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ABSTRACT 

We report on the observation that the restriction of the indices 

lE(R)[ L 1 (solitariness) for massless composite fermions in an 

su(3jc x SU(NjL x SU(N)R x U(1) model does not allow any solution to 

't Hooft's anomaly conditions. Arguments for solitariness are discussed 

and possible consequences for models of composite quarks and leptons are 

presented. 
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Recently 't Hooft' has proposed a set of consistency conditions 

which must be satisfied by the massless composite fermions in a strongly 
-~ 

interacting gauge theory. The conditions are a consequence of an 

unbroken chiral symmetry. They are of two types. The first is a set of 

anomaly conditions, which require that the massless composite fermions 

give the same contribution to the triangle anomalies of the chiral 

currents as the fundamental fermions in the theory. These conditions 

have recently been proven to be a direct consequence of analyticity and 

2 unitarity . The second set is suggested by the decoupling theorem of 

Appelquist and Carrazone3 but is not a direct consequence of this 

theorem. They instead follow from the "persistent mass hypothesis" 

suggested by Preskill and Weinberg. 4 

The persistent mass hypothesis (PMH) states that the massless bound 

state solutions of the anomaly conditions obtain a small mass of order 

m when any of the constituents is given a small bare mass of order m. 

PMH can then be used to derive a new set of conditions for massless 

composite fermions by a simple continuity argument (most clearly 

presented by I. Bars5): Given a solution to the anomaly conditions 

for the full chiral symmetry group G, one then introduces a bare mass 

par-meter M << A, for some subset of fundamental fermions, which 

explicitly breaks G to a subgroup G'. One then demands that the 

remaining massless bound states (consistent with PMH) are a solution of 

the anomaly conditions for the unbroken chiral group G'. 't Hooft has 

shown that as a consequence of these two sets of conditions the chiral 

SU(N) 0 SU(N) flavor symmetry of QCD must be spontaneously broken. This 

follows directly from the fact that there are no simultaneous solutions 
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to these conditions. 1,495 This is such an extraordinary result that 

every part of the argument should be well understood. However, the 
.-~ 

second set of .conditions following directly from PMH is crucial for the 

conclusion and is unfortunately not on as firm a footing as the anomaly 

conditions. Let us elaborate: (i) There are known solutions to the 

anomaly conditions alone for QCD and for example chiral SU(2) @ (SU(2) 

or SU(4) OSU(4); (ii> It is not unreasonable to believe that composite 

fermions may remain massless even though their constitutents have small 

bare masses (i.e., %are << h QcD>. Moreover, when mbare = AQcD 

the theory undergoes a phase transition such that for mbare " AQCD 

the composite fermions containing these massive constitutents become 

massive as required by the decoupling theorem. There are known 

examples which exhibit this behavior, one being a Jona Lasinio type 

model of Ref. 4. A second one is due to Savas Dimopolous.-which shows 

that the behavior of (ii) appears naturally in a renormalizable model. 

We will reproduce this model in Appendix B. 

This criticism led Preskill and Weinberg to the conclusion that it 

is still an open possibility that the chiral synmetries of QCD are 

unbroken. 

On this note we would like to suggest the following "hypothesis of 

solitariness" as an alternative. We propose that the index R(R) of the 

representation R of composite fermions should only take on the value +l 

or zero. This index can in principle take on any integer value. We 

recall that it corresponds to the multiplicity of massless states with 

identical Lorentz and SU(N) x SU(N) x U(1) quantum numbers. Thus, if, 

for a particular representation R, la(R) 1 = n with n > 1, we have the 
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situation that at least n - 1 (orbitally or radially) excited states are 

required to be massless. This, however, contradicts the common belief 
'-~ 

that the excited states should rather have a mass of the order of the 

binding scale. 

In nonrelativistic boundstate systems where one can define the 

concept of a boundstate wave function it can usually be shown that 

groundstate and excited states are nondegenerate. The systems con- 

sidered in this paper are, however, extremely relativistic and these 

arguments do not apply. 

The only relativistic model we know of, where these questions could 

be studied is two-dimensional quantum-chromodynamics in the l/N- 

expansion. It turns out that in this model the concept of a wave 

function can be defined in the infinite momentum frame and it turns out 

that excited states are massive, even if the.groundstate i‘s massless. 

