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ABSTRACT 

This paper discusses the theoretical basis of variational algo- 

rithms for thinning degrees of freedom in a lattice Hamiltonian theory. 

We show that such a thinning can--in principle--be an exact real-space 

renormalization group transformation to a lattice with fewer sites. 

This exact transformation can only be constructed given the exact ground 

state of the theory. However, this insight teaches us how to signifi- 

cantly improve previous variational algorithms. Further improvements in 

ability to calculate quantities of interest is achieved by introducing 

"look-ahead" algorithms which allow us to maintain a renormalization- 

group interpretation while introducing long-distance physics into the 

determination of variational parameters. We find that algorithms 

incorporating both these features are much more powerful than previous 

truncation algorithms. For pedagogical reasons we present our algo- 

rithms using as examples two well-understood theories namely free scalar 

field theory and the Ising model in a transverse field in 1 + 1 dimen- 

sions. Discussion of higher dimensions and less trivial theories is 

included in the final section. An appendix on generalized mean field 

theory is also included. 
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1. INTRODUCTION 

Since the introduction of the Hamiltonian real space renormaliza- 

tion group (or lattice truncation) technique as a nonperturbative tool 

for analyzing cutoff field theories and quantum spin systems,l subse- 

quent work has focused on applications to specific models.2 This work 

has helped to establish a domain of applicability for the original 

ideas. However, except for the early observation that the method is a 

form of Rayleigh-Ritz variational calculation, little or no progress has 

been made in understanding the theoretical foundations of this scheme. 

The lack of a theoretical framework has hampered efforts to devise 

systematic improvements on the simplest real space renormalization group 

algorithms. Brute force attempts to improve upon the accuracy of speci- 

fic calculations either by keeping more states, or introducing 

variational parameters into the truncation procedure, demonstrated two 

important points. First, that high accuracy calculations of the proper- 

ties of spin systems can be carried out by these methods; second, that 

even simple algorithms enable us to accurately calculate quantities 

(e.g., the spectrum of excited states of the system) which are not 

directly related to the ground state energy. This second fact was 

somewhat surprising. Experience with simpler quantum mechanical systems 

has taught us to expect variational calculations to yield good ground 

state energies, but to fail (except in exceptional circumstances) to 

give good estimates of either the excited state spectrum or detailed 

properties of the ground state wavefunction. This suggested that we 

were missing something important by thinking of the procedure solely in 

terms of a Rayleigh-Ritz calculation and led us to reinvestigate the 

theoretical foundations of the method. 
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This return to basics yielded three important results. First, we 

understood that an exact renormalization group scheme could be defined 

for Hamiltonian systems, in analogy to the Kadanoff-Wilson method for 

analyzing Euclidean systems. 3 Second, we understood that even the 

simplest real space renormalization group algorithms provide a way of 

approximating exact renormalization group transformations. Finally, we 

found that our new understanding of the theory led to the formulation of 

powerful new computational techniques, which subsumed all of our previ- 

ous methods for doing high accuracy calculations as special cases. 

The aim of this paper is to present the theoretical ideas in some 

detail and to indicate, by means of a simple example, the way in which 

they lead to the development of new calculational tools. 

We begin with a discussion of the structure of free field theory. 

Following an argument of J. Bronzan and R. Sugari we show how know- 

ledge of the exact ground state wave function for a lattice field theory 

can be used to define an exact real space renormalization transforma- 

tion. Next, we discuss the original lattice truncation method and its 

interpretation as an approximation to the exact renormalization group 

transformation. We then identify features of the exact transformation 

which are not reproduced by naive truncation algorithms. This leads to 

the introduction of the concept of fast and slow modes for a block, and 

the observation that the slow modes must be treated as background fields 

for the fast modes. In this way a kind of Born-Oppenheimer approxima- 

tion to the field theory emerges as an important feature of a real space 

renormalization group algorithm. For pedagogical reasons, this section 

of the paper is limited to the discussion of free Bose field theory on a 

lattice; however, the general discussion of approximation techniques 

extends straightforwardly to the case of systems with interactions. 
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In the third section of the paper the ideas of the preceding 

section are extended so as to be able to deal with quantum spin systems 

which differ from Bose theories in that there are only a finite number 

of states per site. For these systems, the identification of fast and 

slow modes is not as obvious as it is in the Bose case and so we intro- 

duce a new notion, that of generalized mean field theory, in order to 

deal with this problem. Once again, in order to present new ideas in 

the simplest context, we limit discussion to the simple but nontrivial 

case of the Ising model in a transverse magnetic field. The discussion 

of more interesting spin systems is put off to forthcoming papers. 

Comparison of exact and approximate results will make it clear that the 

combination of generalized mean field theory and real space renormaliza- 

tion group ideas produces a very powerful computational tool. 

In the concluding section of this paper we briefly discuss ways to 

deal with problems in higher dimensions and of greater complexity. We 

also discuss the question of computing order parameters, transition 

temperatures, etc., to higher accuracy. An appendix on generalized mean 

field calculations is included. This technique provides a way of 

deciding how to best apply the truncation method to arbitrary spin 

systems. The generalized mean field approximation is interesting in its 

own right as a "quick and dirty" way of extracting physics from 

particular models using "back of the envelope" estimates. 
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2. FREE FIELD THEORY 

2.1 THE VACUUM AND THE RENORMALIZATION GROUP 

2.1.1 Preliminaries 

The lattice theory of a free scalar field is simply a system of 

coupled harmonic oscillators. There are many ways in which the gradient 

terms5 can be transcribed to the lattice; however, for our present 

purposes the differences between these methods is unimportant and we use 

a simple nearest neighbor definition. Thus, for the Hamiltonian of free 

scalar field theory we take 

(2.1) 

where the operators x. J and pm obey the canonical commutation relations 

(2.2) 

This Hamiltonian is diagonalized by Fourier transforming to the 

variables Xk and pk. In terms of these variables the Hamiltonian 

becomes 

H = 1 
p-k’k + i 2(1 - cos(k)) + u2 } xekxk 

2 (2.3) 

At this point it is customary to rewrite this expression in terms of 

annihilation and creation operators, and the Hamiltonian as a sum over 

number operators. To relate knowledge of the groundstate wavefunction 
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to an exact real space renormalization group procedure, we avoid this 

step, and instead observe that we are dealing with a set of decoupled 
-~ 

two dimensional Schroedinger equations; hence, the unnormalized ground 

state wave function for the system is a product 

n exp{-yk xg xk) 
k 

where the variable y 
k 

is defined to be 

= [ 2(1 - 
2 l/2 

yk CosW) + P ] 

(2.5) 

(2.6) 

This expression for the ground state wave function can be rewritten in 

terms of the original position space variables by performing the inverse 

Fourier transform to obtain the expression 

Y(...xj...) = exp{ - 3 1 xj A(j - m) xm ) 
j ,m 

where the function A(j-k) is defined as 

A(j -m) = (2x)-l I dk ei(j-m)k yk 

2.2 AN EXACT RENORMALIZATION GROUP 

(2.7) 

Given the exact form of the ground state wave function one can 

compute the expectation values of all operators and therefore all equal 

time Green's functions. This information gives us, for example, the 

rate of fall off of correlation functions and therefore, some 
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information about the spectrum of excited states. Our purpose in this 

section is to rewrite the procedure whereby one computes expectation 
-. 

values in the language of a real space renormalization group 

calculation. By comparing the formulae derived in this way with those 

of earlier approximate renormalization group calculations we will be 

able to identify the important physics which was missed in naive 

approaches. We begin by introducing what we will call (for reasons 

which will become clear in the next section) 'slow' and 'fast' block 

variables 9 up and VP, 

u = 
P (x2p + x2p+,)I~ ’ 

(2.8) 

v = 
P (x2p - x2p+l)/J7 l 

The exact ground state wavefunction can be rewritten, in-terms of these 

variables, as 

Y(...u ,v ,...) = exp{- 1 u 
P P p AUU(p-r> u,}* 

(2.9) 

x exp{-2 1 u A (p-r> v 
P uv r ' 

- ~ v A (P-r) ",I 
P vv 

where, A uu' uv' A Avu and Avv have the obvious definitions.6 

The ground state expectation value of the Hamiltonian or any 

functions of the variables x are given by integrals of the form 

<H> = / II dxsY*(...xn...) 1 {- 
S ii 

122 
5 lJx. J + $(x~+~ - xj I21 

x Y(...x . ..> n (2.10) 
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and for example, 

&x4> = I I[ dxs Y*(...x,... 
S 

These can be rewritten in terms of the fast and slow variables as 

follows: 

<l-D = In 
j 

2 2 
dujdvj) Y*(...u,.v,...) 1 (- ++ - '+ ++ (n2 + 3)~; 

P av 
P auP 

+ + (p2 + l)u;) - + (upup+ .l 

and 

<x4> = I ~(dujdvj 
j 

- vp"p+l + upvp+l - vpvp+1 )} Y(...un,vn...) 

