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ABSTRACT 

Some consequences of the AKG cutting-rules far particle 

production off nuclei at low transverse momentum are 

examined. The condition for an arbitrarily defined cross 

section to be shadowed only by itself is given. Some 

physical examples and experimental consequences are 

discussed. Many new tests of certain general features of 

Reggeon field theory follow from our results. 
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The cutting rules in Reggeon Field Theory [l] have a very general 

validity; they follow from analiticity, unitarity and large pT damping 

[21 l The purpose of this letter is to explore in a systematic way 

certain consequences of these rules in hadron-nucleus interactions. 

Some of the formulae below can be found scattered thrughout the 

literature, mostly in the context of one and two particle inclusive 

reactions. However, it does not seem to be recognized that these rules 

have a much broader domain of applicability. Indeed, they have far- 

reaching consequences in many physical situations in which adequate 

selection criteria are imposed on the physical events. 

The resulting formulae apply with trivial modifications to both 

hadron-hadron and hadron-nucleus interactions. We restrict our analysis 

to the latter becausem, in this case, some of the consequences of the 

cutting rules (such as absence of shadowing or even presence of anti- 

shadowing) are most dramatic. For simplicity we shall use the 

implementation of the cutting rules contained in a simple probabilistic 

version of the Glauber-Gribov model [4]. However, our main results are 

independent of this model. Testing these results provides then a model 

independent test of the basic assumptions of the Reggeon Field Theory. 

Some of these tests are already possible with available data and are 

presented below. Other tests are suggested. 

Consider the scattering hA of a hadron h on a nucleus of atomic 

number A. The cross section for the scattering of h on n nucleons of 

the nucleus (with A-n, nucleons being spectators) is given by (n 2 1) 

of'%) = ( ; ) [otot T(b) 1" [l - atot T(B) 1 
A-n 

(1) 
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uy(s) = 1 d2b a:(b) 
- 

(2) 

In these formulae ( t ) = A!/n!(A-n)!, atot is the total h-nucleon 

cross section, b is the impact parameter, and T(b) is the normalized 

nuclear hadronic matter distribution. Equation (1) has a straight- 

forward probabilistic interpretation (Bernouilli's formula). Indeed 

u 
tot 

T(b) is the probability for the hadron h to interact with a nucleon 

from the nucleus at impact parameter b. 

Event Selection Criteria 

Single Criteria 

Let us now examine the effect of introducing partial cross sections 

by defining some criterion C, such that only events that satisfy the 

requirements of C will be counted; the resulting cross section is o 
c l 

Clearly,0 
tot 

=u +a 
C N' 

where pN denotes the cross section corres- 

ponding to all events which do not satisfy the requirements of C. Now 

[T(b) utot]” = TnW y ( ; ) u; u;-~ . 
i=O 

(3) 

Suppose now that the criterion C is such that a term in eq, (4) is 

counted if and only if i > 1. Physically this condition means that the 

superpositions of any number of events satisfying C as well as their 

superpositions with any number of events not satisfying C, also do 

satisfy criterion C. Moreover, these are the only events satisfying 

C. The corresponding cross-section in h-A interaction is then given by 
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-' u:(b) = 
A-n 

- u;] I%)[1 - T(b) utot] 

A 
= l- [l- T(b) u,] . (4) 

Note that in starting the summation in eq. (4) at n = 1, we implicitly 

assume that all events satisfying criterion C are inelastic. Equation 

(4) has a very interesting consequence. Indeed we see that u 
tot (or 

o,) does not appear in the formula and all the absorptive (shadowing) 

corrections to u 
C 

are O(ug). IfU co 
C tot 

one gets the standard A213 

behavior. On the other hand, if o 
c << utot 

one gets u hA 
C 

= AuC. 

The main feature of eq. (4), namely that u 
C 

is only shadowed by 

itself, is independent of the elastic rescattering approximation. 

