
SLAC-PUB-2806
August 1981
(Ml

c1 THE THRILL OF PROGRAMMING

THE AGONY OF DEBUGGING*

John R. Ehrman
SLAC Computing Services (Mail Bin 971
Stanford Linear Accelerator Center
P. 0. Box 4349
Stanford, California 94305

Hank Hami 1 ton
Standard Oil of Califorilia

320 Market Street, Room 630
P. 0. Box 3069

San Francisoo, California 94119

Abstract:

All programs contain implicit assumptions about b!hat we expect
will be proper program behavior. Today’s computing systems rare-
ly provide facilities for verifying these assumptions. We pro-
pose that a variety of mechanisms be provided by the basic archi-
tecture of a computer’s hardware and software systems that will
facilitate writing programs whose assumptions can then be veri-
fied without the need for additional. “assertions’r beyond those
already contained in the program.

Presented at Session A600 of S-HARE 57, Chicago, Illinois, August 23-28, 1981.

-I(Work supported by the Department of Energy under Contract Number
DE-AC03-76SF00515.

The Thrill of Programming -- The Agony of Debugging ii

CONTENTS

Introduction
Behavioral Assumptions .

Attributes ,
Cells . . , . . . , . .
Cell Contents
Operations
Compound Operations . .
Procedures
Modules
Programs
Operating Systems . . .

. 1

.2

.3

. 3

. 5

.7

. 9
10
13
14
15
16
i7
18

19
19
20

20
22

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Architecture and Configuration
Manufacturers
Summary

. . . .

. . . .

Implementing Attributes
Using Attributes
Summary

Final Remarks
Where Next?

. . . .

.

FIGURES

1. Use of Undefined variables
2. Using Data as Instructions
3. Using Junk as Data
4. External Data Characteristics
5. Invalid Data/Operation Combination .
6. Invalid Data Type in I/O
7. Use of Uninitialized Code
8. Data Type Conflict
9. Argument Type Inconsistency
10. Assorted Procedure Type Conflicts . .
11. Inconsistent Uses of External Names .

. 4

. 5

. 5

. 7

. 7
. 8
. 8

10
11
12
13
15
16

.

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
12. Conflicts Between "Natural" Data Types
13. Operating System Incompatibilities . .

The Thrill of Programming -- The Agony of Debugging 1

This paper illustrates a viewpoint, not a list of specific
suggest-ions for implementation. There are many examp 1 es , and
they bear minimal relation to one another except for trying to
show an idea in many different lights. !Je don’t expect all of the
examples to strike a resonant chord in your mind, but hope that a
few of them will be close enough to your experiences to show you
what we’re getting at.

INTRODUCTION

The interface between human beings and computers makes pro-
gramming and debugging on contemporary machines far more diffi-
cult than it should be. This is due mainly to constraints and
oversights in system design, and not entirely to poor programming
techniques or the weaknesses of programming languages. Whether
implicitly or explicitly declared, much useful and necessary in-
formation is either not made available to, or is thrown away by,
current machines and programming systems. By keeping and checking
this information at both the hardware and software levels, many
common problems can either be solved at the language level where
they belong, or they can be eliminated entirely.

Past system design choices have leaned toward minimizing hard-
ware costs at the expense of programming costs, in the belief
that hardware speed was more important than programming conven-
ience. This has had two results: first, the cost of system
software has risen astronomically; and second, the end user of
most computer systems -- the applications programmer -- has seen
little progress in the kinds of work he can do with his skills.
This is costly now, and will be even more so in the future. Be-
cause hardware costs will continue to decrease, it is imperative
that new s)lstems provide much greater support to the programmer
than in the past. The costs of poor design, as reflected in the
effort that must be spent in debugging, are passed on to the user
by the supplier of the computing system. Thus, ease of debugging
is of great concern to a computer user even if he does no pro-
gramming at all, because he eventually pays for every system
failure.

Because debugging has been so difficult on most machines,
progress in the programming profession has been retarded because
many programmers must stuff their heads with arcane tricks and
trivia. It is wasteful for a programmer using what we call a
“higher-level” language to have to know anything at all about ma-
chine language or control blocks, or to have to debug from a mem-
ory dump. It has been difficult to develop high-level languages
with nontrivial expressive power, because simple flaws in a pro-
gram produce diagnostic information that is unrelated to the form
or intent of the original language. There has therefore been a
tendency to divert attention from the real causes of programming

The Thrill of Programming -- The Agony of Debugging 2

difficulties with exhortations such as ‘Minimize Bugs” or “the
manual says you shouldn’t do that”.

Behavioral Assumutions

It is clear that all programs assume various consistencies and
regularities of behavior on the part of the computing system. For
example’ the erroneous use of an uninitialized variable is due to
a violation of the hardware’s (untested) assumption that all
variables have been given values by the program. We will see in
the examples below that there are many such implicit assumptions
of behavioral correctness in all programs, and that few attempts
are made to verify these assumptions. It is important to observe
the difference between assumptions of losical and behavioral cor-
rectness: the former is the basis of a difficult and important
field of research, while the latter has been almost entirely
overlooked.

