A MAGNIFYING MAGNETIC OPTICAL ACHROMAT*
 K. L. Brown
 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305
 R. V. Servranckx ${ }^{\dagger}$
 University of Saskatchewan, Saskatoon, Saskatoon, Canada S7N OWO

ABSTRACT

Scaling laws are developed to extend the unity magnification achromat principle [1] to magnetic optical systems possessing magnification. Examples are included to illustrate the methods developed.

Submitted to Nuclear Instruments \& Methods

[^0]
1. Introduction

Design criteria for a unity magnification second-order magnetic optical achromat have been described in a previous publication by K. L. Brown [1]. The achromat is a periodic array of $n(n>3)$ identical magnetic optical cells. The transformation matrix for the total system is the identity matrix and all second order transverse geometric and chromatic aberration terms are identically zero. Each cell of the achromat contains focusing and defocusing quadrupole components. One or more dipoles are added to each cell to provide momentum dispersion and two sextupole components are inserted into each cell, one for each transverse plane. One sextupole is positioned so as to couple more strongly to the x phase space and the other so as to couple more strongly to the y phase space. Corresponding x and y sextupoles in all cells are identical. Thus there are two families of sextupoles, one for the x plane and one for the y plane. The quadrupole components are adjusted to provide a unity first-order transformation matrix in each transverse plane. The two sextupole families are then adjusted to cancel one second order chromatic aberration term in each plane. When this is done all of the second order geometric and chromatic aberration terms vanish. The vanishing of the geometric terms is a direct consequence of the inherent symmetry in the cellular structure of the design. The chromatic terms vanish because the sextupoles are situated at the same position in each cell. A simple proof of this is given in the paper by Brown, and D. C. Carey has subsequently provided a more rigorous mathematical proof of the vanishing of the chromatic aberration terms [2].

The achromat described above is ideal for transporting a beam of charged particles where it is desired that the phase space configuration at the final point be a faithful reproduction of the beam at the entrance of the system. However there are many applications where it is desired to magnify or demagnify the beam size and at the same time have a system where the second order aberration terms either vanish or remain sufficiently small. It is the purpose of this paper to describe the design criteria for such a system which we shall call a "Magnifying Achromat". The notation used in this paper is that of TRANSPORT [3,4] and some traditional circular machine notation [5].

A typical cell structure for an achromat is the following:

$$
Q_{x}-S_{x}---D--Q_{y}-S_{y}---D---
$$

where Q_{x} is a quadrupole focusing in the x plane, Q_{y} is a quadrupole focusing in the y plane, S_{x} is a sextupole coupling predominantly to the x phase space, S_{y} is a sextupole coupling predominantly to the y phase space, and D is a dipole bending in the x plane. In this example each cell begins with Q_{x} and ends at the beginning of the next Q_{x}. Four or more such cells adjusted to a total phase shift of 2π (a unity transformation matrix) constitute a second-order achromat when S_{x} and S_{y} are adjusted so the second-order chromatic aberrations vanish. The transformation matrix for each cell (in each phase plane x and y) may be expressed as follows:

$$
R_{A}=\left|\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \tag{1}\\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right|
$$

$$
-4-
$$

where β and α have the same values at the same relative position in each unit cell [5]. The transformation matrix for n such cells in sequence is

$$
R_{A}^{n}=\left|\begin{array}{cc}
\cos n \mu+\alpha \sin n \mu & \beta \sin n \mu \tag{2}\\
-\gamma \sin n \mu & \cos n \mu-\alpha \sin n \mu
\end{array}\right|
$$

2. The magnifying achromat

The magnifying achromat is constructed in a similar manner to the unity magnification achromat described above but with some important differences. It is made of n cells $c_{1} \ldots c_{n}$ which transport a beam so that the parameters $\beta_{1} \alpha_{1}, \beta_{2} \alpha_{2} \ldots \beta_{n} \alpha_{n}$ describing the beam at the entrance of each cell satisfy the following relations:

$$
\left(\frac{\beta_{2}}{\beta_{1}}\right)^{1 / 2}=\left(\frac{\beta_{i+1}}{\beta_{i}}\right)^{1 / 2}=\left(\frac{\beta_{n+1}}{\beta_{n}}\right)^{1 / 2}=r
$$

and

$$
\begin{equation*}
\alpha_{1}=\alpha_{2}=\alpha_{i}=\alpha_{n}=\alpha \tag{4}
\end{equation*}
$$

