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ABSTRACT 

We construct a new finite-dimensional quantum mechanical space 

over the complex octonionic plane using the recently developed algebraic 

techniques of Jordanpairs and inner ideals. The automorphism group of 

this structure is E6xU(l), realized on precisely two E6 irreps (27,27*), 

which we abstract as a (topless) model for grand unification. 

I. Introduction 

There are two very different ways in which the exceptional groups 

are currently applied in particle physics, which may be called the 

"algebraic approach" and the "gauge symmetry approach" to elementary 

particle structure. 
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The first approach is possibly the more fundamental, and is based 

on the hope that the unusual nature of quark degrees of freedom can be 

found in algebraic models - in particular in non-associative algebras - 

where these strange properties are to appear naturally and not as arti- 

facts. The algebraic approach traces its origins to the early researches 

of Jordan which led to the first exceptional quantum mechanical struc- 

ture[l], the 26-dimensional Jordan algebra (Mi) of Hermitian 3x3 

matrices over octonions, which has as its automorphism group the ex- 

ceptional Lie group F4. Current interest in the use of octonions, and 

the exceptional groups, stems from Giirsey[2], who noted that specializ- 

ing one of the seven non-scalar units (to play the role of i) auto- 

matically achieves a rationale for SU(3)color. In particular, the five 

exceptional Lie groups exhibit color-flavor structure: ._ 

G2: su(3)c F4: su(3>Xsu(3>c E7: SU(~>XSU(~)~ 

E6: su(3)KXJ(3)WJ(3>= E8: E6WJ(3)= 

Giirsey[3] emphasized that the non-associativity of octonions may 

be connected with the problem of confinement. 

The second approach is more heuristic and based on quantum field 

theory. One constructs, in the standard way, a quantum field theory of 

massless fermions interacting through a gauge field of massless bosons, 

with the Lagrangian having the gauge group symmetry G. When imple- 

mented with the techniques of spontaneous symmetry breaking, this 

approach has been remarkably successful in explaining and correlating 

an enormous amount of experimental data. The role of the exceptional 

groups in this program is limited, but basic, namely to suggest that 
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the proper symmetry group is one of the five expectional groups. 

?n principle, these two structures based on the exceptional groups 

are not necessarily distinct, for one might hope that they fit together 

with the fundamental algebraic structure supplying a finite dimensional 

charge space "lying over" every space-time point, in the manner, say, 

of a fibered manifold. To date, no one has been able to implement this 

idea, and the two structures remain distinct. 

The present talk will discuss both structures: 

(a) For the algebraic structure we will present a new model for 

charge space, a complex octonionic plane having the automorphism group 

E6,0 W(l), and realized by the reducible representation (27)$(27*). 

This structure is not a projective geometry and the associated quantum 

mechanics has new and unusual features; for example, the validity of 

the superposition principle is restricted, but without the existence of 

superselection rules[4]. 

(b) For application to the gauge symmetry approach we will abstract 

from this algebraic model two features: (1) the automorphism group of 

the structure will be taken as the gauge symmetry group, and (2) the 

dimension of the charge space will be taken to imply that fundamental 

fermions fill out two irreps of E6 o (the (27) and (27*)). In this way, 
, 

we obtain one of the current topless models for grand unification, 

which we shall discuss in some detail. 

II. The Complex Octonionic Plane 

A. Algebraic Preliminaries and New Algebraic Concepts 

The Jordan algebraic approach attempted to capture the essence of 



-4- 

the Hermitian matrix algebra of quantum mechanics by eliminating all 
-~ 

reference to the underlying wave function concept, by focussing atten- 

tion only on the algebraic properties of observables, and by eliminating 

the explicit use of the imaginary unit i. (This latter via the 

"formally real axiom": a2+b2=O=>a=b=0.) 

The axioms for a Jordan algebra were taken to be: (1) x*y = y*x 

(commutativity), and (2) (x2ay)*x = x2 l (y*x) (non-associativity). 1 

It is remarkable that this technique - which, by contrast to the 

Dirac approach, exchanges commutativity for non-commutativity and non- 

associativity for associativity - is essentially identical to standard 

quantum mechanics. The one exception, Mi, is the first known example of 

a quantum mechanics for which there is no Hilbert space, and no wave 
._ 

function. 