The underlying viewpoint here is twofold. First, any computing
system which does not provide an option for full checking of eve-
= step-of a computation is careless, and therefore potentially
dangerous to use. If the user chooses to trade some safety checks
for faster performance, he should be allowed to make that choice
and take his chances. Second, even though many.‘inconsistencies
can be detected by a translator, certain kinds of errors cannot
be detected at compile time but will only be discovered through
rigorous checking at run time. This is particularly true in lan-
guages allowing mixing or dynamic assignment of types.

Thus, the system should be able to verify at each step, no
matter how large or small, that the expected progress of the pro-
gram is indeed identical to its actual progress’ and if it is
not, how and why it is not. It is desirable that these checks can
be performed whenever they seem to be justified: they may be for
purposes of system security, data integrity, debugging, caution,
or whatever else the programmer requires.

This idea of providing behavioral data to the programmer has
occurred in other forms also. For example, with respect to the
optimization of programs, Knuth is “convinced that ‘all compilers
written from now on should be designed to provide all programmers
with feedback indicating what parts of their programs are costing
the most; indeed, this feedback should be supplied automatically
unless it is specifically turned off” (Computing Surveys &, 268
(1974)).

We will begin by looking at some of the problems caused by a
lack of such caution, and show how some of the problems could be
avoided by applying the concept of “keeping information availa-
bl e”; in some places this kept information will be called “at-
tributes”. Me will use a set of examples for a computer (hard-

The Thrill of Programming -- The Agony of Debugging 3

Mare and software) system which progress from very simple forms
or uses-of attributes to very complex ones. The names used for
these forms, and the distinctions among them, are for convenience
only: our purpose is to illuminate some classes of problems, and
we have chosen this structure and terminology for only its illus-
trative uses.

ATTRIBUTES

At each level of complexity in a computing system, there are
attributes implicitly or explicitly assigned to whatever computa-
tional component is of interest at that level. In most cases, an
attribute can be thought of simply as an explicit behavioral as-
sumption, or a declaration of intent: the object described by the
attributes is intended to be used, or should behave, in a specif-
ic way. Most hardware and software systems now available do not
retain information about these attributes, nor do they often test
attributes that may have been provided.

Cells

The most basic component of storage on a co.mputer could be
called a cell: this might be a word, a bit, a byte, a register,
or whatever basic unit of storage is most natural for the program
being written or the problem being solved.

The most important attribute of a cell is simply whether z
not it contains somethinq. The contents of a cell can be an in-
struction or a datum, or its contents may be undefined. In most
current systems, no provision is made for indicating that the
contents of a cell is undefined: its contents may be brought from
memory by a data fetch or by an instruction fetch, with no in-
quiry about whether or not a valid datum or instruction was pre-
viously placed into the cell. Similarly, a program might attempt
to use the contents of an uninitialized register for arithmetic
or addressing.

The results of fetching the contents of a memor’y ccl 1 whose
contents are undefined are familiar. In the case of a data fetch,
we have an “undefined-variable” problem. The following program
will print senseless results:

The Thrill of Programming -- The Agony of Debugging 4

C FORTRAN EXAMPLE
h=B*C+D
WRITE (6, '4E15.6') h,B,C,D
STOP
END

Fisure 1: Use of Undefined Variables

In the case of an instruction fetch, we have branched into an un-
initialized area of memory or to a “missing subroutine” (or have
forgotten to initialize an instruction to be planted into the in-
struction stream while the program was running).

System support tools for detecting such errors are meager in-
deed. The original IBM 7040 implementation of WATFOR used the
7040’s -ability to initialize storage with bad parity to set an
“undefined” flag in data areas. In the System/370 series, assort-
ed simple-minded checks for data and opco.de validity will occa-
sionally trap such fetches from undefined cells‘. It is clear,
however, that the 370’s opcode checking is a rather feeble way to
protect the programmer from his (or the system’s, or a compi-
ler’s> errors. Programmers of machines in which all bit patterns
represent valid opcodes can testify to the difficulty of debug-
ging a program in which control is “lost” -- it usually stops
only by performing an I/O select on a non-existent device.

The defined/undefined attribute of a cell, like a protect key,
also has application to security problems: a program would not be
able to read the “old” contents of memory if all unused cells had
been initially flagged by the supervisor as “undefined”. For ex-
ample, if the appropriate System Generation parameter is select-
ed, the System1370 OS/VS supervisor will zero all pages acquired
via a GETMAIN so as to prevent programs from prying into the pre-
vious contents of an area of real memory. If attribute flags were
available, the supervisor could simply flag all cells in the ac-
quired area as “undefined”. Indeed, dynamic assignment of such
an attribute would be useful in other ways: a program might flag
a variable as undefined so it could subsequently trap unexpected
or invalid access.

