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ABSTRACT 

We analyze multiple soft gluon emission in QCD. Leading and next- 

to-leading contributions to the quark form factor are resummed in impact 

parameter space at two-loop level. The cross section for e+e- +a+b+X 

is also given. . 
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Semi-inclusive processes [1] play an important role in perturbative 

QCD. Particularly interesting examples, both theoretically and experi- 

mentally, are lepton pair production in hadronic reactions (Drell-Yan) 

with the pair transverse momentum QG large but much smaller than the 

pair mass Q2 (A2 << Qt 2 << Q ) and electron-positron annihilation into 

almost acollinear hadrons. The study of such processes is closely 

related to the understanding of the dynamics of soft gluon bremsstrahlung. 

Common feature to those processes is the presence of large loga- 

rithmic corrections which are due to the incomplete compensation between 

real emission of soft gluons and virtual contributions. As a result an 

effective quark form factor appears. In evaluating physical quantities, 

such large corrections must be resumed to all orders to obtain meaning- 

ful answers 121. 

After the pioneering work of ref. 111 and the important paper by 

Parisi and Petronzio [3] in which the leading contributions were correctly 

summed (see also refs. 14,5]), many authors 16-101 have proposed various 

resummation methods. Important developments have been given in refs. 

[6,8-101. 

In spite of all these efforts an explicit derivation of the quark 

form factor including next-to-leading corrections has not been performed. 

Such an explicit derivation is the purpose of this note. We systematically 

analyze the leading and next-to-leading contributions. All -the different 

sources of corrections at two-loop level are investigated and resummed. 

The resulting formula eq. (15) is given in the impact parameter space. 

Bassetto, Ciafaloni and Marchesini [ll], extending the jet-calculus 

approach [12] for inclusive many-parton distributions, have studied the 

impact of soft gluons by explicitly including the transverse momentum 
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degrees'of freedom into the Altarelli-Parisi [13] (AP) equation. The 

equation for the non-singlet part is in light-like gauge 
-, 

Q 2 a D(Q2,pT,x) 
aQ2 

(1) 

=j$f$; P(z)]+j$$+l-z) Q2-q;-Q;)D(Q2,pT-,$qT,;), 

X 

where the [ ]+ notation indicates the regularization procedure and Qz is an 

infrared cut-off parameter [ll]. In the limit z -+ 1 the distribution is 

dominated by soft gluon emissions.* It has been shown [14] that in this 

limit of phase space it is important to use the correct scale in ct . In 
S 

fact the simple resealing of the argument, Q2 + Q2(l - 2) in a 
S’ 

resums 

[14, 183 the large kinematical corrections due to the soft gluon radiation. 

In the following we use the resealed coupling constant in eq. (1). 
. 

In order to solve eq. (1) we make a Fourier transform into impact 

parameter (b,) space 13,4,11]. Defining D(Q2,S,x) 5 
s 

d2pTe 
-i&b 

x T' 'T 

x D(Q2,pT,x) eq. (1) becomes 

2 a 
Q- 

aQ2 
D(Q2,b,d (2) 

= z[$/dq2 [a(Q2(1-n))+$]++(l-.)Q2 - q2) Jo(?)D(Q2,b,;) 

with J 
0 

the Bessel function of the first kind and lbT 

Using soft gluon limit approximation (i.e., z - 1 and 

1 = b,-lqT 
Q2 ” q2) 

1 = q.** 

eq. (2) 

can be solved to give 

-'*Here and in the following we only consider non-singlet channel which 
gives the largest contributions in the region we are interested in. 

**In eq. (2) and in the following we put Qz = 0. Infrared singularities 
are regularized dimensionally. 



D(Q2,b,d = D(q:,b,x)e 
Tl(Q2,Q+) 

. 

Tl is-- 

(3) 

Tl(Q2,Q;,b) = - "ll"$kk2 9 us(q2) 

The integral of the first term in the parentheses in eq.(4) corresponds 

to the result obtained in ref. [3]. 