The linearity in A should be true in a range of A such that 

uC(~-l) << ZERO, where the effective nuclear radius R(A), is defined 

by / d2b[t(b)12 = l/[nR2(A)]. However, the particular form of the 

self-shadowing given by eq. (4) does depend on the elastic rescattering 

approximation. A derivation of this result using only the A.K.G. 

cutting rules can be found in the Appendix of ref. [4]. 

ExamDles: 

I. Define C to be all inelastic diffractive events. Thus UC = Uin 

and u 
N 

= u el' It is easy to see that this is a suitable criterion: the 

superposition of any number of inelastic events as well as their super- 

position with elastic events is an inelastic event. Thus one has the 
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well-known result 

u:(b) = 1 - [l - T(b) uinlA . 

This equation implies that the hadron-nucleon inelastic cross-section is 

shadowed by itself [3] and not by u hA 
tot' 

and since u 
in 

is large, o 
in 

behaves essentially as A213. 

II. Define C to be all events in which one or more particles of a given 

type M (for instance positively charged particles) are produced in the 

rapidity interval yl < y < y2. It is easy to see that this is a 

suitable criterion and thus eq. (4) applies to this case. 

IfA=y 
2 - y1 is sma11S uC 

is small, and hA will have--a linear A 
uC 

dependence. By increasing A, uC will be increased and hA o C can 

eventually behave as A213. It would be interesting to check 

experimentally this dependence on A of the A-dependence, parametrized, 

hA for instance, as oC Q: ,dA> . Note that if C is defined to be one and 

only one particle of type M within A, this does not satisfy the test 

leading to eq. (4). 

A physically relevant example is to choose M to be a J/Q particle 

produced inside A. 
Since “Jh 

is small for all values of A, one finds 

a(A) = 1. 

III. A most interesting example is iA reactions [S]. Define C to be 

annihilation events, i.e., events with no fast isolated antibaryons 

(Bz pair production is allowed for fast pairs but the corresponding 
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cross section is negligibly small). Then u 
C 

= uannih, and since this 
-. 

cross section is small on a proton target at high energies, one expects 

uPA 0~ A. 
annih 

A similar example can be found in pA reactions in which C 

is defined as the set of events with no fast isolated baryons. This 

forces uc to be small at high energies since a baryon Regge exchange is 

involved and one expects o PA 
C a A. We show below that this behavior is 

in agreement with experiment. 

IV. If in example II one takes y = y + 6y with 6y small, u 
C 

is related 

to the inclusive cross section: 
OC = (du/dy)dy. Using eq. (4) and 

taking the limit 6y + 0 one gets the well known result [l] 

$ (hA + Mx,Y) = A$ (hp + Mx,Y) 
. 

(6) 

Obviously, such a relation is then also true for E d30/d3p. 

Double Criteria 

Let us consider next the partial cross section u CD corresponding to all 

the events satisfying two different criteria C and D. Obviously 

Otot = UCD + UC + “D + uN 9 (7) 

where oc(uD) is the partial cross-section for all events satisfying 

criterion C(D) only, and uN the cross section corresponding to all the 

events that satisfy neither C or D. Thus btotY is a superposition of 
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terms of the form (i + j + h < n) 
? 

. ' k n-(i+j+k> 
':D '; ?I oN . 

Suppose now that criteria C and D are such 

counted if and only if i 2 1 and/or both j 

write 

(8) 

that terms of type (8) are 

) 1 and k 2 1. We can then 

uCD(b) = ; ( ; )[o:,, - ("C + uN)n - CUD + uN)n + ';] 
n=l 

x [T(b)ln [l - T(b) utot]A-n . (9) 

In eq. (91, all contributions to u 
tot 

not satisfying both criteria C and 

D have been subtracted out. Performing the summation over n one gets 

o;(b) = 1 - [l - T(b>(uCD + uD)lA + 1 - [l - TW(uCD + oD)lA 

- {l - [l - T(b)(uCD + uC + u,)]~} . (10) 

The physical interpretation of this equation is quite transparent. 