(2.12) 

) ~(...Un,Vn... [+ 1 (u; + 6u;v; + v;)]Y(...u,,v,...) 
P . 

(2.13) 

We can reduce the number of degrees of freedom in the problem by doing 

all integrals over the fast variables, leaving the slow variable inte- 

grations undone. This is easily done by completing the square in Eqs. 

(2.12) and (2.13). To do this we define new variables v' by the 
P 

equation 

v = v'+c 
P( 

. ..u 
m ) 

. . . (2.14) 
P P 

where the function c is defined to be 

Cp(...Um...) = - 1 A;:(,-r) Avu(r-n) un 
r,n 

(2.15) 
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In this way, we find the ground state expectation value of the original 

Hamiltonian is equivalent to the expectation value of a more complicated 

Hamiltonian, involving half the number of degrees of freedom, in its 

ground state. The new Hamiltonian is obtained from the identity 

<Y]HlY> = j II dujx*(...um...) 1 {- fd 
j 

+ + (p2 + 1) u2c2 - -A 
P 

PP 2 upup+ 

+ 3 cp(up+1 - up-1 1 + c~c~+~} x(...um...) + const 

(2.16) 

by simply ignoring the u -integrations. 
P 

Similarly, we find the ground 

state expectation value of any function of the operators p. and x. is 
J J 

equal to the expectation value of a more complicated function of half 

the number of variables, computed in the ground state of the new 

Hamiltonian. For example, 

<I xi> = .$ J II dus x*{ 1 [uz + 6uzcz + cz] }x + const 
S P 

(2.17) 

where c 
P is the nonlocal function of the urn's defined in Eq. (2.15). 

There are several important points to be made about the preceding 

discussion. First, that this very trivial example has shown the problem 

of computing ground state expectation values of various operators for a 

system of n-degrees of freedom can be replaced by an equivalent problem 

for a system involving n/2 degrees of freedom, with no loss of informa- 

tion. We were able to do this only because we had knowledge of the 

exact ground state wavefunction of the system, and so in a sense this 

remark is trivial. There is, however, an important sense in which this 

remark is far from trivial: namely, we have shown that one way of 
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parametrizing the information contained in the exact ground state 

wavefunction is to specify the structure of the exact real space renor- 

malization group equation which it definesfor all operators, including 

polynomials in the Hamiltonian. Hence, any algorithm for generating a 

real space renormalization group transformation, generates an 

approximation to the exact ground state wave function. Moreover, in 

distinction to atomic or molecular physics problems, modifying such an 

algorithm so that it produces the best bound on the ground state energy 

density, can be expected to simultaneously produce a better approxima- 

tion to the true renormalization group transformation and therefore 

better information about correlation lengths, etc. This expectation is 

borne out by explicit calculations. 

The second point to be abstracted from this calculation is the fact 

that we had to shift the VP-variables by function of the up-variables in 

order to be able to do the v -integrations. 
P One way of thinking about 

this shift, is to think of the configuration of the u -variables as 
P 

defining a background field for the VP-variables, and observing that the 

v -variables P 
shift their mean values in response to this background 

field. In the next sections of the paper we relate this fact to a kind 

of Born-Oppenheimer approximation to the exact renormalization group 

transformation. We then show how this picture can be carried over to 

spin systems by defining the notion of a generalized mean-field calcul- 

ation. 

A third point, directly related to the necessity of shifting the 

v -variables, 
P 

is that the exact renormalization group transformation 

takes a field theory with nearest neighbor couplings into a theory with 

long range couplings. Thus, even if we begin with a nearest neighbor 
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theory any good real space renormalization group algorithm quickly leads 

to long range gradient terms like that introduced by Drell et a1.8 This 

should-.not be a surprise since that gradient was obtained by integrating 

out all high momentum degrees of freedom in a free field theory. The 

above example provides a way of seeing that gradient terms with a long 

range form are in no way unnatural in a lattice field theory. 

2.3 REVIEW OF THE NAIVE R.S.R.G.-ALGORITHM FOR FREE FIELDS 

As already observed, the results of the preceding section required 

a knowledge of the exact form of the ground state wave function. 

Obviously, no matter how interesting such results may be, one has 

learned nothing more about theories with interactions, if one has to 

have the exact wave function in order to procede. These ideas become 

useful only because we can incorporate them in schemes for computing . 

accurate approximations to these exact transformations. 

In order to make our discussion of the development of approximation 

techniques self-contained we first review the naive way of thinning 

degrees of freedom for the example of a free Bose field theory. We then 

discuss how one incorporates the lessons of the preceding section into 

such calculations. The idea behind the original lattice truncation 

algorithms was one could get a pretty good idea of how to eliminate 

variables by first considering a block of finite size. For the specific 

case of the Hamiltonian defined in Eq. (2.1) we will discuss blocks 

containing two sites each, as shown in Figure 1. 

These blocks are labelled by integers 'p' and the sites within a 

block by an integer 'rf taking the values 0 or 1. In this way the 

original lattice Hamiltonian can be rewritten as 



-13- 

H = 1 { Hblock(P) + VFt ) 
P 

(2.18) 

where Fi 
block(') 

is given by 

Hblock(p) = {- f -+ - 4 -$- + + (p2+ 2)(XEp+ X;p+1) - X2p X2p+l} 

ax2p ax2p+1 

(2.19) 

and the block-to-block recoupling term, v int 
P 

, is given by 

int 
VP = x2p+l x2(P+l) (2.20) 

H (p) can be diagonalized by going to the fast and slow variables 
block 

defined in Eq. (2.8). If we make this substitution H becomes 
block 

Hblock(p) = ( - + T$ (u2 + 3) vi + $ (m2 + 1) ui } 

(2.21) 
. 

and the recoupling term, v lnt, becomes 
P 

int 
VP = -3i upup+ - vpu;+1 + upvp+l - vpvp+l I (2.22) 

Examination of Eq. (2.21) shows the eigenfunctions of H are 
block 

products of harmonic oscillator wavefunctions in the variables up and vp 

respectively. The reason for the appelations 'fast' and 'slow' now 

become clear, since from the point of view of H the v-oscillator is 
block 

a higher frequency oscillator than the u-oscillator 

[i.e., mv = (u2 + 3)1'2 and mu = (u2 + 1)1'2]* 
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The next step was to assume that excited states of the higher 

frequency oscillators would play no important role in determining the 

structnre of the ground state wavefunction. This entirely reasonable 

assumption, from the point of view of a Rayleigh-Ritz calculation, led 

us to truncate our Hilbert space to states of the form 

Y(...up,vp...) = F(...up...) II exp{- 3 y, vi } 
P 

(2.23) 

. I.e., states which have arbitrary functional dependence on the variables 

uP 
and which are simple products of independent Gaussiansg in the 

variables vP' The renormalization group transformation is defined by 

computing the matrix elements of the original Hamiltonian H +v 
block 

between arbitrary states of this form. This yields a new Hamiltonian, 

H' = 1 (- + -2 + + (p2 + 1) u; - upup+l} + co 
P au2 

P 

(2.24) 