Another important, but less well defined, attribute of a cell
is the set of programs which may access it, and with what inten-
tion. For example, certain cells containing information such as
the date should be readable by any program, but writeable only by
the supervisor. Similarly, some routines (such as I/O interface
routines) can be executed by any program? while certain others

The Thrill of Programming -- The Agony of Debugging 5

are accessible only to a limited set of programs. (We are all
familiar with programs which have branched into some random area
of the Supervisor or system nucleus and have then stopped in some
strange way.1

Contents Cell

At the next higher level of complexity, we are interested in
the attributes of the contents of a cell. The contents of a cell
will customarily be either an instruction or a datum. The failure
to distinguish between these two types of contents results in an-
other well-known class of programming errors: an instruction
fetch of a datum is a "branch into the data", and a data fetch
from a cell containing an instruction is a "using instructions as
data" problem. The two following examples illustrate how these
could happen; while nobody is likely to write such code, it is
easy to hide what is happening under layers of what seems to be
"correct" code.

C FORTRAN EXAMPLE
CALL COMMON

C (WHERE WE ASSUME "COMMON" IS
C THE NAME OF A COMMON BLOCK)

STOP
END

Fioure 2: Using Data as Instructions

C FORTRAN EXAMPLE
REAL A(101 / 10 s 1.0 /
WRITE (6, 'E15.6') A(1001
STOP
END

Fisure 3: Using Junk as Data

The Thrill of Programming -- The Agony of Debugging 6

In common higher-level languages such as Fortran, these errors
can be caused by running off the end of an array, treating scalar
data as an array, inconsistent declarations among routines, etc.
While some languages make software provisions for guarding
against the simplest causes of such errors (for example, t ii e
SUBSCRIPTRANGE condition in PL/I, and the automatic subscript
checking provided by WATFIV), there is relatively little help
provided by the hardware in most machines. Some of the Burroughs
machines (such as the B5500) and the IBM System/38 are exceptions
to this rule.

The attributes of a cell’s contents can be as simple as a dif-
ferentiation between instructions and data, or far more detailed
(for example, what does X’4040405C’ represent?). Data can have
attributes such as integer, decimal, character, etc., while code
can have attributes such as problem-program instructions or sys-
tem instructions. (The latter distinction would help in detecting
problems such as branching into the operating system nucleus.> It
would even be useful (on a machine having variable-length in-
structions, like System/3701 to assign attributes like “start of
instruction” and “middle of instruction”!

It is also helpful to be able to identify larger structures as
being active (e.g., instructions) or passive (e.g., data), since
these identifications can change with time and.‘with levels of
control. For example, a program’s instruction stream is data to a
compiler or loader, but is a set of instructions to whatever pro-
cessor will later interpret them. Distinguishing between instruc-
tions and data also makes it simpler to construct re-entrant code
(or ” p u r e ” procedures).

Dynamic assignment of attributes is also needed for the con-
tents of cells. For example, the output of a conversion routine
is constructed from objects of various types (characters, numeric
constants, etc.), and is eventually stored with a specific type.

A more difficult problem arises when data is read from exter-
nal devices. Either types must be assigned by the read routine
(which may lead to errors if the input data does not match its
assigned type), or the attributes of external data must be car-
ried with the data on the external medium. This would allow for
immediate checking of type conflicts before the data is used,
preventing the many kinds of errors that occur when data is con-
verted between external and internal forms.

The Thrill of Programming -- The Agony of Debugging 7

/* PL/I EXAMPLE */
DCL 1 DATA, 2 NAME CHAR(QO),

2 SALARY FIXED DEC(11) ;
/* . . . COMPUTE STRUCTURE'S VALUES */

WRITE FILE (PAYFILE) FROM (DATA);
/* ETC. */

/* NOW, IN ANOTHER PROCEDURE: s/
DCL 1 INFO, 2 NAME CHAR (351,

2 SS-NUM FIXED(91, SALARY FIXED(
READ FILE (PAYFILE) INTO (INFO);

Fisure 9: External Data Characteristics

Operations

The-next higher level of complexity appears when the contents
of a cell is being used by an elementary operation on the ma-
chine. For example, the contents of a cell may have been re-
trieved by a data fetch, and it may indeed be.' data. However,
there may be a data type implied by the instruction (such as
floating point) that is in conflict with the type of the datum
(such as integer). If the attributes of the contents of a cell
are known, it then becomes possible to detect conflicts between
the desired and actual types of information fetched from a cell.

* ASSEMBLER EXAMPLE
LE 2,NUMBER
ME 2,NUMBER
- - -

NUMBER DC F'lO.O'

Figure 2: Invalid Data/Operation Combination

This behavioral assumption is easy to violate. Data from an
external medium may be misused in many ways: binary data might be
treated as characters, or vice versa.

The Thrill of Programming -- The Agony of Debugging 8

/* PL/I EXAMPLE */
DCL N FIXED BIN(31);

/* WE "KNOW" ABSIN) < 99999 */
RERD FILE (Fl INTO (NJ;

/* VALUE READ IS X'41500000' */

Figure 6: Invalid Data Type in I/O

A Fortran programmer who uses an EQUIVALENCE statement to de-
scribe the same cell as containing either an integer or a real
datum can make the mistake of using a name in an expression whose
type does not correspond to the type of the datum currently re-
siding in the cell. In PLYI, improper use of based variables can
cause the same problem. Similarly, it is possible in Fortran to
use floating-point data of differing lengths in such a way as to
generate specification errors due to improper alignment of the
data with respect to machine word boundaries. (Even worse, the
System1370 Byte-Oriented Operand Feature can hide this error com-
pletely, with an increase in execution time as the only side ef-
fect.)