Referring to eq. (4) one can see that the first (second) term is the 

partial cross-section for events satisfying C(D) with or without D(C). 

The third term is the cross section for events satisfying C or D only, 

together with those events satisfying both C and D which had been 

counted in both the first and second term (and thus were double 

counted). 
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We now examine some interesting limits of eq. (10). If o is 
CD 

large-done expects an A2j3 behavior of og. If uCD and uD are small 

and u C is large, one gets 

A-l 
u;W = AT(b)uCD + AT(b)uD[l - (1 - T(b)oC) ] . (11) 

Since the bracket in the second term is proportional to 8(R-b) one gets 

an essentially linear A behavior. Finally if uCD, uC and aD are all 

small, one gets 

= AT(b) uCD + A(A-1) acuD T2(b) + . . . (12) 

Upon integration over b one gets here a term inA uCD and a term 

aCuD A(A-1)/[.R2] = A 
413 

. The effectiver behavior of u:(s) is thus 

Aa with 1 < a < 4/3, the exact value of a depending on the relative size 

of the two terms in eq. (12). 

Examples: 

V. Define C(D) to be all events in which at least one particle of type 

M(N) is produced in the rapidity interval yl < yM < y2 (y3 < yN y4). 

For instance M could be a positive and N a negative charged particle. 

It is easy to see that these criteria satisfy the above requirements and 

thus eqs. (10-12) will be valid depending on the values of u 
CD' 'C 

and 

u . D 
These, in turn, depend on the nature of the produced particle and 

the size of the rapidity interval in which they have to be produced. 
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VI. A physically interesting example is the case where a J/$ particle 
-~ 

has to be produced between y and y 
1 

2 (criterion C) together with at - 

least one particle of type N between y3 and y4 (criterion D). In this 

situation oCD and oc are small but oD is large if y3 and y4 are far 

apart. In this case eq. (10) holds and one gets a linear A 

dependence. By reducing the rapidity gap A = y - y 
4 3' 'D becomes sma11 

and eq. (12) applies. If the second term in the latter equation is 

sizeable, one will get an Aa dependence with a > 1. 

VII. If in example I, one takes y = y + 6y and y' = y' + 6y' with 6y 

and 6y' small, one gets from eq. (12), in the limit 6y + 0 and 6~' + 0, 

the well known formula for the two paticle inclusive cross section, 

d2u - (u +M+N+X) = A- d2u ( hp+M+N+X) 
dydy ' dydy ' 

+ A(A;l) da (hp + M + X) da (hp + N + X) l 

ITR dy dy' 
(13) 

VIII. Consider a single particle inclusive cross section but with an 

extra requirement. Suppose now that C is any suitable criteria of the 

type discussed above and D is again at least one particle of type M in a 

rapidity interval yl < y < y2. Taking y = y + 6y and going to the limit 

6Y + 0, one gets the partial single particle inclusive cross section in 

which one counts only the events satisfying criterion C. In this case 

aCD = ( duch+y, uD = (doN/dy)6y, and one gets from eq. (11) 
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-.duC 
- w d y 

+M+X) = A 2 (hp + M + X) 

d"N 
+Ady (hp i. M+X) 1 d2b T(b) [l - (1 - 

Obviously 

da, d"N % (hp + M+X) +dy (hp + M-+X) = g (hp + M-+X 

T(b)uC)A-l] . (14) 

1 l 

Note that eq. (14) is f ormally identical to eq. (11). It follows from 

eqs. (9) and (14) that when a criterion of the type discussed above is 

imposed in the single particle inclusive cross section, duF/dy contains 

two terms. When uC is large the second term behaves linearly in A as 

the first one. However when uc is small this second term behaves like 

A413. Below we compute this term in some cases and found it sizeable 

enough to be detected experimentally [6]. As eqs. (6), (13) and (14) 

are valid for the invariant cross sections, before integrating over pT. 