The mapping of the original Hamiltonian into a Hamiltonian, H', 

having exactly the same form with different coefficients, is the naive 

real space renormalization group algorithm for the free field discussed 

in Ref. 1. One derives a general form of this algorithm, for the case 

of an initial Hamiltonian with arbitrary coefficients, in the same 

way. By accumulating the coefficient of the unit operator and dividing 

by the volume,10 after many iterations one obtains the ground state 

energy density. The limiting form of the coefficient of the single site 

term, x2 
P' 

gives the mass gap. As discussed in Ref. 1, the results of 

carrying out this procedure gives the ground state energy density to 

about 7% and gives the mass gap exactly. Given the crude nature of the 

truncation algorithm these results are quite impressive. 
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Unfortunately, the naive real space renormalization group algorithm 

has several defects. The most important of these defects is it fails to 

give the correct falloff of correlation functions, e.g., <x x >, as a 
ij 

function of [i-j I. In particular, for the case of massive free field 

theory it gives power law as opposed to exponential falloff; and, in the 

case of the massless free field theory it gives power law falloff but 

with the wrong exponent.lI This inablility to get the correct falloff of 

correlation functions has dangerous implications when one studies the 

structure of two-dimensional (i.e., one space + one time) field theories 

and asks whether the theory can exhibit spontaneous symmetry breaking. 

It is important to be able to obtain the correct behavior. 

The question of computing correlation functions was discussed in 

detail by Drell and Weinsteinl* and a scheme which involved keeping more 

oscillators per block was introduced to solve the problem. While this . 

method proved quite satisfactory, it is definitely more cumbersome to 

deal with than the naive algorithm. In the next section we show that 

comparison of the exact renormalization group algorithm and the one 

obtained by this naive procedure leads to a scheme of sufficient power 

obtain correct results for correlation functions without sacrificing the 

computational advantage of having to keep only one degree of freedom per 

site in a renormalization group calculation. A detailed study of such 

algorithms for the case of a free Bose field has been carried out by 

Shahar Ben-Menachem and will be published separately.13 

2.4 A BORN-OPPENHEIMER APPROACH TO THE RENORMALIZATION GROUP 

Comparison of the exact renormalization group transformation and 

that just discussed makes it easy to see what is wrong with the naive 
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algorithm. In the naive algorithm we only kept trial wavefunctions 

which were products of independent Gaussians in the v -variable; and 
P 

furthermore, the VP-dependence of these wavefunctions was independent of 

the u -variables. 
P 

This is, quite different from the situation in the 

exact transformation; where, due to the shift, we saw that the form of 

the VP-part of the wavefunction depended explicitly upon the particular 

values of the u 
P 

-variables at all points. We lost this information by 

focusing solely upon the structure of H 
block' 

and not allowing block-to- 

block recoupling to influence our choice of trial wavefunction. 

Implicit in our choice of a wave function of the form specified in 

Eq. (2.23), was the assumption that the interactions of the slow modes 

took place on a longer time scale than interactions among the fast 

modes;-moreover, it was assumed that fast-fast and fast-slow recoupling 

was unimportant. This second assumption is incorrect, for reasons we 

will now discuss. If we only accept the intuitive notion that changes 

in the slow modes take place adiabatically on the scale of the fast 

modes, then we are led to an ansatz for the trial wavefunction which 

like the naive form, Eq. (2.25), is separable in the variables v ; but, 
P 

where the form of the trial wave function for each v -variable is 
P 

allowed to depend on the values of the u -variables 
P 

in other blocks. We 

thus make the ansatz that the groundstate wavefunction has the form 

Ifi = Fb,) JI Qp(vp + c,{yJ) l 

P 
(2.25) 

where F and Q are arbitrary functions. This form allows shifts of the 

type encountered in the exact truncation [Eq. (2.14)]. However, since 

we are pretending that we have no knowledge of the exact groundstate 
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wavefunction the parameters c,({u,}) will be determined by a variational 

prescription. 

By far the simplest procedure to follow is to assume that the 

function cj(up) is a linear function of the up's, i.e. 

Cj(Up) = 1 c. u 
p JPP 

(2.26) 

where the variables Cjp are left undetermined. If we compute the 

expectation value of H in this state and vary over the matrix 

determining the function c (u > it will be clear that the values of the 
j j 

matrix, C. 
JP' 

will depend upon the specific function F(...up...). If one 

chooses, for simplicity, a trivial product form 

F(...up...) = n exp { - 2 } 
P . 

(2.27) 

it is straightforward to derive an equation for the coefficients C. JP' 

and verify that Cjp = 0 does not miminize the expectation value of H. 

Hence, we see from this argument that even if we had not known about the 

structure of the exact renormalization group equations, careful analysis 

of the original naive algorithm would have revealed the necessity for 

shifting the fast variables so that they could follow the field set up 

by the slow variables. This treatment of slow variables as adiabatical- 

ly changing with respect to the fast variables is reminiscent of the way 

in which one treats molecular problems; hence, we have chosen to refer 

to renormalization group algorithms which incoporate this observation as 

Born-Oppenheimer algorithms. 
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In general it is difficult to carry out the renormalization group 

procedure for arbitrary linear functions, C 
jp' 

and even more difficult 

to allow these variables to remain undetermined until the end of the 

calculation. Furthermore, this problem becomes even greater when one 

carries this technique over to spin systems. For this reason, we will 

limit our present discussion to a simple variant of the general approach 

which we call a nearest neighbor look-ahead algorithm. The virtues of 

this algorithm are, first that it is an interpolation between the naive 

algorithm and the one we have just discussed; and second, it is easy to 

implement for spin systems. A comparison of the full range of algo- 

rithms for the free scalar field will appear in the forthcoming paper by 

This paper will show that this variant of the general algorithm provides 

considerable improvement over the naive algorithm and comes quite close 

to the best estimates. It will further show that by "loo-king more steps 

ahead" the accuracy one obtains improves dramatically. The accuracy of 

all of these methods is much better than anything achieved by naive 

blocking algorithms. 

The simplest version of the nearest neighbor look-ahead algorithm 

is the following: 

(i) first, make the approximation that only C C 
j,j+l' j,j 

and 

C 
j J-1 

are different from zero; 

(ii) next, for a one-step look-ahead procedure, define.the state 

IY> = (2.28) 

(iii) compute <Y[HIY> as a function of y,,y,, 

'j,j+l$ j,j C and 'j,j-1 and minimize over these variables; 
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(iv> using these values for y v, C. 
J,j+l' 

Cj,j and Cj,j-l compute 

H truncated between arbitrary states of the form 

Ia> = IF(...up...) II exp{- yp(vp + i cpmum)}> . (2.29) 
P 

(v) Having computed a new Hamiltonian, H', go to step (i) 

and repeat. 

To summarize, the single step look-ahead algorithm determines the 

values of the parameters used in the truncation process, by assuming a 

product of Gaussians provides a good approximation to the groundstate of 

the Hamiltonian, H', obtained by carrying out one truncation. While 

this assumption is not bad for some regions of parameters in the origin- 

al Hamiltonian, it clearly is not the best one can do for the general 

case. This leads one to invent two-step,three-step, etc., nearest 

neighbor look-ahead algorithms as straightforward generalizations of 

steps (i) through (v). The basic idea in an n-step look-ahead algorithm 

is that one performs the fast-slow thinning n-times, introducing four 

unspecified parameters (yv, C. C 
J,j+l j,j' 

C 
j J-1 

) for each step and 

then chooses a simple product of Gaussians in the remaining variables as 

an input to for a trial wavefunction. Using this ansatz, the 

expectation value of H is a function of 4n+l unknown parameters, which 

are to be determined by minimizing the expectation value of H in this 

trial state. The first four of these parameters determine the first 

truncation step, the second four determine a subsequent step, etc. In 

general the first four parameters will have different values for an 

n-step look-ahead than those obtained from a single-step algorithm. 