Another well-known error occurs when an attempt is made to
call an undefined subroutine. The address constant which should
have contained the address of the subroutine has not been relo-
cated; thus its attribute should not be set to "valid branch ad-
dress" until relocation (by the Loader or the Program Fetch rou-
tine, for example) has been completed.

/H PLY1 EXAMPLE */
CALL BOONDOCK;

/* WHICH TURNS OUT TO
BE AN UNRESOLVED
EXTERNAL REFERENCE s/

Fiqure 2: Use of Uninitialized Code

This and similar "hew-did-I-get-here?" errors could be more easi-
ly solved by assigning a "point-of-origin" attribute to branch

The Thrill of Programming -- The Agony of Debugging 9

instructions, such that the location(s) of the most recently
obeyed -branch instruction(s) can be saved to provide flow-trace
information.

The validity checking imposed on instructions is usually sim-
ple but stringent. (There b_s been some improvement since the
days of the IEM 704, when assorted undocumented bit combinations
could be used for making up interesting instructions. 1 On Sys-
tem/370, an opcode which has passed the level of validity check-
ing can still produce all sorts of nonsensical actions: one can
with alarming ease destroy the contents of base registers, branch
to invalid addresses, over-write code, modify control blocks ac-
cidentally, etc.

Current systems rarely handle such operator-operand conflicts,
and those that do are usually partially or fully interpretive.
Three examples are the PL/I Checker, and the student-oriented
language processors WATFIV (for Fortran programs), and SPASM (for
Assembler Language programs). WATFIV checks some operand types as
the program executes, whereas SPASM simply flags potential type
conflicts when the program is assembled.

Compound Operations

A compound operation is a sequence of operations that performs
a reasonably complete language function, such as the evaluation
of an expression, the movement of a piece of data, a call of a
subroutine, etc. While the distinction between compound opera-
tions (as defined here) and operations (as defined in the preced-
ing section) is not very precise, some examples will illustrate
the kinds of problems that can arise.

A statement may contain a reference to a subscripted variable,
such as AA(J). It is implicitly assumed that the subscript J will
not take on values exceeding the declared bounds of the array AA.
Because this implicit behavioral assumption is so frequently and
so easily violated, many computing systems now allow the program-
mer to state the assumption explicitly, in the form of a request
for subscript checking.

Suppose a datum is to be moved from one place in memory to an-
other. It is important that the types of the source and destina-
tion cells correspond: they should either be identical before the
movement, or the destination type should be forced to match the
source type when the movement has been completed if such a type
change is explicitly requested. By disallowing some kinds of
movements when type inconsistencies appear, we could prevent such
common errors as over-writing programs with data, storing inte-
gers into floating-point variables, storing variable results on
top of constants or addresses needed for subroutine calls, etc.
The following figure illustrates one such error.

The Thrill of Programming -- The Agony of Debugging 10

C FORTRAN EXAMPLE
COMMON /BBB/ NUMBER
NUMBER = 13
CALL FREAKY

C ETC., ETC.

SUBROUTINE FREAKY
COMMON /BBB/ PI
PI = 3.14159265
RETURN
END

Fisure &: Data Type Conflict

Fortunately, some help can be provided by compilers in detect-
ing potential errors at this level. The PL/I language attempts to
deal with such type inconsistencies by defining an exhaustive set
of conversion rules covering all possible valid operand pairs.
This can of course lead to unsuspected program.‘behavior: the
programmer should be warned, instead of being provided with
lengthy and costly (and often unwanted) hidden conversions.

From a system programmer's point of view, one of the most im-
portant attributes of a compound operation is its "divisibility'*
attribute: what kinds of "interruptions" are tolerable while that
operation is being performed. It would be useful to flag compound
operations as "disabled*' for certain interruption conditions; im-
plementation of semaphores, status switching routines, and criti-
cal sections would be simplified.

From the point of view of a high-level language program, eval-
uation of a square root is usually considered to be indivisible.
However, if that program wants to receive control to handle error
conditions such as a negative SQRT argument (as in the IBM For-
tran Extended Error Handler), the process must be divisible. From
the viewpoint of hardware interrupts, the square root routine is
arbitrarily divisible at the level of instruction sequencing.

Procedures

A procedure can be understood in the usual sense of a Fortran
FUNCTION or SUBROUTINE, a PL/I PROCEDURE, as a block of a pro-
gram, etc. The important characteristics of a procedure for our
purposes are that it has a well-defined and small number of entry
and exit points, manipulates a well-defined set of input data,

The Thrill of Programming -- The Agony of Debugging 11

and produces a well-defined result. An important characteristic
of procedures is that they can be separately compiled.

To give some illustrations of the incredible variety of errors
that can occur at this level, consider a simple function-type
subroutine. The user may pass it fewer arguments than it expects,
or more. The types of the arguments may not correspond correctly
between the calling and called routines. The routine may store
into its arguments, possibly over-writing a constant. (One XDS
system stores constants under a separate protect key to prevent
over-writing. 1

C FORTRAN EXAMPLE
CALL PSYCHO(l70)
STOP
END
SUBROUTINE PSYCHO(X)
X = 5.678
RETURN
END .