The scale Q: which must be larger than the lower limit of the pertur- 

bative analysis Q, > A2 , 
( 

2 
) can be chosen arbitrarily and b is free to vary 

from 0 to ~0. To absorb the possible large corrections of the type enQ:b2 

we chose Q: = 1. 
b2 

This choice with the condition Q: > A2 fixes the upper 

limit on b2 to be b2 < --l-. 
A2 

Equation (3) then becomes 

D(Q2,b,x) = D 
Tl(Q2,b) 

. 

and 

Tl(Q2,b) = - ?$$ [as(q2)bn 5 - +) + 2Rn c as($)] . (5) 

with yE the Euler constant. The condition QG << Q2 in semi-inclusive 

processes corresponds to Q2b2 >> 1 in b space [3, 8, 101. The leading 

contribution [3] in eq. (5) is given by the sum of terms of the type 

B(B/L)n(n 1 1) where B 2 gnQ2b2and L :. !?nQ2/A2. Next-to-leading logarith- 

mic corrections are of the type (B/L)n and the next are proportional to 

l/L(B/L)n etc.** In order to include the next-to-leading terms (B/L)n 

*The use of the exact kinematics in the integration of q2 does not change the 
final result within the approximation we are considering (see next footnote). 

**To this classification we will add intermediate terms of the type RnL(B/L)n 
at two-loop level. See eq. (15). In eq. (5) and in the following we neg- 
lect terms of the type (l/L) (B/L)n(y 1 1, n 2 0) and inverse powers of Q2. 
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let us first examine eq. (5). By a straightforward integration it appears 

that some terms of the type (B/L)n are already present. However this is -~ 

not the only source of such corrections. In fact, as we shall see, the 

inclusion of two-loop AP probability into eqs. (1) and (2) produce terms of 

the same order. 

By using the two-loop AP probability calculated in ref. [15] (see 

also ref. [17]) in light-like gauge (MS scheme), eq. (1) becomes 

Q * -?-- D(Q2,b,x) 
aQ2 

(6) 

1 
dz dir cF = - 

Z 
dq2 3-7s l-z id +($P~(.z)]++,, - dQ* - q2) Jo(+(Q2,b,;) 3 

where P 1i-z2 and K - 2 - 'F ' K I-= = C@ - $) + NFTF (- y) . 

. 
To include the corrections of the form (B/L>n it is sufficient to 

consider only the terms proportional to 1/(1-z) in two-loop AP 

probability. In eq. (6) the argument of CX~ is the resealed one. It 

has been proven in ref. [18] that the resealed coupling constant resums 

_ all the large corrections in the z W 1 region at the order as(Q2(l- z)). 

Similar proof has not yet been given for the higher orders in 

as(Q2 (I- z)) which give non-dominant corrections in the z -1 region. 

Here we make the assumption that the resealed coupling is the correct 

choice also at order [ ( c1 s Q2(l - z,,]'. Explicit calculation of order 

3 2 a,(Q ) can give a non-trivial eheek of the above assumption. Never- 

theless the observation [1] that it is the transverse virtualness which 

controls semi-inclusive processes supports this choice. Solving eq. (6) 

we have 
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r 
D(Q2,b,x) = D l-,b,x e ( > Tl(Q2,b) + T2(Q2,b) 

b2 

with 

C 
T2(Q2,b) = - p 5 

i 

Q2 
$ Rn $22 

1 4 
,~,(S> * 

q 
b2 

(7) 

(8) 

Let us consider now the process e+e- +a+b+X. Due to the factor- 

ization of soft bremsstrahlung [9,19] the cross section is written in 

the following form (fig. (1)) 

1 do - 
' dxldx2 dQf 

(9) 

1 =-- 
2 / 

dbb Jo(bQT) (Q2,b,xl) D; (Q2,b,x2) + (q - 4) 1 sD(Q2,b) 

. 

where QG (<<Q2) is the relative transverse momentum of hadrons a and b. 