Having obtained these parameters, there is no need to ever use the final 
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product form of the wavefunction. Instead, one uses these first four 

parameters to define a single step renormalization group transformation 

to obtain a new H'. Having obtained the new H', the original n-step 

calculation is forgotten about and a new n-step look-ahead procedure is 

initiated in order to define the next single-step renormalization group 

transformation which will yield an H",etc. 

It is not difficult to imagine that one could systematically go 

about improving upon this sort of procedure; both by increasing the 

number of steps one looks ahead, and by allowing more of the variables 

'Pm 
to be non-vanishing. We refer the interested reader to the paper of 

Shahar Ben-Menachem for a detailed comparison of various schemes of this 

sort. 

The point that we wish to emphasize is that, once one has taken 

into account what we have called the Born-Oppenheimer aspects of the 

truncation problem, thinning degrees of freedom using simple product 

wavefunctions becomes a highly accurate procedure. 

3. SPIN SYSTEMS AND THE BORN-OPPENHEIMER RENORMALIZATION GROUP 

3.1 ISING MODEL IN A TRANVERSE FIELD 

We now turn to the discussion of a l+l-dimensional quantum spin 

system. Our purpose is to show how one incorporates insights gained 

from the real space renormalization group treatment of Bose field 

theory, into the treatment of lattice systems having only a finite 

number of degrees of freedom per site. If we let 'n' denote the number 

of states per site of a spin system, then there are nm states associated 

with a block of m-sites. A renormalization group transformation for 



-21- 

such a system is defined by an algorithm for choosing a subset of these 

n states per block, and truncating the original Hamiltonian to the 

subspace spanned by tensor products over this limited set of states. A 

good algorithm is one for which the subspace spanned by this set of 

tensor products contains a state with a large overlap with the true 

groundstate wavefunction. The spin-system analogue of the naive trunca- 

tion calculation discussed in Section 2.3 is to divide the Hamiltonian 

into H + V, where H contains only terms referring to sites 
block block 

within a block, and then to choose the restricted number of states per 

block to be the 'r' lowest eigenstates of H , where r < nm for a 
block 

block of length 'm'. The discussion of the previous section suggests 

that this algorithm should not be expected to work too well since it 

does not retain the effects of block-to-block recouplings while choosing 

the small set of states per block to be kept in the truncation process. 

As before, we would expect that a better procedure is to identify slow 

and fast-variables for each block, and then truncate in a way which 

takes the Born-Oppenheimer aspects of the problem into account. 

The identification of slow and fast-variables is not as obvious for 

a spin system as for a Bose field theory and so we need to generalize 

our technique to allow for this fact. We do this by introducing the 

notion of a generalized mean field state and identifying the parameters 

which define this state with the slow-variables of the Bose field 

theory. Fast variables will be taken into account by keeping extra 

states per block; these states will be generated by considering position 

dependent mean-field configurations, and so they can be thought of as 

including the effects of configurations exhibiting spatial variation 

over a single block. 
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3.2 MEAN FIELD THEORY AND THE RENORMALIZATION GROUP 

The discussion to follow describes truncation calculations for the 

l+l-dimensional Ising model in a transverse magnetic field. We present 

this example because comparison of our calculations with known exact 

results allows us to demonstrate the power of the method, and not 

because these approximate calculations tell us anything new about this 

model. Our purpose is to show that having a theoretical understanding of 

the physics of truncation algorithms does, in actual calculations, lead 

to more effective computational techniques. 

The theory under discussion is the theory with two states per 

lattice site. These states are usually described by two component 

spinors and the Hamiltonian of the system is 

H = Eaz(j > - ax(j) ax(j+l> ] (3.1) 

where, by the notation ax(j) we mean the Pauli matrix o operating on 
X 

the spin associated with site 'j'. We remark that this Hamiltonian 

commutes with the symmetry operator 

PZ = II oz(j) 
j 

(3.2) 

and with the parity transformation (i.e. left-right reflection) 

To introduce the concept of slow-modes for the spin system we begin 

by defining a block mean-field approximation for the groundstate wave- 

function. To define a block mean-field state we imagine the lattice 

divided into blocks of n-sites, so that there is a 2n dimensional vector 
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space associated with each block. 14 If we number the blocks by the 

integer 'j', a block mean-field state is defined to be a state of the 

form T 

(3.3) 

where the state I$.> is assumed to be the same state in each block. The 
J 

block mean-field approximation to the groundstate wavefunction is 

defined to be that state I@> which minimizes the expectation value 

<@IHI@> = 
volume ; Qj IH 19 > - G+ 

block j 
Iu (I)/$ > <4 IQ (n>l@ > 

j x j jx j 
(3.4) 

where the label j=l ,..,n runs over the sites of the block. from left to 

right, and we have used the assumption that I+.> is independent of 'j' 

to replace <$ j=llux(‘)l+j+l> Moreover, we have 

defined H to be 

h 
block 

cuZ(j) - ax(j) ox(j+l)] (3.5) 

From Eq. (3.5) we see that H contains those terms in H which 
block 

involve interactions among sites within a single block, and that the 

second term on the right-hand side of Eq. (3.4) gives the effects of 

block-to-block recoupling. 

The variational problem of finding the state I+> which minimizes 

Eq. (3.4) can be carried out very simply. Straightforward variation of 

Eq. (3.4) with respect to the normalized state I+> tells us that I+> 

satisfies the nonlinear equation 
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P block - <+lux(l)lQ ax(n) - <+lux(n>ld$ u,(l)] I+> = PI@ . 

-. 
(3.6) 

This problem can be linearized by introducing, what we will refer to as 

a shadow Hamiltonian, H (a,~): 
S 

Hs(a,B) = Hblock + 
a(o,(l) + u,(d) 

2 

+ k3(0,W - uxW) 

2 , (3.7) 

and defining the two parameter family of trial states l+(u,~)> as the 

lowest eigenstate of H,, i.e. 

HS(a9B) l+(a,B)> = K(a,B) I+(a,B)> . (3.8) 

. 

We then determine the values of the parameters a and 6 by minimizing the 

expectation value of the true Hamiltonian, H, in the block mean-field 

state IY(a,B)> 

(3.9) lY(a,B)> = II I$(a,B)> 
j 

[This procedure is closely related to that in Section 2.4 used to obtain 

the trial wavefunction defined in Eq. (2.29j.l Using the fact that 

ada, 8) 
aa = <O(a,B)I 3 (ox(l) + ux(n))l$(a,f3)> (3.10) 

and 
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aKkis6) = <$(a,B)I + (u (1) - u (n))l$(a,B)> (3.11) 
X X 

-. 

and substituting Eqs. (3.10) and (3.11) into Eq. (3.4), we obtain an 

equivalent expression for the energy density 

5J!kl2= 
Volume 

It is easy to see that the state I$(a,S)> which minimizes Eq. (3.12) is 

a solution to the original nonlinear Eq. (3.6), and that this state is 

the lowest eigenstate of Hs(ao,Bo) where a and 6 satisfy the equations 
0 0 

ada0 9 8,) 
aO 

= 
-2 act 0 

and 

(3.13) 

(3.14) 

Moreover, it is clear that for E large enough the only possible solution 

to the minimization problem occurs for u = S = 0. One can prove that 
0 0 

for general E the minimum of the energy density is obtained for So = 0, 

and so one really only has to deal with a one parameter variational 

problem. For sufficiently small E the minimum of the energy density as a 

function of a will not occur for a = 0. Since the original Hamiltonian 
0 

commutes with the symmetry operation PZ, whenever there is a minimum for 

the energy for an a different from zero there is another degenerate 
0 
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minimum for -a 
0’ 

Heuristically, for two site blocks, we see that the 

variable a is conjugate to the expectation value of what we would be 

tempted to think of as the 'slow' field variable (~~(1) + ~~(2)); and 

furthermore, the values +a o correspond to extremal "classical field 

configurations". 

