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ABSTRACT 

We describe a formalism which allows us to regard the quantum- 

mechanical state vector as developing solely according to the Schrbdinger 

equation and not being subject to any reduction or collapse upon measure- 

ment. On the other hand our relationship, as observers, to the state is 

revised upon our learning the results of measurements. By introducing 

joint probability operators, whose expectation values in the unreduced 

state yield the probabilities of obtaining specified measurement results 

sequentially, we are able to reproduce the predictions of orthodox 

quantum theory for all testable quantities. 
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1. Introduction 

According to standard quantum measurement theory,l if, on a 
-~ 

system in a quantum mechanical state I$), a measurement of an ob- 

servable A is made which yields the value a., the state is reduced 1 

to an eigenstate Iai) which is the normalized projection of I+) onto 

the subspace of eigenstates corresponding to the eigenvalue aia2 

This reduction may be held to be either a physical, objectively 

real, process or a mental action on the part of the observer who is 

updating his knowledge of the system by means of the measurement 

and consequently modifying his description of it. For reasons out- 

lined below, we find neither alternative particularly satisfying. 

Apart from the non-physical (or physical but unexplained) 

nature of the reduction process, there is another unpleasing as- 

pect. In the language of the Statistical Interpretation of quantum 

mechanics,3'4 which holds that I$) d escribes a conceptual ensemble 

of similarly prepared systems, the reduction from I$) to la.) might 1 

be thought of as filtering out, from the ensemble of systems de- 

scribed by I$>, the sub-ensemble carrying the value a i for A, and 

described by lai).4'5 By implication, there are other sub- 

ensembles corresponding to the other eigenvalues of A. However, 

this view is not tenable, for it is well known that a pure state 

ensemble contains no statistically distinct sub-ensembles corre- 

sponding to pure or mixed quantum states. Consequently the mea- 

surement cannot be thought of as simply filtering out those members 
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of the'state ensemble corresponding to the eigenvalue ai; a new en- 

semble must be formed.6 .-~ 

These unsatisfactory features of the reduction process have 

stimulated us to develop an alternative viewpoint which does not 

require the reduction of the state but which leads to quantum- 

mechanical predictions identical with those of the orthodox analy- 

sis. 8 We choose to think of the state vector as describing, per- 

haps incompletely, an objective reality rather than a state of 

knowledge about a system. The objective reality is revealed to us 

through measurement of observables. We like to think that the 

choice of observables to be measured is freely ours, whereas the 

state of the system develops according to a well-defined equation 

of motion, the Schrzdinger equation, at all times. We find it 

more satisfying to think of the state in this way, with the dis- 

continuity being not in the state but in our predictions about 

future measurement outcomes upon our gaining new information from 

the current measurement. 

Our attitude may be illustrated by a simple analogy. Assume 

that we are called upon to perform repetitively a task involving 

some skill. We may initially predict that it will take ten min- 

utes, but find that it actually takes us twenty the first time. 

We then predict that it will take seventeen minutes the second 

time, but find it takes eighteen. Our prediction is then revised 

to sixteen minutes for the third time. Our predictions at each 

stage are modified by what we have learned; we would hardly suggest 
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that the task has objectively become easier, that as a consequence of 

our exertions it has become any easier for some other person to perform .-~ 

it. So, in the same way, we hold that it is not the state of the sys- 

tem that changes in a measurement (apart from the change described by 

the SchrGdinger equation), but the observer's relation to it. 

The testable predictions of quantum mechanics all involve statements 

of probability or linear combinations of probabilities. Each such prob- 

'ability is expressed in the theory as the expectation value in the rele- 

vant state of some projection operator, which could therefore be described 

as a probability operator. Thus the probability that in a state I+> 

measurement of A will yield the value ai is 

Pr (ai) = ($]~(a,> I$) 

where the probability operator II is simply the projection operator 

P (ai>. 