Although the Jordan program began in physics, most of the interest, 

and developments, in Jordan algebras have been in mathematics[5]; pro- 

gress here has led to fundamental changes in the basic viewpoints, 

changes which we will show are the key to developing the complex octon- 

ionic plane. Let us summarize now the two developments we will utilize: 

(a) the concept of a quadratic Jordan algebra[6], and the related 

concept of inner ideals[7]; and 

(b) the concepts of structuralgroup[8] and of Jordan pairs[9]. 

Consider first a quadratic Jordan algebra. The idea here is to 

model everything on the product: Ux(y) = xyx, taking (for example) an 

associative algebra. This new product is quadratic in x and linear in 

Y - rather than bi-linear as in the Jordan product. The axioms for 
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quadratic Jordan algebras were given by McCrimmon: 
-. 

(Ql) UT. = Id, (42) UxVy,x = Vx yUx, 
, 

(43) 'Ju (y> = UxUyUx , 
X 

where V x,y(z) = (U,z-Ux-Uz)(y) and I is the unit in J. 

These axioms no doubt appear very complicated, and it is not clear 

that they really constitute a step forward! This is indeed the case, 

however, since: 

(1) Nothing is lost - quadratic Jordan algebras are categorically 

equivalent to linear Jordan algebras whenever the latter are defined. 

(2) There is a structure theory for the quadratic algebras which 

is closely analogous to that for associative algebras. 

Let us explain this last point. For a physicist the Jordan ap- 

proach is unhandy largely because it banishes the concept of wave 

function (more precisely, bra and ket vectors). In mathematical terms 

the concept of a ket vector is the concept of a (left) ideal, a subset 

N of the associative algebra A such that: A l n C N if n E N. In a 

non-associative algebra there is no such concept at all. What replaces 

it is a concept that exists only in a quadratic algebra: the concept 

of an inner ideal, a subset M of a quadratic algebra J such that: -- 

Ux(J)CM if xEM. 

The projective geometry of the space of n-tuples over-a field F 

(in physical terms an n-component wave function) is isomorphic to the 

geometry of left ideals in the (associative) algebra of nxn matrices 

over F. For quadratic (non-associative) algebras, inner ideals play an 

equivalent role in the construction of geometries: the geometrical 
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objects are identified with inner ideals, and the incidence relation is 

automatically given by set containment[7]. Actually the geometrical 

objects are better identified with the principal inner ideals, that is, 

the inner ideals B generated by a single element b in J: Ub(J) = B. 

The principal inner ideal plays the same role, in quadratic Jordan 

algebra, as that of the (one-sided) ideal (bra or ket vector) in the 

associative case. 

Consider the second conceptual development: the concepts of a 

structural group and Jordan pairs. The automorphisms of a given physi- 

cal structure are a well-known approach to the intrinsic properties of 

the structure. For an algebra, one studies the automorphisms which 

preserve the algebraic laws; accordingly, such transformations always 

map the unit element into itself. ._ 

How could one change the unit element? If u has an inverse, let 

us replace the product xy in an associative algebra A by: -1 xy+xu y. 

The new unit element and its inverse are easily computed: 

1 (4 = u,x -l(u) = ux-lua 

For associative algebras this new algebra A (u> is , in fact, iso- 

morphic to A but, remarkably, for non-associative algebras this shift 

of the unit can produce a different algebra. Such a new algebra is 

called an isotope J(u) of the original algebra J. 

The desire to study not only the Jordan algebra J but all its iso- 

topes as a single entity leads to the concepts of structural group and 

of Jordan pair. The structural groueJ Str(J), is the group of iso- 

morphic mappings of a Jordan algebra J and its isotopes onto itself. 
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The automorphism group Aut(J) is the subset of such mappings fixing the 
'-. 

unit element. 

To get an intuitive understanding of the Jordan pair structure, 

note first that a Jordan algebra may be considered as a way to multiply 

synnnetric matrices. Similarly, the Jordan pair is a way to multiply 

rectangular matrices: let V+ be the set of mxn matrices and V- the set 

of nxm matrices. Then the quadratic product: Ux(y) = xyx, xc V', 

y E Vi is the desired multiplication. 

The axioms for the Jordan pair V = (V+,V-> have been given by 

Loos[9]: 

JPl) V + x BY -Ux+ = Ux+V - y 3x+ 

JP2) V 
ux+y-,y- = vX+ ,uy-x+ 

JP3) U = 
ux+y- 

ux+u ,u + 
Y x 

where 

vx+,y- (Z+) = ‘ux++z+ - ux+ - Uz+) (y-1 

the same holding with the signs interchanged. 