Now that we have defined the notion of a block mean-field theory we 

turn to the problem of combining this idea with that of the real-space 

renormalization group. In particular, we want to develop algorithms 

which incorporate the insights obtained from our discussion of the free 

Bose field. We can introduce a 2-state renormalization group algorithm 

which is the analogue of the naive truncation procedure for the free 

Bose field in that it ignores the Born-Oppenheimer aspects of the 

problem. To do this we form the two orthonormal states 

Isz =+1> = (1 + PZ)l$(a,O)> 

mmiT 

and 

IS = -1) = (1 - PZ> 1 $(a,O)> 
Z J2(1-Tl) 

(3.15) 

where rl = <+(ao,O)lPZl$(ao, O>>; and then, truncate the Hamiltonian to 

the subspace spanned by taking arbitrary tensor products of.these two 

states per block. Since H 
block 

commutes with PZ, i.e., PZ H PZ = 
block 

H 
block' 

and PZ ax(j) PZ = - ax(j) it follows that the truncated Hamil- 

tonian also takes the form of an Ising model,15 

H' 1 
= 1 [cll(p) +y EU,(P) - Ala,(p) u,(P+l)] 

P 
(3.16) 
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The coefficients in H' are functions of the coefficients in H and the 

variational parameters a. 

To obtain the spin system analogue of the one-step look-ahead 

procedure defined for the Bose theory we can choose a = a ; however, as 
0 

we found in the free field case a much more accurate result can be 

achieved by looking ahead several steps before fixing on a choice of the 

parameter Wa". In the multi-step look-ahead procedure on retains a as a 

variational parameter, forms the truncated Hamiltonian, H', and then 

repeats the calculation which led from H to H'as many times as one 

wishes. Of course, at each step of the procedure we introduce an 

independent varational parameters, e.g., a’, a”, etc. In this way we 

obtain, at the m-th step of the process, a truncated Ising Hamiltonian 

whose coefficients depend upon the original values of E and A and all of 

the variational parameters a, a', a", etc. To determine- the best 

values to choose for these parameters, we do a block mean-field calcula- 

tion for this truncated Hamiltonian, varying over the a-parameters to 

minimize the expectation value of the original Hamiltonian. Having 

determined the best values for the a-parameters in this way the first 

full iteration can be regarded as completed. The value of the first 

parameter, a, determined by the m-step look-ahead can then be use to 

define the simple two state renormalization group transformation. Given 

the new Hamiltonian, H', we can proceed to do another m-step look-ahead 

calculation and define a new Hamiltonian H", and so on ad-infinitum. 

Note, that even though we look m-steps ahead to define the first trun- 

cation parameter, we do not use anything but the first a-parameter to 

define our renormalization group transformation. In this way the 

procedure remains a single step procedure for mapping a Hamiltonian 
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n+l 
Hn i. H and the coefficients of the new Hamiltonian are determined as 

functions of the coefficients of the Hamiltonian of the previous step 

alone.- Because of this we can carry over all of the techniques of 

Kadanoff and Wilson for discussing renormalization group flows and use 

them to enable us to accurately locate the critical point of the theory 

and evaluate critical exponents. The results of such a calculation 

using a 3-step look-ahead algorithm are presented in Table 1, for some 

representative choices for the starting value of E. 

3.3 MULTISTATE ALGORITHMS AND FAST MODES OF THE THEORY 

Two questions arise at this point. First, what determines the 

right number of steps to look-ahead? Second, how can we generalize this 

calculation to a multistate, rather than two state per block algorithm? 

The answer to the first question leads naturally to the second, and 

furthermore it simultaneously solves the problem of incorporating our 

insights about the Born-Oppenheimer aspects of the physics into our 

renormalization group scheme. 

If one adopts a look-ahead algorithm wherein one looks too many 

steps ahead the calculation just described begins to behave strangely, 

at least for values of E not far from the critical point. What happens 

is that the formula for the energy density develops secondary minima 

which at a critical value of c become lower than the minima one has been 

following from small . This effect of looking too many steps ahead 

signals the fact that at a sufficiently large distance scale, states 

other than simple block mean-field states become physically important. 

The physics behind the formation of such states is easily understood if 

one slightly generalizes our block mean-field formalism. 
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Below a critical value of E we have two degenerate mean-field 

states 

-. (3.17) 

For small E the two states I$(* c( )> are essentially left polarized and 
0 

right polarized spin states (i.e., states such that the expectation 

values of o (j) are very nearly all +l>. Now, when there are two 
X 

degenerate "groundstates" per block, an obviously important low lying 

state is the "kink" state, which interpolates between two regions which 

are in different block "groundstates". We can define such a kink state 

of zero momentum as 

IJi,,,k> = No 1 ' 
P j<P 

(3.18) 

* 
where No is a normalization factor. The state I+p> is inserted at site 

'P' to interpolate between the two polarized states. A natural question 

which arises at this point is, does the expectation value of the Hamil- 

tonian in a state of the form specified in Eq. (3.18) lie higher than 

the expectation value of H in the mean field state? If we choose, for 

the sake of convenience, to make the state I+*> orthogonal to the 

state I+ > this calculation is easily carried out for the simple single 
-a 

site mean-field approximation and one finds that 

"kink'H'ykink' - <Y(ao)/HIY(ao)> 0~ 2 - E (3.19) 

Thus we see that for E greater than 2 the kink states in motion actually 

cross the mean-field ground state and the mean-field calculation is 
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expected to break down. The remarkable fact is that E = 2 is the exact 

critical point of the theory, and so even though at first glance mean 

field ?heory would seem to give a bad value for the location of the 

phase transition in this model, a slight generalization of the method 

allows us to see why this happens. This calculation is discussed in 

detail in the Appendix. 

From this discussion we see that it is very important to allow 

states which can play the role of the interpolating state I$*> into our 

block-spin algorithm. We will now discuss how this kind of physics can 

be incorporated in a natural way. 

The prescription obtained by minimizing the energy of Ilkink> for a 

given I$a> is quite clumsy. However, within the context of the shadow 

Hamiltonian and a look-ahead algorithm, we can readily accomodate the 

need for such states. We remark that an n-site block state which sits 

between 14 > on one side and IQ > on the other, will not be a parity 
a -a 

even state due to the effects of neighboring blocks. This suggests that 

such states can only be accomodated if we extend our block-spin 

truncation algorithm so as to keep more than two states per block. 

Heuristically, we see that keeping such states is analogous to choosing 

the 'fast modes' differently in the presence of different position 

dependent 'slow modes'. Since the states to be kept in the presence of 

left-right and right-left kinks are not parity eigenstates, both the a 

and S parameters in the shadow Hamiltonian can be expected to have 

nonzero values for the best choice of states. Thus, in order to avoid 

breaking any of the discrete symmetries, PZ or parity, we must keep a 

minimum16 of six states, i.e., I$(a,O)>, I@(-a,O)>, l$(a’,fl)>, 

1 +(-a' ,S)>, [$(a',-S)>, I$(-a',-B)>, where now, a,a’ and (13 are all kept 
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as variational parameters. Note that in general these six states are 

not an orthonormal set of states and they must be orthonormalized prior 

to carrying out the truncation process. It turns out that from the six 

states constructed in this fashion one only obtains four orthonormal 

states which span the six. 

Combining the multistate algorithm with the m-step look-ahead 

procedure removes the problem of degenerate minima, because the conden- 

sation of kink-states in motion has now been taken into account. At this 

point the question of how big to make 'm' becomes merely a computational 

problem. If one looks too many steps ahead the numerical problem of 

minimizing a function of many variables, which is a relatively insensi- 

tive function of most of the variables, becomes extremely difficult. 

One therefore stops the look-ahead procedure when the values of the 

first-step parameters become insensitive to an additional.look-ahead 

step. The results of carrying out a three step look-ahead presented in 

Table 2. 