Our approach involves defining a joint probability operator 

n(f m ,...,bj,ai) whose expectation value in the state I+> (always 

unreduced) is the joint probability that the results ai,b., . . . , f 
3 m 

will be obtained in a sequence of measurements on a system in the state 

IL starting with a measurement of A and ending with a measurement of F. 

In Section 2 we define the joint probability operators and show how to 

calculate, in unreduced states, conditional probabilities which agree 

with probabilities calculated in the orthodox picture. For simplicity 

the time-dependence of the quantities involved is not discussed until 

Section 3. In Section 4 we examine a question which appears to lead to 

difficulties with the formalism: what differences, if any, are there 
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between'the predictions for the future of three observers, one of whom 

learns the result of a certain measurement, another of whom learns of 

the measurement but not the result, and the last of whom does not learn 

of the measurement at all? The difficulty is satisfactorily overcome 

by appeal to a basic property of the measurement interaction. In Section 

5 we note that the formalism is not suitable for calculating, following 

a measurement, non-testable quantities such as amplitudes. However, it 

was not set up for this purpose; rather, it isa supplement to the 

mathematical structure of vectors and operators and relations between 

them, desfgned to elucidate and demystify the relationship of state and 

observer. A final section emphasises this point and shows how state 

reduction may be regarded as being simply a notational and computational 

convenience, without physical significance. 

2. Probability Operators and Predictions 

Consider a system in a state I$) on which a measurement of an 

observable A Is made, yielding a value a., after which a measurement of 1 

B is made. The orthodox view is that the-measurement of A reduces or 

collapses IQ) to lai) and that the expectation value of B in the second 

measurement is 

i = (ailBlaf) l 

Similarly, the probability of the outcome b. in the second measurement is 
J 

Pr(bj) = (ai/? Iai> 

where P(bj) is the projector onto the subspace of the Hilbert space 

corresponding to the eigenvalue b.. 
J 



6 

Our view is that the probability of the outcome b. for the second 
J 

measurement, after a i has been found in the first, should be predicted 

as the conditional probability Pr(bjlai) expressed as the joint prob- 

ability Pr(b .,ai) in the first measurement and b in the 
J 

of finding ai 
j 

second, divided by the probability Pr(ai) of finding ai in the first, 

these probabilities being calculated as expectation values in the state 

I$) of suitably chosen probability operators II(b.,ai) and lI(ai). 
J 

Clearly the probability that the first measurement yields the value 

ai is 

Pr(ai) = ($(P(ai) IQ> ; 

leading to the identification 

II 2 P(ai) . 

The joint probability Pr (bj,ai) is the expectation value in the ._ 

state II/J) of the operator II(b.,ai) defined as 
J 

II(bj,ai) : P(ai) P(bj) P(ai) . 

This operator is hermitian and reduces to the more obvious form 

p(bj) P(ai) if P(bj) and P(ai) commute. The conditional probability 

Pr(bj/ai) is then given by 

Pr(bj/ai) = 
Pr(b. ,a,> 

Pr (ai> 
= w = (ailP(bj)(ai) , 

the orthodox result for the probability of finding the value b. for B J 

after a measurement of A yielding the value ai has reduced IQ) to lai). 

In particular, in two .successive measurements of A, Pr(ai/ai) = 1 as 

expected (neglecting the time-dependence of the state IQ)). By an 
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obvious extension, the expectation value of B conditional upon a prior 

measurement of A yielding the value a is -~ i 

ii ($IBtai) I+) 
jai = ($Ip(ai)l$) = (ailBlai) 

where 

B(ai) z P(ai)BP(ai) = C bj '(bj,ai) 
l 

j 

It is straightforward to extend this idea to a sequence of measure- 

ments, in the state I$), of A,B,...,E yielding values ai,bj ,...,e R' 
respectively, followed by a measurement of F. The probability of obtain- 

ing the value f m' following such a sequence, is the conditional prob- 

ability 

Pr(f, leg3 . . ..bj.ai) = 
Pr(fm,eX,...,b.,ai) (~/n(frn,eQ’“‘,bj,ai) I*> 

Pr(eR,...,bj,ai) = (@ln(e, , a. ..;bj pai> I+> 

where 

Ufm+R9 . . ..bj.ai) E P(ai)P(bj) .*. P(e,) P(fm) p(e,) "' P(bj) P(ai) 
* 

If both expectation values in the quotient are zero, the probability is 

zero, as this can only occur when the sequence of results a.,b 1 j,-**,eR 

is not possible in the state I$> (or, perhaps, in any state). Again, 

we obtain the orthodox result. 