These relations define a beam envelope magnification factor, r, from cell to cell. We now define a matrix M as follows

$$
M=\left|\begin{array}{cc}
r & 0 \tag{5}\\
0 & 1 / r
\end{array}\right|
$$

The transformation matrices of the successive cells may now be expressed in the following way:
for the first cell

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{MR}_{\mathrm{A}} \tag{6}
\end{equation*}
$$

for the ith cell

$$
\begin{equation*}
R_{i}=M^{i-1} R_{1} M^{-(i-1)}=M^{i} R_{A} M^{-(i-1)} \tag{7}
\end{equation*}
$$

and the total transformation matrix for n cells is

$$
\begin{equation*}
R_{T}=R_{n} \ldots R_{1}=M^{n} R_{A}^{n} \tag{8}
\end{equation*}
$$

When the cells are adjusted so that $\mu=2 \pi / n$, the total phase shift is 2π and the transformation matrix R_{T} simplifies to

$$
\mathrm{R}_{\mathrm{T}}=\left|\begin{array}{cc}
\mathrm{r}^{\mathrm{n}} & 0 \tag{9}\\
0 & 1 / \mathrm{r}^{\mathrm{n}}
\end{array}\right|
$$

where r^{n} is the total optical magnification of the system. Appendix 2 contains a proof that such an array is always achromatic to first order.

We now must examine how such a system can be built. A system of n identical cells whose transformation matrices R_{A} are adjusted so that $\mathrm{R}_{\mathrm{A}}^{\mathrm{n}}=\mathrm{I}$ is called a unity magnification achromat. Let us denote it by acrl. The system made of the n cells whose transformation matrices are $R_{1}, R_{2}, \ldots R_{n}$ (as defined in [6] and [7]) will be referred to as the corresponding magnifying achromat associated with acrl.
3. First order properties of the magnifying achromat. Consider the transformation matrix of the ith cell, including the dispersive terms d and $d '$

$$
R_{i}=\left|\begin{array}{lll}
c & s & d \tag{10}\\
c^{\prime} & s^{\prime} & d^{\prime} \\
0 & 0 & 1
\end{array}\right|
$$

and extend the magnification matrix M to a 3×3 matrix as follows

$$
M=\left|\begin{array}{ccc}
\mathbf{r} & 0 & 0 \\
0 & 1 / r & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Let us now design successive cells so that their matrices scale as shown in eq. (7). Then

$$
R_{i+1}=M R_{i} M^{-1}=\left|\begin{array}{ccc}
c & s r^{2} & d r \tag{11}\\
c^{\prime} / r^{2} & s^{\prime} & d^{\prime} / r \\
0 & 0 & 1
\end{array}\right|
$$

Formulae (10) and (11) determine the first-order scaling laws from cell to ce11. These scaling laws also apply to the corresponding subarray of the successive optical cells and in particular to each element of the cells. Now let us develop the scaling laws for typical building blocks.
3.1 Scaling law for a drift distance.

The matrix for a drift of length ℓ is

$$
\mathrm{R}_{\mathrm{drift}}=\left|\begin{array}{ll}
1 & \ell \tag{12}\\
0 & 1
\end{array}\right|
$$

Comparing eq. (12) with eq. (11), we conclude that the length ℓ scales with the matrix element R_{12}. So the length of a drift in cell 2 must be r^{2} times its length in cell 1 , and so forth for subsequent cells.
3.2 Scaling law for a quadrupole.

The matrix for a quadrupole is

$$
\mathrm{R}_{\mathrm{quad}}=\left|\begin{array}{cc}
\cos k \ell & \sin k \ell / k \tag{13}\\
-k \sin k \ell & \cos k \ell
\end{array}\right|
$$

where \sin and cos become sinh and cosh for the defocusing plane. R_{11} is constant from cell to cell, therefore kl must be constant. Since R_{12} scales as r^{2}, k and $k^{2} \ell$ must scale as r^{-2}.

3.3 Scaling for a uniform field wedge bending magnet.

The matrix for a uniform field wedge bending magnet referred to the center of the magnet is

$$
R_{\text {bend }}=\left|\begin{array}{ccc}
1 & 0 & 0 \tag{14}\\
-\sin \alpha / \rho & 1 & \sin \alpha \\
0 & 0 & 1
\end{array}\right|
$$