This concludes our presentation of general material in the context 

of this simple model. The increase in accuracy obtained by incorporat- 

ing the insights obtained from the study of Bose field theory examples 

into renormalization group calculations for spin systems speaks for 

itself. There are, however, a few points which are worth making. First, 

since the zeroth-order input into the new class of renormalization group 

calculations amounts to incorporating mean-field (or semiclassical) 

information into the procedure, we should expect that as the mean field 

approximation becomes a better one, our new algorithms should also 

increase in accuracy. Thus, we expect these new methods to improve in 

accuracy as one studies problems in higher dimensions, and as one passes 

from spin systems having very few states per site to ones having large 
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number of states per site. This expectation is born out by specific 

calculations. In order to give the reader some feeling for how this 

works fhe results,for the 2+1-dimensional Ising model, of a single site 

mean-field, four site mean-field and two state renormalization group 

calculation with no look-ahead are given in Table 3 along with results 

obtained from high order perturbation theory calculations.17 

4. CONCLUSION 

This paper introduces a new way of looking at Hamiltonian real- 

space renormalization group calculations; namely, as an approximation to 

an, in principle, exact procedure which can be defined if on has know- 

ledge of the groundstate wavefunction of the system in question. In 

addition, it establishes the relationship between the exact renormali- ._ 

zation group transformation and various schemes for approximating it. 

By doing so we identify the concept of 'fast' and 'slow' block modes and 

what we referred to as the Born-Oppenheimer aspects of the renormali- 

zation group problem. From a conceptual point of view these are the two 

most important ideas we wish to present. 

In order to incoporate this new understanding into algorithms for 

spin systems we introduced another new idea, that of the shadow Hamil- 

tonian and the look ahead algorithm. It is important to point out that 

while we believe these techniques provide powerful new tools for carry- 

ing out explicit computations in specific models, we believe the way we 

used them to analyze the example of the Ising model in a transverse 

field only scratches the surface of what can be done. Certainly, there 

is much more to be learned both theoretically and practically about 

incorporating the results of generalized mean-field theory calculations 
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into the generation of real-space renormalization group algorithms. The 

methods we used, i.e., keeping more states and therefore more parameters 

in a look-ahead algorithm, are only a first crude step towards more 

effective procedures. Furthermore, there is the whole question of 

development of techniques of using these methods to calculate quantities 

such order parameters, correlation functions, etc., to the same accuracy 

as the ground state energy density. Finally, there is the question of 

how to best carry out higher dimensional calculations. 

While it is true that we are nowhere near having the final word to 

say about any of these questions, we have done enough work on each of 

them to have learned some interesting facts. We will conclude this 

paper with a series of brief comments about each of these points, 

indicating what we already know and suggesting what we believe to be 

interesting directions in which to procede. ._ 

4.1 GOING TO HIGHER DIMENSIONS 

There is no problem in generalizing all of our discussions in the 

preceding sections to the case of 2+1 and 3+1-dimensional field theories 

and spin systems. However, one does run into the computational problem 

of dealing with large numbers of states, since the smallest two dimen- 

sional unit having the symmetries of the original lattice is the square 

containing four points; and the smallest three dimensional unit with 

these properties is the cube with eight points (or a star with seven). 

If one must use shadow Hamiltonians based upon these fundamental units, 

then the size of the matrices one must diagonalize in order to carry out 

the real-space renormalization group procedure grows very rapidly 

indeed. Certainly, with the development of methods for dealing with 
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large matricesl* this may still be practicable, but it is amusing to 

note that the shadow Hamiltonian techniques seem to make it possible to 

avoid much of this work. One can entertain the possibility of executing 

asymetrical blocking procedures. For example, one could carry out a 

blocking for the 2+1-dimensional Ising model wherein one first blocks in 

the x-direction and then in the y-direction, as indicated in Fig. 2. 

Hence, after two truncation steps one would have effectively carried out 

a truncation over the degrees of freedom of a single square. If one did 

this for 3-site blocks, using the naive truncation procedure, one would 

find that after a few iterations the truncated Hamiltonian became 

assymetrical under 900 rotations, and so one would obtain spurious 

results for the behavior of Green's functions, etc. However, if one 

uses the shadow Hamiltonian method and at least a two step look ahead 

procedure, one finds that the variational parameters adjust themselves 

to dramatically reduce this effect. This happens because the true 

ground state wavefunction of the system is invariant with respect to 90° 

rotations. 

The great virtue of this observation is that it frees one to 

consider carrying out multi-state renormalization group calculations in 

any number of dimensions without having to face very great numerical 

problems. The price one pays for this is the introduction of additional 

variational parameters. Many other ways of combining asymetrical 

blocking procedures with the method of shadow Hamiltonians suggest 

themselves, especially for treating high dimensional problems involving 

continuous internal symmetry groups; the general question of how well 

the variational parameters of the scheme compensate for asymetries 

introduced by the computational procedure is under study. 
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4.2 FERMIONS AND MEAN FIELD THEORY METHODS 

M%ch of the discussion of Bose free field theory can be carried out 

for the case of fermion free field theory; however, the phase factors 

coming from the anticommuting nature of the fermion variables make the 

problem more complicated. At present there seems to be no simple way to 

avoid the fact that after one renormalization group transformation one 

is dealing with a spin system with very complicated, but tractable, long 

range interactions. What is clear is that the physics of models such as 

the l+l-dimensional Schwinger model cannot be correctly obtained from 

truncation calculations without including this physics. The question of 

what is the best way of including this sort of effect in approximate 

renormalization group transformations is under study. 

4.3 MORE ABOUT MEAN FIELD THEORY 

The way to incorporate more of the physics of the generalized mean- 

field theory into the generation of renormalization group algorithms 

remains a very important open question. Many earlier calculations, such 

as the Anderson19 calculation of the properties of the Heisenberg 

antiferromagnet can be nicely rewritten in terms of a generalized mean- 

field theory calculation; and furthermore, this format suggests how one 

can systematically go beyond this approximation and treat generaliza- 

tions of the asymetrical model accurately. In addition, the generalized 

mean-field theory approximation provides a good zeroth order approxima- 

tion to such diverse phenomena as the Kosterlitz-Thouliss transition in 

the l+l-dimensional U(l)-model,20 and the fascinating physics, for 

which the ANNNI-models provide a paradigm.21 The mechanism of the 
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ANNNI-models would be particularly interesting to understand well, since 

they provide examples of theories which generate a discrete infinity of 

physical scales as a function of a dimensionless parameter. If an 

analagous mechanism can be incorporated into lattice field theories it 

would greatly enlarge the possibilities for constructing theories 

wherein quarks and leptons are composite. For this reason application 

of our shadow Hamiltonian real-space renormalization group ideas to this 

class of theories is one of the problems we will be studying in the near 

future. Preliminary investigation of this theory has shown that the 

generalized mean field theory formalism already incorporates much of 

what is known about this model, and so the problem of finding a better 

formalism for melding this set of ideas into the renormalization group 

procedure is very interesting. 

4.4 COMPUTING ORDER PARAMETERS, ETC., TO HIGHER ACCURACY 

As is evident from the results presented in Tables 1 and 2, the 

error in the computation of quantities like the magnetization of the 

ordered phase of the Ising model, is in general significantly greater 

than that in the computation of the energy. The reason for this is easy 

to understand. We have done a variational calculation of the ground- 

state energy, so the error in this quantity is second order in the error 

in the groundstate wavefunction; however, quantities such as the magne- 

tization are not stationary under variation of the parameters used to 

compute the renormalization group transformation and so the error in 

these quantities is of first order in the error in the groundstate 

wavefunction. There are many ways one can go about improving this 

situation;22 one simple one which suggests itself is to simply carry 
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along enough extra states so that the first order perturbation correc- 

tion to the magnetization can be computed at any stage of the truncation 

process'. To be precise, suppose we have carried out a p-state procedure 

to determine the variational parameters of the look-ahead calculation. 

In order to calculate the expectation value of an operator,X, to the 

same order of accuracy as the groundstate energy we then carry out a 

2p-state truncation procedure for the computation of X as follows: 

(i> using the parameters determined in the p-state procedure 

introduce a shadow Hamiltonian, H 
shad(o) 

and use this Hamil- 

tonian and its symmetry transforms to find the p-states used 

in the original truncation algorithm; 

(ii) having found these p-states, (v }, apply the operator X to 
P 

them to obtain an additional p-states {Xv,}; 

(iii) orthonormalize the set of 2p-states {vp,Xvp} and use the 

resulting set of states to truncate the Hamiltonian Hn to 

n+l obtain H and to take X ntoX , n+l. 