Figure 9: Argument Type Inconsistency

In IBM Fortran, the value of the function may be returned in the
wrong register if the caller declares its type incorrectly, and
the calling or called routine may attempt to use alternate re-
turns which are ignored by the other.

I

The Thrill of Programming -- The Agony of Debugging 12

-.
/* PL/I EXAMPLE */
DCL UGH ENTRY(CHAR(*),BIT,FIXED(3));

CALL UGH('CHAR','l'B,15);
/* AND SO FORTH */

/* THE FOLLOWING IS COMPILED
SEPARATELY, OF COURSE */

UGH: PROC(NOW,FOR,SOME,FUN);
DCL NOW FLOAT, FOR CHAR(lfJO),

SOME LABEL, FUN ENTRY;
FOR = NOW 11 FUN(SOME);
RETURN:

END UGH;

Fiqure 10: Assorted Procedure Type Conflicts

In such cases, some important informat!on is being ignored or
1 o-s t : a procedure has attributes, and they shou1.d be checked for
correct correspondence with the attributes of any other proce-
dures with which it communicates. To illustrate, consider the
list of errors in the previous paragraph.

1 . One of the attributes of a procedure is the number of argu-
ments it expects.

2. The types of the arguments form another set of attributes,

3. It is important to know uhich arguments are passed by name,
by value, by address, or by some other convention. That is,
the dynamic behavior of an argument is an attribute of a
procedure: the called procedure knows how it will access its
arguments and whether or not it will modify them.

il. The linkage conventions between calling and called routines
are an important attribute of a procedure. For instance,
the subroutine linkage conventions implemented by the SAVE
macro-instruction under OS could save the caller's regis-
ters, and then set the attributes of registers 2-12 to "un-
defined".

5. The special-case and error-handling characteristics of a
procedure are also attributes. (See CACM 19, 642 (19761.1

It is hard to overestimate the frequency and variety of the
programming horrors caused by the lack of properly used attribute

The Thrill of Programming -- The Agony of Debugging 13

information at this level, as the above examples indicate.
However, some help may be available. If a large program is com-
piled in a single unit, the inter-procedure relationships can be
checked at compile time if the translator is willing and able;
PASCAL is a good example. The PFORT Verifier (see Software Prac-
tice & Experience 2, 359 (1974)) checks static inter-module rela-
tionships where possible. WATFIV and the PLY1 Checker can perform
some dynamic checks as well. In most cases, separately compiled
procedures containing mistakes (or intentional misstatements)
still have almost no defenses against one another.

Modules

For our purposes, a module may be bigger than a procedure and
may be smaller than a complete program. A module is a collection
of one or more procedures written in the same language, along
with their associated support routines that provide the necessary
run-time environment interface. All the procedures use common
data structures and representations, storage conventions, linkage
conventions, etc. Conceptually, we can consider a module to be
that level of program complexity at which side-effects can first
appear.

There are many familiar problems at this levef'. In Fortran, it
is possible to make inconsistent declarations of a COMMON block
area in different procedures, or declare a subroutine and a
COMMON block with the same name.

C FORTRAN EXAMPLE
SUBROUTINE VENI (VIDI, VINCI)
COMMON /MAIN/ LOTSA, GRIEF(1000)
CALL WHONOS(WHAT,WILL,HAPPEN)

C AND SO FORTH
BLOCK DATA
COMMON /WHONOS/ JUNK
DATA JUNK / 469 698 558 /
END

Fisure 11: Inconsistent Uses of External Names

In PL/I, external data can have inconsistent declarations, and
data and procedures can be given the same names. In almost any
language, it is possible for some distant routine to modify a

The Thrill of Programming -- The Agony of Debugging 14

global variable, and thereby cause a side-effect that may or may
not ha\re been desired or expected.

Just as for the “internal” data types described in many of the
preceding examples, external names and data should have attrib-
utes as well. The presence of such attributes would allow a com-
piler or ioader or link editor to check for consistency among the
various procedures and data areas in a module. (This could elim-
inate the Linkage Editor’s annoying habit of never telling where
it found which copies of the things it kept, or which things it
threw away from what.) Furthermore, if the library routines sup-
porting the compiled procedures use the same linkage conventions
as the procedures themselves, then the same tests can be applied
uniformly to all components of the module.

Prosrams

A program can be described as a collection of one or more mod-
ules (which may have been written in more than one language),
which can perform a well-defined computing activity without need-
ing the- presence of other user-written routines. A program needs
only the support of its host operating system.

The most obvious example of problems to be solved at this lev-
el occurs when modules written in different languages are to be
combined. The linkage conventions may be different, data types
and representations vary from language to language, the runtime
environments are mutually immiscible, the interfaces to the opcr-
ating system are inconsistent or incompatible, and so forth. PL/I
can help with the “FORTRAN” attribute for external procedures,
but if there are lots of environment switching SVC’s and data
transformations, then the cost of mixing languages can be very
high.