The above matrix must be premultiplied and postmultiplied by the matrix of a drift of length ρ tan $\alpha / 2$ to obtain the first order transformation matrix of a wedge magnet. The physical length of the dipole is equal to $\ell=\rho \alpha$. Correct first order scaling of the focusing and dispersive properties of the dipole is achieved when $\sin \alpha$ scales as r^{-1} and ρ scales as r. This implies that ℓ scales according to a more complex law for large α. However, for small angles $\sin \alpha \approx \alpha$ and ℓ is approximately constant. Since distances between centers of successive elements must
scale as r^{2}, additional drift spaces have to be added on each side of the dipoles in successive cells. In the vertical plane the wedge dipole acts like a drift space of length ℓ. This length should scale as r^{2} which conflicts with the exact scaling needed for the horizontal plane. Therefore for large bending angles the first order fitting will only be approximate. This can be observed in example 2, given below. However for most high energy applications $\tan \alpha=\sin \alpha=\alpha$ is a valid approximation. In this limit, the dipole scaling laws are quite satisfactory as is illustrated in example 1.
4. Second order properties of the magnifying achromat.

For this analysis we refer the reader to the theory and notation developed in reference [4] and in particular to tables 1 and 8 which define the notation and the formalism which we shall now use.
4.1 Scaling of the sine-1ike, cosine-1ike and the dispersion functions.

In reference [4], the R_{12} matrix element of eq. (10) above is called the sine-like function s, the R_{11} matrix element is the cosinelike function c, and R_{13} is the dispersion function d. There is no scaling law from cell to cell for the s, c and d functions in a given achromat. However, if we compare the functions s_{0}, c_{0} and d_{o} as defined for the nonmagnifying achromat, acr1, with the functions s, c and d of the corresponding magnifying achromat as we move from cell to ce11, the ratios $s / s_{o}, c / c_{0}$, and d / d_{o} scale as r and the ratios $s^{\prime} / s_{0}^{\prime}, c^{\prime} / c_{0}^{\prime}$ and $d^{\prime} / d_{o}^{\prime}$ scale as r^{-1}. This permits us to determine the second order scaling laws.

4.2 Scaling law for the sextupole strengths.

The integrated strength of a sextupole is $S_{j}=B_{o} L / a^{2} B p$. Let us look at the second order geometric aberration terms in table VII of ref [4] and consider only the contribution coming from the sextupoles. What must be the scaling applied to their strengths so that the second order geometric aberration terms are zero at the end of a 2π phase shift? These geometric terms are all of the form:

$$
\begin{equation*}
\sum \quad S_{j} s^{n} c^{m} \tag{15}
\end{equation*}
$$

where

$$
n+m=3
$$

and where the summation extends over the entire achromat. Comparing this sum to the one that would be obtained for the nonmagnifying achromat we observe that the function ratios c / c_{0} and s / s_{0} scale as r from cell to cell. In order to obtain the same contribution as for the non magnifying achromat, S_{j}, the integrated sextupole strength, must scale as r^{-3}. It is easily verified that this scaling law will guarantee an exact cancellation of all geometric terms arising from the presence of the sextupoles. The sextupole strengths may now be adjusted to cancel the chromatic terms arising from the quadrupoles and the dipoles as in the nonmagnifying achromat. The length of the sextupoles should scale as r^{2} although this is not rigorously necessary in most applications since the effective position of the sextupole is at its center.
4.3 Second order aberrations caused by the dipoles.

The second order geometric and chromatic terms produced by the dipole magnets in a magnifying achromat will not vanish at the 2π phase shift point in contrast to the unity magnifying achromat. This is verified by using ref. [4] and is observed in the computer simulations of magnifying achromat designs. The importance of these residual terms increases with the dipole strengths. Example 1 and example 2 given in the following paragraph illustrate this fact clearly.
5. Examples of uses of the magnifying achromat.
5.1 We now present here an example of a magnifying achromat to illustrate the scaling laws and to demonstrate its aberration properties with a TRANSPORT run output.

The achromat example shown is made of five cells each characterized by a magnification factor of $r=1.2$. The total achromat has a magnification factor of $r^{5}=2.48832$ equal to its optical magnification. In order to observe the scaling laws most clearly, the output should be scanned from the last element upwards. For the benefit of the reader, we have added to the standard TRANSPORT output the values of $\sin \alpha$ for the dipoles and the integrated strengths of the quadrupoles and sextupoles.

The reader should observe that the following scaling laws are used in the examples shown:

All lengths, except those of the dipoles and their immediately adjoining drifts, scale as $\mathrm{r}^{2}=(1.2)^{2}=1.44$.

The radius of curvature in the dipoles scale as $r=1.2$. . The field strength in the dipoles scales as $r^{-1}=1 / 1.2$.

The value of $\sin \alpha$ in the dipoles scales as $r^{-1}=1 / 1.2$.