Phenomenological Applications 

In order to test the linearity in A of a partial cross section oC 

with a single criterion [eq. (4)] we consider the second example in III 

namely proton-nucleus scattering with no fast baryon (say with 

x ax >. 
0 

Since the average baryon B multiplicity in the projectile 

hemisphere is equal to one, we can write 
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-j .“” 
in = ;' $f (PA + B+X) dx + I1 2 (PA + EM) dx (15) 

0 X 
0 

The first term in the r.h.s. of eq. (15), which represents the proton- 

nucleus cross section with no fast baryons, is given by eq. (4) and 

grows almost linearly with A. Since the inelastic (non-diffractive) 

cross section PA uin is known to grow approximately as A 213 , eq. (15) 

implies that the second term has to grow like Aa with a < 2/3. This is 

the well known phenomenon of attenuation of fast secondaries which has 

been verified experimentally [7]. If the experimental data on 

attenuation were precise enough for all produced baryons, one could use 

PA them,-together with the experimental values of uin, in order to test the 

A-behavior of the first term in the r.h.s. of eq. (15). _ Since this is 

not the case we are going to use eq. (15) in a different way: we assume 

that the A-dependence of its first term is given by eq. (4) and we use 

PA the experimental values of o. in 
in order to determine the A-dependence of 

the last term in eq. (15). The resulting A-dependence is then compared 

with the experimental data on attenuation. In order to find the value 

of u C 
in eq. (4), we use the inclusive data [8] for PP + B + X. For 

X = 0.3 we get 7.5 f 0.5 mb. The values of the last term with 
0 

X 
0 

= 0.3 for different values of A are given in table I. If 

parametrized in the form Aa, we find for the value of a between carbon 

and lead, a = 0.53 f 0.01. The comparison with experimental data is 

shown in fig. 1. Taking in eq. (15), x < 0.3 
0 

(x 
0 

> 0.3), the value of 

a increases (decreases) monotonically. Such an x-dependence is clearly 

seen in the data. This indirect test of eq. (4) is quite satisfactory. 
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Finally we examine the numerical values of the last term in eq. 
-. 

(14) in the case where M is any charged particle and u is the 
C 

annihilation p-p cross section. PP Using uC = uannih = 7 mb, we compute 

the values of the coefficient of the last term in eq. (14) (table II). 

We see that this term is quite sizeable at large A. As an application, 

we can compute the average value, 
">%nih 

of the transverse momentum 

squared in antiproton-nucleus annihilation events. Using eq. (14) and 

table II, we get: 

<P;>;znih = 12 

<p2>ipb 
T annih = 207 

2 PP + 0.19 <pT>na 

<p2>pp T + 0 60 <p2>" . 
T na 

I 

I l 

Such a departure from a linear A-dependence is quite sizeable and should 

be detectable. Experimentally <p > 
Ta 

seems to be slightly larger than 

<Ptina 191. This is expected from the above results. Indeed, due to 

the small shadowing in annihilation as compared to non-annihilation 

amplitudes, we expect the latter to be more peripheral that the former, 

both in pp and PA interactions. 
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TABLE I 

Proton-proton cross sections with fast baryon 

A PA PA UN = uin - UC 

in mb 

12 158,5 

27 263,4 

63 418,6. 

108 543,3 

207 719,8 
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TABLE II 

I = / d2b T(b) [l - (1 - T(b)cr,)A-'] 

with a, = 7 mb 

A I 

12 0.19 

27 0.30 

63 0.42. 

108 0.50 

207 0.60 
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FIGURE CAPTIONS 

Fig. 1. The A-dependence of the pA + p(A) + X inclusive spectrum in the 

proton fragmentation region, parametrized in the form Ae. The 

data are from ref. [7]. The dashed surface is the average 

value of a in the range x o < x < 1 with x0 = 0.3 computed from 

eq. (15). Increasing (decreasing) the value of x0, one obtains 

a smaller (larger) value of a, in agreement with the data. 
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