The presence of attributes would make it possible for modules
to specify which data representations are used, what characteris-
tics are expected of the runtime environment, what special fea-
tures are needed from the operating system interface, etc. At
this level, current systems use attribute information only in
simple ways, such as file attributes detected by’the operating
system when a data set is opened.

The following example illustrates the conflicts that can be
produced by using each language’s “natural” data representations
in a mixed-language program.

The Thrill of Programming -- The Agony of Debugging 15

/* PL/I EXAMPLE */
DCL NAME CHAR(100) VARYING,

SALARY FIXED DEC(12,2),
RESULT FIXED DEC(5,2) ;

/* COMPUTE SOMETHING LIKE A TAX *I
CALL TAXES(NAME, SALARY, RESULT);

/* ETC. CALLS A FORTRAN SUBROUTINE s,'

SUBROUTINE TAXESCNAME, AMOUNT, ANSWER)
LOGICAL*1 NAME(100)
REALS8 AMOUNT
REALS4 ANSWER

C . . . COMPUTE SOMETHING
RETURN

Fiqure 2: Conflicts Between "Natural" Data Types

Operating Systems .

The operating system is comprised of those routines which pro-
vide interfaces such as access to I/O devices, error detection
facilities, program services, etc., between programs and the ma-
chine's facilities.

As a simple example of a problem caused by a lack of attribute
information at the interface between programs and systems, sup-
pose we are given an object deck of a complete and thoroughly de-
bugged program, and try to run it under OS/MVT, OS/VSl, MVS, or
CMS. The program is loaded into memory and begins execution,
only to run into peculiar difficulties. Only then do we discover
that the program was composed on the assumption that it would be
run under DOS, which has an entirely different set of interface
conventions. The following figure illustrates one of the differ-
ences in the ways two operating systems treat identical language
constructs:

The Thrill of Programming -- The Agony of Debugging 16

. .
* ISSUE DOS VERSION OF TTIMER

TTIMER
+ SR 0,O'
+ svc 52

* ISSUE OS VERSION OF TTIMER
TTIMER

+ SR I,,'
+ SVC 46

Fisure JJ: Operating System Incompatibilities

Even if we isolate a program's operating system dependencies into
a single system-interface routine, we will still have problems
with that routine.

It is reasonable to require that a program should always have
sufficient attribute information to indicate initially which of a
set of standard conventions it will choose, and the system should
be able to adapt itself to whatever interface.'conventions the
program then wishes to use (or it should politely refuse). Thus,
DOS services might automatically be made available in any more
general system.

The system interface is called upon to provide a variety of
services; the requests are usually checked for minor error condi-
tions (such as boundary misalignments of svc parameters), but
rarely for consistency in any larger sense. For example, it is
common under OS to find that an attempt to do I/O with an uno-
pened DCB causes an undesired branch somewhere into the low end
of memory.

Many system integrity and security failures occur at this lev-
el. Operating systems must do a lot of checking to prevent er-
rors, but the lack of attribute information allows for checking
only on an ad-hoc and case-by-case basis. To take a simple exam-
ple, if "control block xxx" attributes could be assigned, much of
the checking and many of the sources of error could be eliminat-
ed.

Architecture Confisuration

Architecture represents the machine characteristics imposed on
the operating system, such as the instruction set. The configura-
tion is the total set of resources and facilities available to
the system and its supporting architecture, such as I/O devices,
hardware facilities, etc.

The Thrill of Programming -- The Agony of Debugging 17

We can give several examples of problems that arise at the
level crf the machine’s architecture. The Decimal Instruction Sim-
ulator on the 360191 and 3701195 is provided so that support can
be given to an attribute of a program (“it uses decimal instruc-
tions") which was not provided by the original architecture. Sim-
ilarly, t h e Extended Precision Floating Point Simulator allows
the system to support another class of instructions whose execu-
tion it would otherwise be forced to disallow. Both simulators
dynamically detect an “attribute” of a program (it produces cer-
tain types of program checks) in such a way that an apparent mis-
match with the architecture can be avoided. Such instruction-set
attribute conflicts are usually discovered the hard way, when a
program terminates abnormally. The set of instructions used by a
program is an obvious attribute of that program.

Other problems arise when programs written to optimize their
performance on one architecture are run on another. Thus, a SORT
may run much more efficiently in a real memory environment than
in a virtual storage. Such environmental assumptions embodied in
the design of a program are also attributes.

To further illustrate the need for attributes at the configu-
ration level, suppose we have a program which reads from two
tapes and merges their contents on a third. If we want to run the
pr~ogram on a machine which has only two tape unit.;, it should be
possible to allow the “output” tape to be simulated by any other
appropriate storage device, so that the “spooled” output is later
written on a real tape without having to write additional JCL or
job steps. (In fact, this “data staging’+ technique is regularly
used on some CDC machines.)

The Job Control Language provides a means for externally spec-
ifying some of the attributes of a program, and for configuring
the " s y s t em" under which it will run. Much of the frustration in
using JCL comes from the fact that the program’s true attributes
may be very different from the attributes “hypothesized” in the
user’s JCL statements, and because the only way to detect the
mismatch is to wade through a morass of manuals and dumps. (Con-
sider the many forms of the 013 abend, for example!) Time-sharing
systems allow some attributes to be specified at the time the
program is run, thus achieving a small degree of -configuration
independence.