Other testable predictions of quantum mechanics are of transition 

probabilities. Consider the transition probability from the state IQ> 

to the state 14); this can be expressed as the expectation value in the 

state I+) of the projector onto the state 14): 
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Following a measurement in the state I+> of A, yielding the value ai, 

the transition probability would be calculated by us to be 

which again agrees with the orthodox result using the reduced state 

vector jai). 

We see, then, that using unreduced states and joint probability 

operators we can reproduce the predictions of quantum theory in its 

usual form. 

3. Time-dependence 

Although in the discussion of the last section we assumed a time- 

ordering of the measurements of A,B,..., we should properly be more 

careful for, if the state is developing in time,.the actual moment 

at which each measurement occurs can be of importance. The time- 

development of the state is affected by interactions, in particular by 

those with the measuring apparatus(es). 

Let the A,B,... F measurements occur at (increasing) times 

t,,t ,...tf. b Then 

Pr(fm,tfleR,te; 

(+(t) l~(frn,tf;eR,te; l l . .; ai,ta) 1$(t)) 

. . . . ai,ta) = 

($(t) (n(eR,te; . . . .; ai’ta) 1$(t)) 

with 

n(fm,tf;ek,te; . . . . . a i,ta) = P(ai,ta).... P(ek,te)P(fm,tf) P(eR,te) 

. . . . P(ai,ta) 

and 

p(ai,ta) = U(t,t,) P(ai) u-l(t)ta) 
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where u(.t,ta) is the unitary time-development operator satisfying the 

SchrEdinger equation. This form will be found to agree with the orthodox 
.-> 

result once again. In particular, Pr(ai,ta,lai,ta) is close to unity, as 

expected, if the change in I$) between times t and t is small. The a a' 

implicit dependence on t of the Schrbdinger picture operators P(ai,ta) 

is a slightly unpleasant feature, as is the uncertainty as to what time 

t should be chosen at which to evaluate the expectation values (in fact, 

the choice is arbitrary). 

The expressions, as might be expected, look more natural when written 

in terms of Heisenberg operators 

nH(fm’tf; . . ..ai.ta) E PH(ai,ta) . ..PH(fm.tf) . . . PH(ai,ta) , 

where 

PH(ai,ta) = 

and the Heisenberg state 

However, despite the naturalness of the Heisenberg picture, we shall use 

the more familiar Schradinger picture in the next section when discussing 

the interaction of the system with the measuring apparatus. 

4, Possible Difficulties 

Consider our original two-measurement sequence: measurement of A 

then of B. Let there be three observers, 01, 02, and 03; the first 

learns that the first measurement yields the value ai, the second learns 

that a measurement of A has been made but not the result, and the third 

is not informed of the measurement at all. What are their predictions 
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for the'probability that the measurement of B will yield the value b.? 
J 

In analysing this question we ignore the time arguments ta, tb and also 

assume for simplicity that the A-measurement is able to distinguish 

between all possible values of A (if this assumption is not made the 

argument can be appropriately adapted). 

The first observer Ol calculates the probability of finding b. as 
J 

Prl(bj) = Pr(bjlai) = 
($lNb. ,a,> bJ9 

cq\nfa )I$) 
i 

= (aiIp(bj)lai) 

This probability must be interpreted as the relative frequency with 

which the result bj is obtained in a series of experiments in which the 

first measurement yields the result ai. 