We can also get a Jordan pair by doubling a Jordan algebra, that 

is, + we take V = v- = J and the same quadratic map U defined on J. This 

is the construction used for the complex octonionic plane, below. 

If J is a Jordan algebra and V = (J,J) is the Jordan pair obtained 

by doubling J, then there exists a one-to-one correspondence between the 

structural group of J, Str(J), and the automorphism group of V, Aut(V). 

Jordan pairs are strictly related to three-graded Lie algebras[lO]. 

Any three-graded Lie algebra L = Ll + Lo + L-l([Li,Lj] C L. l+j ) can be 
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obtained from a Jordan pair and, conversely a Jordan pair can be obtained 

from-L by setting: 

L1 = v+,L-, = v-,vx+ ,y-b+) = 1 

The map U is then obtained by: 

ux+(Y-) = % vx+,,-(x+) l 

[x+,Y-1 , z+1 * 

We will obtain the complex-octonionic plane by a three-grading of 

the (complex) Lie algebra E7; this yields the pairing of a complex M8 3' 

The construction of a quantum mechanics over a complex octonionic 

plane was begun by Giirsey[3], but without using the concepts of inner 

ideals or Jordan pairs. Let us indicate how these new concepts afford 

a more natural approach. 

First recall that the work of Jordan, von Neumann .and Wigner, was 

categoric; within their axioms M8 is the only possible new quantum 3 
mechanics. Thus to go further one must drop one (or more) of their 

axioms: in the present case we drop the axiom of formal reality. The 

price one pays for this (in a direct approach, such as in Giirsey) is 

that the elements of the algebra become complex octonionic 3x3 matrices, 

which are Hermitian only under octonionic conjugation, but not under 

complex conjugation. This destroys at once the raison d'etre for the 

Jordan algebraic approach, that is, the study of alpebras of observables! 

The use of Jordan pairs nicely remedies this difficulty: the pair 

consists of two complex M8 3 structures, and the concept of observable 

becomes the concept of Hermitian pairs[4]. 

Similarly the use of Jordan pairs allows one to take over the 
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language of inner ideals and, equally importantly, the concept of a 
CI 

Peirce decomposition. It is through this latter concept that we are able 

to achieve, in a natural way, an orthocomplementation for the complex 

octonionic plane[4]. 

B. The Explicit Construction (cf. Ref. 4) 

(1) We consider the Jordan pair obtained by doubling the Jordan 

algebra J of 3x3 Hermitian matrices over the complex octonions. 

(Hermiticity is considered with respect to the octonions only.) 

where the bar is the 
octonionic conjugation 

with ai $; a,b,c E %? (Cayley) over complex scalars. 

The Jordan product is the symmetrized product: x-j; = %(xy + yx) 

for x,y e J, with xy the ordinary matrix product of x and y. 

The quadratic operator defining the pair structure is 

u uy-” = tr(xo,y-o)x' - x oil Xy-o 
X 

where o = 2 distinguishes the two copies of J. Here we have used the 

definitions: 

tr(x,y> = tr(x*y> 

I/ 2 
X =x - x tr(x> - Q(tr(x2> - tr(x)2) 

xxy = (X-j-y) fl-xfLyij = 2x-y-xtr(y)-ytr(x)-I(tr(x*y)-tr(x)tr(y)) 

where I is the identity in J. 
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(2) An element (x,y) of the Jordan pair is an idempotent if 

ux (y) ‘“= x and V,(x) = y. 

Corresponding to an idempotent (x,y) one can define the Peirce 

decomposition of the algebra with respect to the pair (x,y). The space 

V = (J,J) is split into three subspaces: 

v= 5 + v1 + V()’ 'i = (v;,v;) . 

Without entering into the details, we give, as example, the Peirce de- 

composition with respect to the idempotent (El,El), where: 

we get 
0 

0 
0 0 
0 0 1 

0 0 \ 
0 0 
0 01 

%T @ 

0 

0 

0 0 ) 

0 o\ 

4 w 

@ 4 1 

It is possible to prove that Vy and Vi are principal inner -ideals. We 

say that two non-zero idempotents are orthogonal if one is in the Vo- 

space of the other. An idempotent is primitive if it cannot be written 

as the sum of two orthogonal idempotents. It is possible to prove that 

a primitive idempotent (x,y) satisfying the normalization condition 
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tr(x,y> = 1 can only have the form: 
-, 

y = x* f with x = 0 

where * denotes the complex conjugation. 