Although we cannot prove this in general for relativistic systems we 

nonetheless consider it as a reasonable assumption. This then leads us 

to the condition of solitariness. 

We now apply this condition QCD: SU(3)c x SU(N)L x SU(NjR x U(1) 

where N-1 3. There are five indices possible for the nonexotic states 

discussed and the anomaly conditions can be written as (see Appendix A 

for details) 

XN2 + YN + 32 = 0 (1) 

XN2 + %!N + Z = 0 (2) 

where X, Y, C are functions of the indices. Instead of inspecting these 

two equations it is convenient to consider first the difference of the 

two equations 

(Y - ?)N + 22 = 0 (3) 
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It can then be shown that there are no simultaneous solutions to the 

anomaly and solitariness conditions. The proof is given in Appendix A. 
-~ 

As a consequence we might conclude that in QCD, the SU(N)L x SU(N)R 

chiral symmetry must be spontaneously broken. We have to mention here 

that the proof in Appendix A only considers nonexotic boundstates. The 

inclusion of exotics (e.g., qqq?jFj) as candidates for massless fermions 

would require an extension of this proof. We do not however feel 

strongly about this possibility. 

A proof of a similar result for models of the type SU(n) X SU(N)L 

SU(NjR X U(1) for n = 2R + 1, R 2 2 is exceedingly difficult to obtain. 

Studies of n = 5, however, seem to indicate the result to be true for 

this case as well. Should the result (that all solutions to the anomaly 

conditions violate solitariness) be true for general n, this could have 

consequences for models of composite quarks and leptons based on the 

SU(N) x SU(N) chiral structure. The only way in which these models 

could make sense is the identification of R(R) = k > 1 with the number 

of generations. One would then have to interpret for example the v and 

the r as excited states of the electron, and these particles would be 

degenerate in the chiral limit. 

In order to arrive at a realistic model one would then first 

encounter the problem of lifting this mass degeneracy. This is difficult 

since there are no quantum lnumbers that distinguish between these three 

states. But even if it would be possible to invent such a mechanism one 

would then have to face the situation that in general i- -f e-y transitions 

would be allowed at too large a rate. 
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We 'conclude with the remarks that our result has only been proven 

for n = 3, and it is still a question if it holds for n > 3. In view of 
-~ 

the speculation6 that generation number comes from a discrete subgroup 

of an anomalous U(1) it would perhaps be worthwhile to try to extend our 

proof including exotics. 

Our main result is, however, the observation that the condition of 

solitariness (in connection with the anomaly condition) is sufficient to 

prove spontaneous chiral symmetry breakdown in QCD. 
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APPENDIX A 

Consider SU(3jC X SU(N)L x SU(NjR x U(1) with the fundamental 

fermions in the representations (N > 3) 

The following list of ten representations are the possible spin l/2 

nonexotic SU(3jL singlet boundstates (compare Ref. 1) 

r19 R1 IL/LILI ‘6’ -R1 fiqiqq 

r3’ kg pJ x (RIRJ 

LL 
‘5’ &5 L 87 

where r . . . 1 r 
5 are left-handed and r 

6 

‘8’ -R3 j-g x m 

. . . r 1o are right-handed. 

Rl . . . R5 are the indices of the representations r 1 to r 5’ Note 

that the indices of r . . . r 
6 are -R 1, . . . , -R 

10 5. We now 

compute the chiral anomalies, It is sufficient to consider the 

anomalies A corresponding to triangle graphs of three SU(N)L.currents, 

and A corresponding to the triangle graphs of two SU(NIL and one 1 

U(1) current. 

