experiments.⁽¹⁰⁾ From the energy spectrum of the pion in these decays, we have placed a twostandard deviation upper limit of 250 $\mbox{MeV/c}^2$ on the mass of the τ neutrino. These measurements support the sequential lepton model of the τ and indicate that the hadronic weak axial vector current couples to the τ with the expected relative strength.

*Work supported in part by Department of Energy, contracts DE-AC03-76SF00515 and W-7405-ENG-48, by the Universität Bonn, Federal Republic of Germany, the Centre d'Etudes Nucleaires de Saclay, France and the Miller Institute for Basic Research in Science, Berkeley, California

Present addresses:

¶ Harvard University, Cambridge, MA 02138 † Vanderbilt University, Nashville, TN 37235 †† DESY, Hamburg, Fed. Rep. of Germany ‡ EP Division, CERN, Geneva, Switzerland ‡‡ California Institute of Technology, Pasadena, CA. 91125 ¶¶ Universität Bonn, Fed. Rep. of Germany § LPNHE, École Polytechnique, Palaiseau, France §§ CEN-Saclay, France

References

- 1. Throughout this paper, all particle reactions also imply the charge conjugate reaction. For example, $\tau \rightarrow \pi \nu_{\tau}$ stands for itself and for $\tau^{\dagger} \rightarrow \pi^{\dagger} \bar{\nu}_{\tau}$.
- H. B. Thacker and J. J. Sakurai, Phys. Lett. <u>36B</u>, 103 (1971) and Y. S. Tsai, Phys. Rev. D4, 2821 (1971).
- G. S. Abrams <u>et al</u>., Phys. Rev. Lett. <u>43</u>, 477 (1979).
 T. M. Himel, Ph. D. Thesis, SLAC-Report No. 223 (1979).
 J. L. Siegrist, Ph. D. Thesis, SLAC-Report No. 225 (1979).
 R. H. Schindler, Ph. D. Thesis, SLAC-Report No. 219 (1979).
 C. A. Blocker, Ph. D. Thesis, LBL-Report 10801 (1980).
- 4. This is not true of two-photon production where the scattered e⁺e⁻ are usually not detected. These events were accounted for separately.
- 5. For four-charged particles with a total charge of zero, there are four ways of pairing them so that they have opposite charges and two ways such that they have the same charge.

- 6. The first error of all quantities is statistical, and the second is systematic.
- 7. Particle Data Book, Rev. of Mod. Phys. 52 (1980).
- 8. G. J. Feldman, talk given at the <u>International Conference</u> on Neutrino Physics-Neutrino 1978, Purdue University, April 28 - May 2, 1978 and SLAC-PUB-2138 (1978).
 G. Alexander <u>et al.</u>, Phys. Lett. <u>78B</u>, 162 (1978).
 W. Bacino <u>et al.</u>, Phys. Rev. Lett. <u>42</u>, 6 (1979).
- 9. Y. S. Tsai, Phys. Rev. <u>D12</u>, 3533 (1975). Tsai originally used data from DELCO on τ → e⁻ν_eν_τ to eliminate the spin 0 and spin 1 hypotheses for the τ. Y. S. Tsai, SLAC-PUB-2105 (1978) and Y. S. Tsai, <u>Proceedings of the 1980 Guangzhou Conference on Theoretical Physics</u>, <u>Vol. 2</u>, 1346 (1980). The DELCO analysis of the same data is in W. Bacino <u>et al</u>., Phys. Rev. Lett. <u>41</u>, 13 (1978).
 10. R. Brandelik <u>et al</u>., Phys. Lett. <u>73B</u>, 109 (1978).
 W. Bacino <u>et al</u>., Phys. Rev. Lett. <u>41</u>, 13 (1978).
 W. Bacino <u>et al</u>., Phys. Rev. Lett. <u>41</u>, 13 (1978).
 W. Bacino <u>et al</u>., Phys. Rev. Lett. <u>41</u>, 13 (1978).
 W. Bacino <u>et al</u>., Phys. Rev. Lett. <u>41</u>, 13 (1978).

Table

Source	Number
Multiprong Events Beam-gas	80 ⁺ 9 14 ⁺ 4
Other τ decays (primarily $\tau \rightarrow \rho v_{\tau}$ and $\tau \rightarrow \pi \sigma \pi^{0} \pi^{0} v_{\tau}$)	590-170
Charm production	49-24
Non-charm hadronic production	97-19
$e^+e^- \rightarrow e^+e^-\gamma$	63-13
$e^+e^- \rightarrow \mu^+\mu^-\gamma$	5-1
2-Photon production	114-15
Total	1012-174

Estimated backgrounds to πX events. Except for multiprong events, all backgrounds refer to events with exactly two produced charged particles.

<u>Table II</u>

Decay Mode	Branching	Ratio
$\tau \rightarrow e \bar{\nu} e \nu_{\tau}$	0.176	
μ¯ν _μ ν _τ	0.171	
ρ¯ν _τ	0.216	
$\pi^{-}\pi^{O}\pi^{O}\nu_{\tau}$	0.05	
$\pi^{-}\pi^{0}\pi^{0}\pi^{0}\nu_{\tau}$	0.02	
Κ [¯] ν _τ	0.007	
κ [*] -ν _τ	0.015	

Branching ratios used for efficiency calculations.

Figure Captions

- a) Electron energy spectrum for e-π events. Dashed curve is the Monte Carlo expectation for signal events. Solid curve is the Monte Carlo expectation for signal plus background.
 - b) Muon energy spectrum for $\mu \pi$ events.
- 2. τ -pair production cross section measured from the $\tau^- \Rightarrow \pi^- \nu_{\tau}$ decay mode. The curves are fits for different spin assignments for the τ . The errors include an estimated 15% point-to-point systematic uncertainty from background subtractions.
- 3. Pion energy spectrum for π -X events with bin-by-bin background subtraction and efficiency corrections. The curves are the expected spectra for $m_{\tau} = 1.782$ GeV/c², $m_{\nu} = 0$, and $B_{\pi} = 0.117$.
- 4. Upper limit (95% confidence level) on the mass of the τ neutrino as a function of the mass of the τ .

100

e t

•

Fig. 2

14.0

Fig. 3

Fig. 4