O2 calculates the probability of finding b. in the second measure- 
J 

ment as the sum over joint probabilities for each possible outcome of the 

A-measurement 

Pr2(bj) = x.Pr(bj,ai) =c (‘!‘I’(bj’af)I’J’) 
i i 

= C (+/P(ai> I$)(aiIP(bj) Iai) 
i 

Naturally this probability is different from that calculated by Ol; it 

is the relative frequency with which the result b. will be obtained in 
J 

a series of experiments in which all values of A are accepted in the 

A-measurement. The difference between the two predictions is readily 

understandable and causes no problem. 

The apparent difficulty arises when we consider the prediction of 03: 

Pr3(bj> = ($ln(bj) I+> = ($IP(bj)l+) 
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which, in general, is different from the correct prediction of 02. IfiY 

should knowledge of the measurement without knowledge of the result give -~ 

O2 an advantage over 03? 

Actually we have been unfair to 03. For him to have a chance of 

making a correct prediction he needs to know how the (unreduced) state 

I$) has developed in time up to the B-measurement. Therefore he needs 

to know the details of the interaction with the A-measuring apparatus. 

But this is still not good enough, for, calculating with the given inter- 

action Hamiltonfan, he will find a pure state of the system, c ci(ai) 
i 

say, after the A-measurement and will use this to calculate Pr (b.). 
3 J 

However, for the measuring apparatus to be capable of distinguishing 

between all possible values of A, the state of (system + measuring 

apparatus) must, after the measurement, be a vector in the product 

Hilbert space of the form 

1’) = C Cflai)lmi) i 
with the Imi) mutually orthogonal measuring apparatus states.lY10 O3 

will calculate 

Pr3(bj) = c cqck (ailp(bj)lak) ' 
i,k 

but should have (and would have, if all details of the measurement inter- 

ted to him) calculated action short of the result had been reveal 

Pr3(bj> =C cc Ck (ail(mi 
i,k 

= c c; ci 
i 

( ai/P(bj) Iai> = Pr2(bj) 

where1 is the unit operator in the measuring apparatus Hilbert space 

of states. 
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Therefore, provided O3 is informed about the full state vector 1~) 

of (system + measuring apparatus) after the A-measurement, he will 
.-> 

correctly predict, together with 02, 

Pr2 3 (bj) = ('k'ln(bj)/Y) 
, 

where here II E II(bj The prediction is not conditional upon the 

A-measurement, although the time development of IYY> depends on the nature 

of that measurement. Notice that it is immaterial whether or not the 

result of the measurement has been noted by other observers; an observer's 

prediction is conditioned (modified) only when he learns a measurement 

result. 

Apart from measurement interactions there may be others which do not 

correlate mutually orthogonal apparatus states with the different eigen- 

values of A. Such interactions cannot lead to a measurement of A and 

affect predictions only to the extent that they affect the state vectors 

through the Schrbdinger equation. 

5. Limitations of the Formalism 

We note briefly that whereas our joint probability operators and 

unreduced states reproduce the orthodox predictions for testable quanti- 

ties, this is not the case for all quantum-mechanical quantities. 

For example, proceeding as before, we might suggest that the over- 

lap of IQ> with I$), following a measurement of A in the state II/J) yield- 

ing the value a i, is 

But in general this differs by a numerical factor (ail+) from the 

orthodox result (@lai). 
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There appears to be no natural way to reproduce such values in our 

formalism. However, this does not concern us, for we did not set out to 
*> 

incorporate all of quantum mechanics in it. Rather, it provides a way 

of calculating the testable predictions of the theory which allows us to 

think of the system (and any measuring apparatus) as developing strictly 

according to the equation of motion, and to see any discontinuous aspect 

of the measurement process as residing in the observer and his state of 

knowledge. 

6. Conclusions 

We have argued that it is consistent to think of the state of a 

system as being unreduced by the measurement process, provided predic- 

tions about future measurement results are modified in the light of 

knowledge gained. Probability operators were defined whose expectation 

values in the unreduced states could be used to compute such modified 

predictions, consistent with those of the orthodox treatment. 