(3) The geometry. Given a primitive normalized idempotent 

x= <x+,x-> , we associate to it: 

i> a point x 0 = v2w; 

ii) a line x0 = V 0 (x). 

The incidence relation in this geometry takes the form: 

xm is incident to y" when V2(x) c Vo(y) . 

This plane has been investigated in [4], where a quantum mechanical 

interpretation has been given. It belongs to the class of the so-called 

Hjelmslev-Moufang planes[ll], and is not a projective geometry. There ._ 

are lines in it, in fact, which do not intersect in a point but in a 

5-dimensional manifold of points, which obey a relation called con- 

nectedness. The existence of connected points is due to the fact that 

the underlying algebra of the complex octonions is not a division 

algebra. 

(4) The fact that the primitive normalized idempotents are the 

proper elementary objects (pure states) implies an important restriction 

on the structural group of J (the automorphism group of the Jordan pair 

v> l We must require for the physically interesting transformations to 

map the set of all primitive normalized idempotents onto themselves. 

The structural group of J has 79 generators, coming from the three 

grading of the complex Lie algebra of E7. Of these 79 generators, 78 

form the complex Lie algebra of E6 and 1 is the generator of complex 
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scale changes. 

The requirement that the primitive normalized idempotents map onto 

themselves implies that we get the compact real form: E 6 oNJ(l), as the 
3 

physically interesting automorphism group. We can prove the following 

important results[4]: 

a) The group E6 o acts transitively on points and on triples of 
, 

mutually orthogonal points; 

b) The maximal subgroup of E6 o leaving a point invariant is 
f 

so(lo)xu(1); 

cl The complex octonionic plane is the homogeneous space 

E6 o/SO(lo)xU(l). 
, 

III. A Model for Grand Unification Abstracted from the Complex Octonionic 
Plane ._ 

The use of exceptional groups as gauge groups in Grand Unified 

Theories (inelegantly called GUTS) is very actively pursued at the pre- 

sent time, and we can do little more than give a suggestion of this 

large field2, calling attention to the papers on GUTS by Serdaroglu, 

by King and by Sorba at this conference. We have seen that the auto- 

morphism group of the complex octonionic plane is E6 oXU(l), realized 
, 

on two irreps (27) and (27*) of E6 o. Abstracting this structure as a 
, 

model for gauge group symmetry, we obtain precisely the topless E6 

model for GUTS, currently studied in the literature[l5]-[19]. We will 

discuss briefly how such a model exemplifies grand unification, and how 

this model in particular fits current data. 

The basic idea of grand unification, as is well known, is to embed 
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the standard model for the strong and electro-weak interactions: 

SU(3) =olorxsu(2)weakxU(1)EM in a simple3 Lie group G, using the Higgs- 

Kibble mechanism to spontaneously break the symmetry, first to hadro- 

electro-weak, and then to the SU(3)cxU(l)EM, the absolutely valid gauge 

symmetries. 

The first model[20] for a GUT used the group SU(5) and had some 

immediate successes: predicted the Weinberg angle (sin2eW) and the 

b-quark to -c-lepton mass ratio[21], as well as implying a finite lifetime 

for the proton[22]. 

More interestingly this model led to the concept of fermion 

families (of left-handed two-component fermions) using SU(5) irreps: 

family = (5*) + (10) [SU(5)-irreps].. 

electron family = pjL , a;} + [($;L , g , $i 

muon family = [pL , Q; I+ \(;qL , "; , 'iR; 

tau family = I( I'), , ^bai + [(gL ) t$ , CR/ - 

where: istands for the 3 colors, $, = io2$i (transforms as left-handed) 

and ( ) denotes a weak SU(2)w doublet, the rest being singlets. 

These three families comprise 45 left-handed fermions, for which 

there exists good experimental evidence for all but the t-quark (6 

left-handed states). 

The "standard model" consists of these three ("superfluously 
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replicated") families, unified (at least partially) by N(5). (The use 
--> 

of a reducible representation is required to eliminate triangle anomalies). 

The grand unification scheme leaves the choice of the gauge group 

as an arbitrary element. The exceptional groups have several features 

which make them most attractive as gauge groups for this type of model 

building4: 

(1) We have already noted the unique algebraic and geometric 

structures with which the exceptional groups are associated; this could 

conceivably be fundamental. 