(iv> at each succeding stage carry out a p-state look ahead to 

fix the parameters to be used in the shadow Hamiltonians, and 

then choose 2p-states to carry out the truncation process 

The results of augmenting the calculation summarized in Table 3 by this 

method are shown in Table 4. As expected we see that the improvement in 

accuracy for the computation of the magnetization, and therefore the 

location of the critical point and critical exponents, is much greater 

than the change in the computation of the groundstate energy density. 

This procedure for carrying out computations of quantites other 

than the groundstate energy to high accuracy is easily generalizeable, 

and much work remains to be done along these lines. 
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4.5 FINAL, REMARKS 

Besides the topics discussed in the preceding paragraphs, many 

other important questions about the possibility of extending these ideas 

in other directions remain unanswered. Of particular interest to field- 

theorists is the general question of whether these methods can be 

further developed and applied to the computation of the properties of 

gauge theories with fermions. Unfortunately, at present, we are in no 

position to give a yes or no answer to this question. The results of 

preliminary work along these lines suggests that one must be at least 

capable of incorporating the mean-field ideas into the renormalization 

group algorithms used for these theories, or one will not be able to 

answersuch questions as whether or not the gauge theory spontaneously 

breaks itself. We are hopeful that gauge theories will prove to be 

amenable to analysis by future generalizations of these techniques.23 

We believe that considerable improvements both in the understanding of 

the theory of the real-space renormalization group transformation and in 

the development of new computational techniques are possible. 
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Appendix A 

-> GENERALIZED MEAN-FIELD CALCULATIONS 

One by-product of the development of these algorithms for block- 

spin calculations is that we have learned a great deal about the proper- 

ties of what we have called generalized mean-field calculations. The 

results of some of these calculations are interesting enought that we 

include them here to show the power of this approach alone. We hope 

that the discussion of the simple examples presented in this appendix 

will make it clear why the combination of these ideas with that of the 

block-spin truncation algorithm provides such a powerful computational 

technique. 

. 

A.1 THE l+l-DIMENSIONAL TSING MODEL 

The purpose of this section is to carry out a single site mean- 

field calculation for the Ising model in a transverse field, relate this 

to familiar calculations , generalize this to block mean-field calcula- 

tions and finally show how to improve these results by including effects 

of "position dependent" mean-field state. 

A single site mean-field state is defined to be a state of the form 

Iqm> = n [cosO]oz=-l> + sinOlaz=l>]j 
j 

The value of theta which defines the mean-field approximation to the 

groundstate wavefunction is obtained by minimizing the energy density 
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c(e) = <a(e) IHlQ(e)> 
volume . (A21 

Because of the symmetry of H under PZ = II oz(j) minima corresponding to 

nonzero values of theta are twofold degenerate. A trivial calculation 

yields 

arccos z 4 for E < 4 

and 

eO 
=0 forsa4 . (A31 

Thus, the single site mean-field calculation finds degenerate vacua for 

all E < 4 and a unique vacuum for all E larger than 4. Since the exact 

critical value of E is E = 2, the single site mean-field calculation of 
C 

the critical point is in error by a factor of two. 

One way to improve on this trivial calculation is to form block 

mean-field states as described in Section 3. The critical values of E 

for two, four and six site block mean-field calculations are given in 

Table 5. Table 5 also includes a comparison of the exact groundstate 

energy density for E = 1.8 and the estimate obtained from each of these 

block mean-field calculations. Clearly, by using block mean-field 

states as a starting point for truncation calculations we take advantage 

of the considerable improvement they provide over single site mean-field 

calculations. 

In Section 3 we remarked that the parameter S in the multistate 

truncation algorithm allowed us to include the effects of kink-states in 

motion, because it provided us with states which interpolated between 

regions of one mean-field vacuum and another. We will now show that the 
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role of such states is clear, even within the framework of a single-site 

mean-field calculation if one generalizes the calculation to include the 

possibTlity of "position dependent" mean-field states. By a position 

dependent mean-field state we mean, a state l$(e.)> 
J 

I*(ej)> = n [-ej loz( 
j 

j)=-l> = sinej loz(j)=+l> ,I (A41 

If we compute the expectation value, <$(e,)lHl+(e.)> and extremize over 
J J 

arbitrary functions e., we find that in addition to the solutions 
J 

8. 
J 

=ke o there are "kink-like" solutions for which 

gap = <$bj > IHI oj I> - <de,) IHI de,)> (fi) 

is a finite quantity. Those states which give finite gaps are of the 

form e = - 
j 

e. for j < j 
1 

and e 
j 

= e. for j > j , with a transition or 
Z 

kink region interpolating between jl and j2 (Clearly antikink configu- 

rations which go from e to - 8 also give finite gaps.) 
0 0 

Simple varia- 

tional estimates of the width of the transition region for these states 

indicates that for all E < 3 the transition takes place over one inter- 

vening site. This suggests that one can estimate the effects of allow- 

ing the kink-configurations to move by forming zero-momentum states of 

the form 

IQ kink’ = (norm){ 1 n [I$j(-eo)>ll$~> n I$j(eo)>} (A61 
P j<P HP 

where 
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1 $(+ eo> = f cOseo 1 az=-l> + sine0 I aZ=l> 

and I++> is a state at site 'p' satisfying the condition 
P 

9;l+,bo)> = 0 

(A7) 

(A8) 

and 8 
0 

is the value determined for theta by the position independent 

mean-field calculation. 

Straightforward computation of the quantity "gap" defined in (A5) 

yields the result 

gap 0: E - 2 (A9) 

Hence, we see that this "generalized mean-field calculation" tells us 

that a plane wave state of one kink in motion has a lower energy than 

that of the position independent mean field state for E > 2. It follows 

trivially, that a state with a separated kink antikink pair, each having 

k = 0, lies still lower, etc. Thus, we see that at E = 2 the position 

independent mean-field groundstate has become unstable to the condensa- 

tion of multiple kink antikink pairs, and the ordinary mean field 

approximation can no longer be trusted. 

In this way we see that a simple generalization of the position 

independent mean field calculation produces a correct prediction of the 

critical point and predicts a "mass gap" which vanishes like /s-2), 

which is of course the correct answer. 

The simplest way to carry out the generalized mean-field calcula- 

tion is to observe that 
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[- cOseo 1 uz =-l> + sineo(oz =1>] = ~~[cose~l~~=-l> = sineoluz=l>] 

-. 
(AlO) 

and that the state I+*>, which is orthogonal to (+(Bo)>, must be 

I**> = [sineo(uz=-l> + cOseo(uz=l>] = uxl$(eo)> (All) 

hence, the state I& kink> can be written in operator form, as 

"kink> Oc 1 Ox(P) Wo)> 
P 

Ox(P) = [ II uz(j)] ax(P) (Al 2) 
j<P 

Readers familiar with the exact solution of the Ising model will recog- 

nize that the operators 0 (p) are linear combinations of the fermion 
X 

operators obtained by performing a Jordan-Wigner transformation25 on the 

spin operators, and will recall that the exact solution of the theory 

can be given in terms of the operators 0 (p) and the analagous operators 
X 

defined by replacing with u 
X 

with uy. 