SD (Q*,b) represents the set of 2PI diagrams including external hard 

vertices. Using the light-like gauge with the gauge vector being paral- 

lel to the 4 momentum, the quark distribution D 
4 

is given by eq. (7). Due 

to this choice of the gauge vector the expression for D-q is different 

and the two evolutions of q and 4 become asymmetric. In fact the soft 

gluons attached to 4 are suppressed [20] and only the collinear singu- 

larities remain. The evolution for the antiquark can be computed in an 

analogous way to the quark 

T(Q2,b) 
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with ' 

(10) 

S,(Q 
2 

,b) can be calculated in the same way as for the coefficient 

function in deep inelastic scattering [15,16]. One has 

SD(Q2,b) = 1 + CF 
as (Q2) 

~ RnQ2 b2 + (const. term) + @(of) (11) 

The large logarithm RnQ2b2 is due to the choice of Q2 as the renormaliza- 

tion point. To get rid of such term, which can spoil the perturbative 

expansion, eq. (11) must be resummed to all orders. This may be per- 

formed by changing the renormalization point from Q2 to 1. 
b2 

Such 

procedure suggests* 

SD (Q2,b) = (1 + @(+,,) 

2 
c,Q.2 ..2 

-1 
dq 

VI q 
2 as (9 1 

eb2 (12) 

Now we combine eqs. (7), (10) and (12) into eq. (9). The result is 

1 do - 
' dx1dx2 dQ; 

(13) 

1 z-- 
2 s db b Jo(bQ,) [DI ($,b,y) $(--$-,b,x,) + (.q-++ $1 eT 

where exp [T] represents the effective quark form factor with 

T z cF Tl+T2+T+-- IT 
/ 

Q2 

1 q2 
as (q2), i.e., 

-r 

*We presume that eq. (12) has to be preferred to, e.g., the naive 
exponentiation of eq. (11). A rigorous derivation of eq. (12) would 
need more detailed analysis. 
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T = -TlQ2$ bn $ [as(q2) + & af(q2)] + 2Rn < as(+) - + as(Q2j] 

- b2 (14) 

Also the running coupling constant must be considered at two-loop level, 

as(q2)= ,with Bo= 
(33- "NF) 

and 6 
(153-19NF) 

= 
127r 1 241~~ 

. 

Using the above as, the explicit form of T is 

T =-$ b,n(l-F)+B] + ?K(l) & 
0 

---!$bgian(l-&)+ &]:%En(l-$ 
0 

RnL 
. 

(15) 

with K(1) = En2 - yE. 

TO summarize let us examine eq. (15). It contains all the contribu- 

tions of the type B(B/L)n (leading) and (B/L)n (next-to-leading). The 

intermediate RnL l (B/L)n due to the two loop form of us are also included. 

In particular the two-loop AP probability P2 in eq. (6) is important for 

the correct evaluation of the (B/L)n type contributions. Equations (13) 

and (15) are free from large perturbative corrections as long as b is kept 

between l/Q and l/A. The neglected corrections are (i) terms of order 

@[(l/L)Y(B/L)n] (y 2 1, n 1. O), (ii) inverse powers of Q2. 
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The' b space formulation has the following advantages: the evolution 

equation (eq. (1)) can be solved analytically. Transverse momentum con- r. 

servation is satisfied.* Due to this fact, small total transverse 

momentum configurations (-including Q, = 0) generated by multiple gluon 

emission [8] are naturally included in our result. 

We will consider elsewhere the problem of taking the Fourier 

transform (eq. (13)) and the comparison with the PEP and PETRA experi- 

mental data. 
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Figure Caption 

Fig. (1) The process e+e- + a + b + X; single (double) line represents 
quark or antiquark (hadron). 
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