(2) The exceptional groups, as also noted, provide (through the 

octonions) a natural explanation of the otherwise mysterious origin of 

SU(3p010r. Of the five exceptional groups, the two smallest, G2 and F4, 

are eliminated as candidates for grand unification. [G‘ because it is 
2 

too small for a flavor structure; F4 because it leads to an unacceptable 

Weinberg angle, as well as too small a flavor group SU(3>f10nly).] 

This leaves only the E-series as possibilities. 

(3) The universality of the quark and leptonic weak and electro- 

magnetic charges, as well as ,the l/3 integral charges for the quarks, 

are consequences of the group structure[24] (assuming leptons to have 

charge 0, + 1 only). 

(4) For E6, the flavor group is SU(3),xSU(3)RxSTJ(3)c~which pro- 

vides a natural explanation for chiral symmetry and an intrinsic lepton- 

quark-antiquark symmetry[25]. 

(5) The E-series of exceptional groups consists of E6, E7 and ES. 

By removing nodes from the Dynkin diagram of E6' one may define[l5] 



-15- 

"continuations of the E-series" which are isomorphic to classical 

grouts. Thus one finds: 

i i i -t .-.-.-. .-.-. .-.-.A.-. 
E6 'lE5" QJ SO(10) 'lE4" 'L SU(5) 

+ .-.-.-.v. 

"E' " 5 Q su(6) 

It is interesting that all of these groups have been proposed for 

GUTS: SO(10) by Fritzsch and Minkowski[26]; SU(6) by Segre and 

Weldon[27]; and SU(5) by Georgi and Glashow[20]. 

(6) The exceptional groups are all triangle anomaly-free (since 

they all haveno third rank Casimir invariant). 

(7) As many have emphasized, if the t-quark is not discovered, 

the exceptional group E6 affords the most natural explanation, with the 

fundamental fermions belonging to a reducible representation of two 

27's. The complex octonionic plane, as we have noted, leads to an 

explanation of the need for precisely two 27-plets. 

03) If, on the other hand, the t-quark is discovered the excep- - 

tional group E6 can still be used, by taking the fermions to lie in a 

reducible representation of three 27's (one for each family). This will 

work, but there is no explanation of why precisely three generations 

enter. 

Let us indicate in more detail how the fundamental fermions fit 

into the scheme of two 27-plets as suggested if the internal space is 

modelled on a complex octonionic plane. The flavor-color sub-group 
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reduction is given by: 
c1 

E6 3 SU(3)LWJ(3)RxSU(3)co10r 

+ su(2)~eakxSU(2)~utra1xu(~)SMxsu(3)~olor . 

The fundamental irrep (27) splits: 

(27) = (3*,3,1=) + (3,1,3=) + (1,3*,3*=) . 

leptons quarks antiquarks 

One can easily comprehend the lepton assignments from the "nonet" 

diagram, Fig. 1. In the diagram a solid line indicates a weak SU(2) 

doublet and a dotted line indicates a "neutral SU(2)" doublet. 

The lepton symbols in this diagram have their usual meaning, with 

N being a new SU(2)w singlet neutral lepton. 

The quark assignments (3,1,3') are given by a (SU(2)w) doublet and 

a singlet of left-handed colored (i) quarks: 

i 
U ( 1 di L 

, b; 

and the anti-quarks (1,3*,3*') are given by three left-handed SU(2)w 

singlets: 

. 
(Under the neutral SU(2) subgroup 2: and $i form a doublet.) 

There is a similar assignment for the second irrep5 with the sub- 

stitutions: e+p, ~+t',N+N',u+c, d + s and b + h (where h is 

a (heavy) charge -l/3 quark). 

How well does this model fit the presently known data? 

(1) All currently known leptons are accommodated. The model 
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predicts a sixth quark (h) with charge -l/3, a fourth charged lepton 

CT) f -> and several neutral leptons (some massive). 

(2) The (unrenormalized) Weinberg angle is: 2 
(sin ew) = 3/8, which 

is satisfactory. 6 

(3) Proton decay can be accommodated either way. (Since 27 and 

27* enter, a mechanism discussed by Gel.l-Mann et a1.[24] can be used to 

stabilize the proton if desired.) 