Manufacturers

Computing systems are intended to provide a desired set of fa-
cilities and functions, which are implemented in various ways by
various manufacturers.

The most obvious incompatibility at this level is also one of
the most trivial: there is a variety of character encodings, and

The Thrill of Programming -- The Agony of Debugging 1s

a variety of associated collating sequences. Even a simple data
base cannot be moved among machines if the assumed orderings of
alphanumeric keys within the data base are not invariant. It
should be possible to design systems so that a collating sequence
is specifiable as an attribute of the appropriate data, programs,
systems, and hardware devices, and so that it may be varied to
suit the needs of each usage.

Higher-level languages such as Fortran and COBOL were intended
to provide some degree of manufacturer independence, and stan-
dards for such languages have arisen’ in the hope that program
transferability might be enhanced. Unfortunately, other problems
at this level have arisen because compiler writers have actually
designed non-standard or machine-dependent features into the lan-
guages their compilers will be translating (e.g., REAL*S). Thus,
the presence of such features is an attribute of the programs and
of the systems and architecture the features will utilize. The
only way to determine if a program’s choice of language attrib-
utes will be tolerable to a compiler is to run it and hope for
the best; it is a rare compiler that lets you specify the subset
of the language it should accept.

However, there are even worse problems that can arise for a
person trying to write transportable code,. even for standards-
conforming programs. These problems can often be traced to a lack
of attribute information concerning such seemingly minor matters
as (1) the maximum value that may be attained by a variable, (2)
the representation used for integers, (3) the base and precision
of floating arithmetic, (4) the behavior of the program and the
arithmetic results when a computation exceeds some numeric bound
imposed by the hardware, (5) the internal representation and
packing scheme used for characters, and so forth. The availabili-
ty of this kind of attribute information is necessary to be able
to write programs with even a small hope of portability.

To illustrate, a PL/I program may declare a variable to be BIN
FLOAT(15). On IBM System1370 systems, this gives 24 fraction
bits, where other manufacturers provide exactly the requested 15
fraction bits. Thus, a program developed on an IBM system may
give a false indication of the precision the program can actually
provide.

Summary

Much of the trouble we encounter in trying to use a computer
is caused by having thrown away too much useful information. In
common computing terminology, we have been binding too many ob-
jects much too early. The preceding examples have tried to show
that the discarded information could be kept and used in many
helpful ways.

The Thrill of Programming -- The Agony of Debugging 19

IMPLEMENTING ATTRIBUTES

Implementing a full set of attributes will have a number of
costs. Some of the attribute information can obviously be defined
in “hardware”, and some in “software”. Because much of what we
call hardware is micro-programmed anyway, the micro-programs
could support a full range of attribute handling. At the higher
“software” levels, extra information can be attached to programs,
data, systems, mechanical devices, etc. The necessity of attrib-
ute information attached to data on external devices has long
been recognized, as many Data Base and Data Dictionary committees
can testify.

It is important that the use of attribute information should
be optional and controllable: a programmer may want to run his
program under very complete checking and monitoring facilities at
one time, and with complete freedom the next. At present it is
very difficult to vary the modes in which a program may execute,
so a programmer cannot make effective use of his prior knowledge
of how the program will behave.

The ability to modify dynamically the uses made of attribute
information is also important. For example, a program which per-
forms a long, iterative calculation on a large array may wish to
verify the correct definition and type of each’ element on the
first pass over the array, and then test only for range condi-
tions during the rest of the computation.

The idea of choosing the “style” of execution of a program is
not unusual, particularly when we consider how widely it applies
to other activities. Thus, the owner of a car can buy as simple
or as fancy a machine as he likes, and can drive it any way he
wants within whatever limits of social responsibility are imposed
on him. A programmer should similarly be able to choose between
speed, safety, and convenience, and the environment in which his
programs run should be similarly prepared to impose limits of be-
havioral responsibility so as to protect both that environment
and its other inhabitants. Regrettably, most programs are re-
quired to execute with a maximum of speed and a minimum of cau-
tion; it is small wonder, therefore, that we characterize the
common result as a “crash”, and display the results -in a “dump”.

Usins Attributes

One implication of attaching attribute tags to such elementary
objects as storage cells and data or instruction elements is that
their sizes (in bits) will vary, possibly differing from user to
user, or even from run to run for the same program. That is, one
user may want to enforce the maximum possible checking, so that
each cell has a large number of bits in its attribute tag; anoth-
er user may want maximum speed or memory density, and therefore

The Thrill of Programming -- The Agony of Debugging 20

will dupense with attribute tags entirely. In simpler forms,
such tags have been used on many machines for a long time; for
example, each word on the Burroughs B6500 contains 3 tag bits to
indicate whether the word contains instructions or data, to iden-
tify descriptors, to provide memory protection, etc.