With the state of the system un-reduced in a measurement of A, say, 

it might be thought that a repeated measurement of A need not yield the 

same result as the first. However, the formalism correctly predicts a 

high (or unit) probability of the same value recurring, if the state 

vector has changed only slightly (or not at all) from the time of the 

first measurement to the second. 

We have shown that provided the observer has full knowledge of the 

time-development of the system and any apparatus interacting with it, he 

is able to make predictions which need be discontinuously revised only 

when he learns the result of some measurement. If he does not learn 
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that result his predictions are not discontinuously revised, but in 

this case they refer to experiments which do not discriminate between 

the results that could occur in that measurement. There should be, of 

course, in either case, a continuous revision of predictions due to the 

continuous time-development of the state both between and during mea- 

surements. 

We make a final point. In a long sequence of measurements it very 

soon becomes notationally unwieldy to use unreduced states and joint 

probability operators. For convenience we can consolidate our knowledge, 

represented by the sequence of results a i,bj, 

state vector 

P(e,) . . . P(b.1 P(ai> IIJ> 

IIP(e,) . . . P(bj) P(ai> IJIYII ’ 

. . . e &, by using an updated 

IQ 

and joint probability operators from which the arguments.a.,b 1 j3-**ea 

have been removed. A situation in which the consolidation appears to be 

particularly appropriate is when, for example, our B-measuring apparatus 

is such that the system will not pass through it unless A has a particu- 

lar value, ai say. In such a case, conditional probabilities Pr(bjl a,), 

k # i, are not testable at all, and in the state I+) the second measure- 

ment is, strictly speaking, not one of B, but of B "localised" to a 

particular value of A. In thinking about this, it is helpful to take A 

as being a position observable. 

The orthodox view of measurement involves the consolidation we 

have described after each step in the sequence of measurements; from 

our point of view, however, it is nothing more than a convenience, and 

is without physical significance. 



15 

Of'what use is any of the foregoing? We suggest that, apart from 

offering a more satisfactory interpretation, already alluded to, of the 

relationship between the state of the system and the observer, it may 

be of some assistance to those seeking to construct hidden variable 

theories. Not only is there no sudden reduction upon measurement to be 

accounted for, but, because of its absence, any particular measurement 

process must now be characterized, and most naturally so, by the observ- 

ables which may be measured by it, rather than by the states to which 

the initial state may be reduced by it, as is more usual.' We have 

found this characterization to be of value to us in our own thinking 

about such a program. 

FOOTNOTES AND REFERENCES 

1. J. Von Neumann, "The Mathematical Foundations of Quantum Mechanics," 

Princeton Univ. Press, Princeton, NJ, 1955. 

2. F. J. Belinfante, "A Survey of Hidden-Variables Theories," Pergamon 

Press, Oxford, 1973. 

3. L. E. Ballentine, Rev. Mod. Phys. 42, 358 (1970). 

4. J. L. Park, Am. J. Phys. 36, 211 (1968). 

5. H. Margenau, Ann. Phys. 23, 469 (1963). 

6. The filtering notion may be restored to respectabi1ity.i.f one 

defines a reduced density matrix for the system alone by taking 

the trace, in the measuring apparatus subspace, of the density 

matrix for the (system + apparatus) (see Refs. 5, 7). The reduced 

density matrix for the system describes a pure state before the 



16 

measurement, but a mixed state after it; this mixture does have 

sub-ensembles and can be filtered. 
-. 

7. M. Cini, M. De Maria, G. Mattioli and F. Nicolo, Found. Phys. 9, 

479 (1979). 

8. A somewhat similar discussion embodying these features has already 

been given by Pearle (Ref. 9). 

9. P. Pearle, Am. J. Phys. 35, 742 (1967). 

10. F. Selleri and G. Tarozzi, Riv. Nuovo Cimento 4 (No. 2), 1 (1981). 