The fundamental fermions have A = 3 and A1 = 1. The composites 

have: 
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A(rl) = (N + 3)(N + 6) 
Al(rl) = (N + 2)(N + 3) 

2 2 

--&?) = (N - 3)y - 6) 

N(N + A(r3) = 2 1) 

Al(r2) = (N - 2)(N - 3) 
2 

A cr ) = N(N + 1) 
13 2 

Al(r4) = N(N2- ') 

A(r5) = N2 - 9 Al(r5) = N2 - 3 

A(r8) = N(N + 4) Al(r8) = N(N + 2) 

A(rg) = N(N - 4) AI = N(N - 2) 

Thus we have the following anomaly conditions: 

A= Rl R2 
3 = 2 (N + 3)(N + 6) + 2 (N - 3)(N - 6) 

+ R5 (N2 - 9) + R3 ( 
N(N + 1) 

- 2 N(N t 

+ R N(N - 1) - 4 2 N(N - 4)) 

Al = 1 % = 2 (N R2 + 2)(N + 3) + 2 (N - 2)(N - 3) 

+ R5 (N2 - 3) + R3 (N(N ; ') - N(N + 2) 

+ R 
4 ( 

N(N - 1) _ N(N 
2 

We rewrite these equations in the form 

and 

where 

XN2 + YN + 32 = 0 

XN2 + ?N + 2 = 0 

(A.l) 

(A.2) 

x= Rl + R2 - R - 3 R4 -I- 2R 5 

y = 9a - - 1 9a 2 7R3 + 7% 4 
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? = 5a1 - 5R2 - 3R3 + 3k4 

and 
-~ 2 = 6R1 + 6R2 - 6R5 - 2 

We first consider the difference of the two anomaly conditions 

(Y - !?)N + 22 = 0 (A.3) 

which leads to 

N(al - R2 - R3 + X4> = 1 + 3L5 - 3Rl - 3R2 

We now demand the condition of solitariness: Ri = '1, 0 and define 

A = Rl - R2 - R3 + R4 

B = 1 + 3R5 - 3R1 - 3R2 

Inspection of (A.31 and some algebra tells us that there are only 

possible solutions of (A.3) for IAl = 1, 2 and N = 4, 5, 7, 8, 10 that 

fulfill solitariness. It can however be shown that all these solutions 

do not solve (A.11 and (A.2) separately. We have thus shown that there 

are no solutions that simultaneously fulfill the anomaly constraints and 

the condition of solitariness. 



We here give details of 

an SU(5) x U(1) gauge theory 

Fermions are chosen to be in 

-ll- 

APPENDIX B 

the model of S. Dimopoulos. It is based on 

where SU(5) is strong and U(1) weak. 

the following representations: 

(5, 0); (10, 1); (10, 0); (10, 0); (24, -3/10) and (1, Q) where Q should 

be chosen to cancel the U(l)3 anomalies. 

We first discuss the broken picture 7,S and assume condensation in 

the maximally attractive channel. As a consequence, 24 will self- 

condense and become heavy of order h 
5' At the next step we have 

two possibilities of condensation 

a) (10, 0) x (10, 0) and (10, 1) x (10, 1) 

b) (10, 0) x (10, 1) and (10, 0) x (10, 0) 

Subgroup alignment calculations' favor solution b) since there the 
._ 

U(1) gauge group is broken less strongly. We now turn to the symmetric 

picture7'8' From the analysis in Ref. 7 we know that there is one 

massless composite fermion in the game. In case a) this would be 

(10, 1) x (10, 1) x Its, 0)3" and in case b) (10, 0) x (10, 0) x [(?, O>l*. 

We assume solution b) to be realized because of the mentioned subgroup 

alignment considerations. 

Now suppose we give a small explicit mass m[(z, 0) x (10, 0)] to 

the fundamental fermions. This mass will compete with the U(1) coupling 

c1 in the subgroup alignment problem but we choose m small enough, such 

that the solution b) is still favored. The boundstate 

(10, 0) x (10, 0) x (Y, 0) now contains massive constituents, but is 

still massless. Thus this example violates the persistent mass 

hypothesis. 
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Sup'pose that we now increase m. We do not know what happens in an 

intermediate region, but we know what will happen for m >> h5. If m is 

that large the alignment will switch to solution a> since (10, 1) and 

(5, 0) are the only low energy states. Thus (10, 1) x (10, 1) 

condensation will occur. This could lead to a massless composite fermion 

of the type (10, 1) x (10, 1) x (3', 0). We thus have the very 

interesting possibility of a phase transition at a certain value of m, 

which doesn't change the low energy spectrum. In both phases there will 

be a massless composite fermion. In one of the phases this fermion will 

consist of massive constitutents. 