(4) The scalar (Higgs) representations to be used in breaking the 

symmetry to effect the complicated mass structure of the fermions and 

gauge bosons is a very difficult problem and the subject of much current 

research [15],[16],[18],[19],[25],[30], The current consensus[l5] is 

that effective Higgs fields in the 27, 78,(induced)351' irreps can 

simultaneously give small left-handed neutrino masses/very heavy right- 

handed neutrinos, charged leptons and quarks with masses z GeV, suitable 

weak bosons (W',Zo) and superheavy leptoquarks - i.e., the desired 

scenario. 

(5) Weak decays of the b-quark is problematic and will be dis- 

cussed in the next section. 

The Neutral Weak Current Model of Georgi and Glashow 

The absence of the t-quark has led to a most interesting, but 

radical, speculation by Georgiand Glashow[31],[32] which i's of special 

interest in that it fits naturally with the model we have abstracted 

from the complex-octonionic plane. The problem is that the b and h 

quarks, which, as shown above, are SU(2)w singlets, have no weak inter- 

actions whatsoever except via mixing, (with the s,d quarks) and this 
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leads necessarily to unwanted flavor-changing neutral currents. 
'h 
To correct this, Georgi and Glashow suggested the reduction of the 

flavor group: su(3)Lxsu(3)R + SU(2)weakxSU(2)neutra1xu(l)EM, thereby 

introducing, besides the standard electro-weak group, a new neutral 

interaction, SU(2) neutral 
, which is taken to be an appreciably weaker 

CGN Q $ GF) type of weak interaction. Any mixing of the b-quark in 

this model is strictly forbidden. (Weak, right-handed, decays of the 

b-quark then occur through the 'dR 
t i 

SU(2) 
neutral 

bR 
doublet.) One pre- 

diction of this model is striking: the weak decays of the b-quark are 

semi-leptonic. 

Experimental data on the weak decays of the b-quark have now been 

reported[33],[34] based on the weak decays of the B mesons produced at 

the 4s upsilon resonance. The results are quite clear:-- b decays 

primarily to c, as in the standard model, and the SU(2)neutra1 model 

of Georgi and Glashow is ruled out. 

Although all models without a t-quark - such as the complex octon- 

ionic plane discussed here - are in trouble, the data cannot yet rule 

them out. Achiman[l7], in a preliminary analysis of the data, shows 

that the E6 model based on two 27's can still be made to fit, using a 

carefully controlled mixing of the b,s,d,h quarks. 7 

Whether or not this particular E6 model is satisfactory for a 

grand unified theory should be definitely settled in the near future. 

If, as appears likely, this model is indeed ruled out, we still would 

claim that the complex octonionic plane itself is of interest. The 

unusual features of this plane, achieved within the framework of a 

quantum mechanical interpretation, are intriguing enough to merit further 

investigation. 
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Footnotes 
'-~ 

1. The role of this second axiom is exactly the same as the Jacobi 

axiom in Lie algebras; it ensures that one has an integration pro- 

cess (the Jordan analog to the Baker-Campbell-Hausdorff identity). 

2. A computer search (SPIRES), notedinarecent GUTS review by 

Goldman[l2], yielded over a thousand papers. Other recent reviews 

are by Slansky[l3] and by Ramond[14]. 

3. Semi-simple GxG with a discrete symmetry is also used. 

4. Okubo[23] has recently proven the uniqueness of SU(5) and SO(10) 

for GUTS. His explicit assumption that all Q = +l leptons are weak 

isospin singlets results in eliminating the E-series of exceptional 

groups from the start. 

5. The second irrep is a 27* which we interpret physically as a right- 

handed fermion family. More precisely, the 27* irrep is inter- 

preted as the CP conjugate of a left-handed family (so that we 

effectively have two 27 irreps). The E6,0 structure permits C to 

be defined[28] by the subgroup having Cartan index = 2,[29]. The 

CP operation corresponds to the (unique) "unfolded" subgroup of 

Cartan index = 6, for E6 o (in general, CP corresponds to the sub- 
, 

group of Cartan index = rank of simple group). 

6. sin20 
W 

is a group invariant, since it is defined by the relative 

normalization of the weak isospin generator (IT) to the EM charge 

generator (Q) in the unifying group algebra. It does not follow 

that sin2ew is a property of the group, since it depends on how 

the SU(2)w and Q are embedded. 
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7. Professor R. J. Oakes (private communication) points out that the 

more recent data tend to disagree with Achiman's fit. See also 

the recently published paper[35]. 
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