A.2 MEAN-FIELD APPROXIMATION TO U(l)-THEORY 

The theory we wish to consider is a 1+1-dimensional lattice theory 

of coupled planar rigid rotors. This theory can be obtained by taking 

the X + m limit for the theory of a self-coupled complex scalar field, 

having an interaction term of the form V($) = X(C$*$I - f2)2 . The 

Hamiltonian for this problem can be written as 
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H=l 7 [Jz(i12- $ 
2f2 i 

(J+(i)J-(i+l) + J-(i>J+(i+l>)] (A131 
- 

where a complete basis for the system is generated by taking tensor 

products over the single-site states, Irn >, defined by the conditions 
i 

Jz(i)lmi> = mlmi> (A141 

where the m's are integers and - 0~ < m < 03 , and 
i 

J+(i) Imi> = I (~‘>i> and J-(i)lmi> = ((m-l)i> . (A151 

Following the general procedure outlined for the Ising model, we 

see that a single-site mean-field approximation to this model corres- 

ponds to evaluating the expectation value of H in a product state of the 

form 

Ia> = ll I@. (A161 
j J 

Taking this expectation value yields an expression of the energy of the 

form 

1 2 
E = volume[<$l -- 2f2 Jz I@> - f2G$1J+/$X$1J- I$>] (A171 

Varying E with respect to <+I we see that at the extremum I+> satisfies 

the Schroedinger equation 

12 Jf - n{exp(ia)J+ + exp(-ia)J-}]I$> = 111~ (A18) 
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where we have defined <$jJ+I$> = n[exp(-ia)/f2]. Observing that 

Eq. (A18) is just another way of writing the Mathieu differential 

2f2 cos(e-a)]@(e) = dde) (A191 

In the limit f+O the solution to this problem is the unique state 

specified by the condition m 
i 

= 0 everywhere; however, in general there 

can be a l-parameter family of states I@(a)> which extremize E. Since 

the overlaps of states corresponding to distinct values of a are smaller 

than unity, it follows that in the infinite volume limit there can be in 

general an infinite number of degenerate ground states of the system 

characterized by the order parameters <$]J+]$>. This result is in 

conflict with Coleman's theorem and one must turn to the generalized 

mean-field calculation to fully understand the situation, 

In order to make it simple to understand what is happening in terms 

of explicit calculations, we will not deal with the solutions to the 

Mathieu equation, but rather, estimate these solutions by periodic 

Gaussians, i.e., wavefunctions of the form 

I+(a)> = 1 exp{im(O-a)) exp{- $ } 
-, 

where the normalization of this state is given by 

J +*e +e = 1 exp{(- $ )2r2} 
m 

(A201 

(A21) 

Evaluating <$I~l+>/<+l+> in the state defined by Eq. (A20) we obtain 



-47- 

2 
c(y,f) = <$/I$>-~ 1 [+ m2 exp{- 5 - 2f2} exp{- -$ ) exp 

m 2f 
1-b + + I2 II 

-. 
(A221 

The problem which faces us is to minimize s(y,f) over the parameter y 

for each value of the parameter 'f' appearing in the definition of the 

Hamiltonian. 

This formula is easily evaluated numerically for various values of 

f2 and y; the results of such a calculation are shown Fig. 3. We see 

that for f < .69 the solution y = 0 provides the lowest energy for the 

variational wavefunction, whereas for f > .695 we see that the absolute 

minimum occurs for different from zero. This would indicate that the 

location of the phase transition for this model would be estimated to be 

around-f = .695 which is not far from the answer obtained by Kogut et 

a1.26 which in our units corresponds to f = .96. As we Indicated, 

since the solutions corresponding to different values of the parameter a 

have overlap less than unity, the existence of a minimum for y different 

than zero would seem to indicate the existence of an infinite number of 

degenerate groundstates in the infinite volume limit. What is worse, 

the expectation value of exp (ie) in these states would appear to be 

non-vanishing in contradiction to what is required by the Mermin-Wagner 

theorem. However, this is where generalized mean-field theory enters 

the game. 

It is easy to show that, for the Hamiltonian defined in (A18), 

whenever the minimum of c(y,f) is for different from zero then the 

energy of a "kink-in-motion" state lies lower still. To be specific, if 

we define the state 
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'kink = Norm 1 n I+,(a)>, IT /$(0+6)>~ . 

P j<p j>P 
(A231 

then it follows that ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ is less than 

<&.+>/<$/L$> f or small enough 6. In fact, one can quickly see that two 

kinks in motion lie still lower in energy, etc. Hence, as in the case 

of the Ising model, generalized free field theory tells us that the 

mean-field approximation is breaking down due to the condensation of 

kink states before the mean-field calculation alone signals a phase 

transition (i.e., in this case the transition to the condensate of kinks 

occurs for an f greater than that given by the mean-field calculation). 

It is straightforward to show that the situation encountered for 

f > .694 is just what one would encounter if one tried to do a simple 

mean-field calculation for a massless free field theory, and in fact the 

various one-kink, two-kink state energies occur -in the same way. Of 

course it is well known that for massless free field theory the expec- 

tation value of exp(i0) does vanish, and that is presumably the way in 

which generalized mean-field theory contrives to satisfy the Mermin- 

Wagner theorem. 

Actually, once one has seen the physics of the generalized mean 

field calculation one is led to ansatz a trial wave-function of the 

general Hartree-Fock form 

I+> = 1 [exp{i 1 miei} exp(- 1 miA(i-j) m.)] 
i j 

J 
(A241 

where for the function A(i-j) we can use the inverse propagator for a 

massless free field theory. It is easy to show that this ansatz gives a 

lower estimate of the groundstate energy than that given by mean-field 
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theory for f less than unity. By allowing the form of A(i-j) to vary 

between the extreme case of mean-field theory, i.e., A(i-j) = const x 

6 
ij' 

and the free field form, one could do a much better job in deter- 

mining both the location and the nature of the true phase transition. 

That, however, takes us beyond the discussion of generalized mean-field 

theory and we will terminate our treatment of the problem at this point. 
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TABLE I 
. 

Results from a two-state calculation with three-step look-ahead for 

the l+l Dimensional Ising Model. [Numbers in brackets are last 

digits of exact results, where these differ from calculated 

numbers.] 

E Energy Density Magnetization 

.4 -1.010000 [25] 

.8 -1.040306 [417] 

1.8 -1.2108 [60] 

2.0 -1.2629 [732] 

.99493 [l] 

.97883 [44] 

.8604 [125] 

nonzero [0] 

Critical parameters from this calculation 

Bc = 2.5957 [2.0] 

y = .215 [.125] Mag = P - ( E I2 ly EC 

v = .85 from correlation length Il.01 

= .783 from gap 
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TABLE II 

Results from a four-state calculation with three-step 

look-ahead for the l+l Dimensional Ising Model. 

& Energy Density Magnitization Gap 

.4 -1.010019 1251 .994926 [l] 1.599981 [1.6] 

.8 -1.04032 [42] .97872 [44] 1.19959 [1.2] 

1.0 -1.06331 [51] .9654 [471 .99884 [l.O] 

1.8 -1.2134 [601 .81443 [254] .16237 [ 021 

2m -1.2702 [X21 0 0 

& = 1.91 12.01 
C 
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TABLE III 

-. 

2+1 Dimensional Ising - Comparison of critical value 

for E obtained in various calculations. 

Calculation 
EC 

Single site mean field 8 

Four-site mean field 7.45 

Four-site two-state block spin 7.11 

High Temperature Series expansion 6.22 + .06 
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TABLE IV 

Results from an eight-state calculation with improved 

magentization operator for 1+1 Dimensional Ising Model. 

E Energy Density Magnetization Gap 

1.8 -1.2149 [601 .8135 [25] .2099 [OO] 

2.0 -1.2716 [32] .4427 [O] .0255 to.01 

EC = 2.01 

Y = .127 

V = .965, from gap. 
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TABLE V 

_ Results of block mean field calculations for 1+1 Dimensional 

Ising Model in a Transverse field with varying block size. 

Number of Sites 

per Block E [Naive m.f.] 

1 4.0 

2 3.4 < EC < 3.5 

4 3.0 < EC < 3.1 

6 2.9 < EC < 3.0 

At E = 1.8 

Number of Sites Energy Density 

2 -1.2072 

4 -1.2108 

6 -1.2124 

[Exact] [-1.21601 
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-. 

Figure Captions 

Fig. 1. Division of a one-dimensional lattice into two-site blocks. 

Fig. 2. Division of a two-dimensional lattice into four-site blocks by 

blocking one dimension at a time. 

Fig. 3. The groud state energy density as a function of the variational 

parameter y for (a) f = .694, (b) f = .695, and (c) f = .7. 
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