At the lowest levels, any of the attributes described above
could be implemented by running programs in an interpretive or
semi-interpretive mode. We should not object to interpreters on
the ground that they perform slowly compared to compiled code,
since the compiled code is itself being interpreted on another
machine, via micro-programming. The availability of a writable
control store means that the lowest level of interpretation
should be tailored to the needs of the code it will be executing.
The Burroughs B1700 provides this facility, whereby a “machine
language” can be tailored to the needs of the program being in-
terpreted.

Summary

At every interface, the two participants must pass not only
data, but descriptions of the data as well, so the descriptions
can be checked for consistency. At every operator-operand inter-
face, similar consistency checks must be possible. At the levels
of calls among routines, the attribute information can be veri-
fied and discarded if it is known that the attributes can undergo
no dynamic modification. For example, a compiler could perform
one level of checking, the Linkage Editor could perform a second,
the Program Fetch routine could perform a third, and various run-
time support functions in hardware or software could provide dy-
namic checks on the remaining attributes which have not yet been
bound.

There are many decisions to be made about where and how at-
tribute checking should be done. However, the intent of this pa-
per is to show that attributes are needed. Once the need is
widely recognized, it will be easier to decide what functions to
implement, and how.

FINAL REMARKS

The difficulties described in this paper have happened partly
because we have allowed ourselves to use a measure of program ef-
ficiency which excludes people: we should be considering ques-
tions of prosramminq efficiency, in which the wasted time and
pointless mistakes of the programmer are important factors. On
such a scale, the efficiency and utility of modern computers is
extremely low. Too much effort has been invested in the technical
aspects of efficiency, such as hardware or compilers. As Knuth

The Thrill of Programming -- The Agony of Debugging 21

remarked in discussing programs, “premature optimization is the
root o* all evil” (Computing Surveys 6, 268 (1974)); his comment
describes almost the full spectrum of computing activities.

As the above discussion shows, the computing community has
paid a terrible price for these tools: whatever supposed “ef f i-
ciencies” may have been gained are too often outweighed by the
costs of poorly thought out systems on which we must run our
clumsy, error-prone, obscure, and unnecessarily complicated pro-
grams. There has been too little progress over the past fifteen
years in the methods a programmer must use to write and debug a
program; the fact that a major diagnostic tool is still the memo-
ry dump is a damning indictment of our collective ignorance. (It
may be appropriate to quote Dijkstra’s remark in his ACM Turing
Lecture: “The electronic industry has not solved a single prob-
lem, it has only created them.“)

Many other technologies that people depend on are learning the
social and economic costs of expecting human beings to be “rea-
sonable”. Cars with potentially dangerous design flaws are re-
called for repair at the manufacturer’s expense; airplanes con-
tain triply redundant control systems; electric appliances
contain fuses, double insulation, and other forms of “fool-proof-
ing” ; hospitals are liable to lawsuits f.or deviations from “ac-
cepted practice”, and so on. Computer programs’, however, are
still fatally vulnerable to the tiniest and most trivial of er-
rors, and we continue to believe that it is therefore the respon-
sibility of programmers to write ever more perfect programs. As
one frustrated programmer said, ” w e don’t write software, we
write brittleware!”

As you can see from the views expressed here, we believe that
the eventual solutions to our need for safe and reliable comput-
ing lie primarily in neither of two currently popular directions:
not in teaching (or insisting on> proper programming techniques
using precisely-defined languages, nor in the application of
greater computing power to make up for the complexity and intrac-
tibility of the problems people want to solve. Human beings will
continue to muddle ahead, our problems will usually be ill-posed,
our solutions will frequently be incomplete and badly thought
out, and our individual limitations will continue to make the gap
between our best intentions and the actual results impossible to
close. And if we plan to submit ever more of our lives to the
keeping of computer systems, then it will be better if the small
matters of inconsistency and inaccuracy described here are caught
and exposed before they grow into large, unmanageable, and in-
tolerant systems.

The Thrill of Programming -- The Agony of Debugging 22

Where Next’ - -*
h

The members of the SHARE-GUIDE Language Futures Task Force
have observed many of the “accidents” and “traps” described in
this paper in past and present programs. The folklore of almost
every programming shop contains at least one story of the insidi-
ous bug that hid in a system for days, months, or even years,
only reaching out to smite the user at the most awkward possible
time.

In the thirty or so years of our industry, very little has
been provided to protect us and our users from these admittedly
common problems. A few processors have been produced that can do
rather comprehensive checking for many of the problems we de-
scribed, but they are usually labeled “student processors” and
are shunned by the “professional” or “industrial” community. A
worse reaction is that a shop which says it cannot afford the
“inefficiencies” of really thorough diagnostic hardware or soft-
ware will of ten prefer to trade system down-time and customer
dissatisfaction for that truly costly “efficiency”.

The Language Futures Task Force believes that even with the
best of efforts and intentions, the problems illustrated above
will continue to appear. We therefore believe that many shops
would trade a little processor speed for increased program relia-
bility and greater assurance that today’s applications are run-
ning correctly today and will continue to run correctly tomorrow.

The Task Force identified four areas where checking should be
provided as a matter of course: at all interfaces between rou-
tines, between routines and data, between routines and devices,
and between data and devices. This checking should be done as
close to (and, if possible, at) “production” execution time.

Ke invite interested people to participate in further discus-
sions of these subjects.