The quadrupole strengths $k^{2} \ell=B_{o} \ell / a B \rho$ scale as $r^{-2}=(1.2)^{-2}$.

The sextupole strengths $S=B_{o} L / a^{2} B \rho$ scale as $r^{-3}=(1.2)^{-3}$.

The sum $D 1+L_{B}+D 2$ of the equivalent dipole length, L_{B}, and its two adjoining drift lengths scale as $r^{2}=1.44$. Note that for scaling purposes $L_{B}=2 \rho \tan \alpha / 2$, where ρ is the bending radius of the dipole.

Note that in the TRANSPORT runs the scaling of the quadrupole strengths was achieved by scaling the aperture, a, according to r^{4} and keeping the field, B, constant. Similarly the scaling of the sextupole strengths was achieved by scaling the aperture, a, according to $r^{5 / 2}$ and keeping the field B constant. This set up allows TRANSPORT to link the elements of one family from cell to cell and thereby find a solution to the fitting problem.

To within the accuracy allowed by the single precision IBM run of TRANSPORT, the first order achromaticity and the cancellation of all second order chromatic aberrations are verified. This is illustrated in example 1.

Example 2 is similar to example 1 , except that the field strength of the first dipole has been increased by a factor of ten. The four other dipoles are scaled according to the scaling laws given above. The purpose of this example is to illustrate that the residual second-order geometric aberration terms increase with the strength of the dipoles, and that the first-order fitting is not perfect in the y plane because $\sin \alpha \neq \alpha$.
5.3 Use of the magnifying achromat in a circular machine.

The authors have used the principle of the magnifying achromat as a basis for studying the design of low beta insertions in storage rings [6, 7].
[1] K.L. "Brown, "A second-order magnetic optical achromat," SLAC-PUB-2257 (February 1979).
[2] D.C. Carey, "Why a second-order magnetic optical achromat works," FERMILAB-PUB-79/61-EXP, 2042, Nuc1. Instrum. Methods 189 (1981) 365-367.
[3] K.L. Brown, D.C. Carey, Ch. Iselin and F. Rothacker, "TRANSPORT a computer program for designing charged particle beam transport systems," SLAC 91 (1973 rev.), NAL 91, and CERN 80-04.
[4] K.L. Brown, "A first- and second-order matrix theory for the design of beam transport systems and charged particle spectrometers," SLAC Report No. 75, or Advances in Particle Physics. 1,(1967) 71-134.
[5] K.L. Brown, "Beam envelope matching for beam guidance systems," SLAC-PUB-2370 (August 1980); a1so Nuc1. Instrum. and Methods 187 (1981) 51-65; Presented at the Conference on charged particle optics, Giessen, West Germany, Sept. 8-12, 1980.
[6] K.L. Brown and R.V. Servranckx, "Chromatic corrections for large storage rings, the llth Int. Conf. on High Energy Accelerators," CERN, Geneva, Switzer1and, 1980, p. 656-660.
[7] R.V.Servranckx, "Chromatic correction schemes for large circular machines"; Nucl. Instrum. and Methods 187 (1981) 67-73; Presented at the Conference on charged particle optics, Giessen, West Germany Sept. 8-12, 1980.

Appendix 1.

Let I_{A} be the 3×3 transformation matrix representing each cell in a unity magnification achromat.

$$
\mathrm{T}_{\mathrm{A}}=\left|\begin{array}{lll}
\mathrm{c} & \mathrm{~s} & \mathrm{~d} \tag{16}\\
\mathrm{c}^{\prime} & s^{\prime} & \mathrm{d}^{\prime} \\
0 & 0 & 1
\end{array}\right|=\left|\begin{array}{cc}
\mathrm{R}_{\mathrm{A}} & \mathrm{v} \\
& \\
0 & 1
\end{array}\right|
$$

where v is the dispersion vector $\binom{d}{d^{\prime}}$, then

$$
\begin{align*}
T_{A}^{n} & =\left|\begin{array}{cc}
R^{n} & \left(R_{A}^{n-1}+R_{A}^{n-2}+\ldots+I\right) v \\
0 & 1
\end{array}\right| \\
& =\left|\begin{array}{cc}
R^{n} & {\left[\left(R_{A}^{n}-I\right)\left(R_{A}-I\right)^{-1}\right] v} \\
0 & 1
\end{array}\right| \tag{17}
\end{align*}
$$

We conclude that T_{A}^{n} is achromatic to first order if and only if

$$
\begin{equation*}
\left[\left(R_{A}^{n}-I\right)\left(R_{A}-I\right)^{-1}\right] v=0 \tag{18}
\end{equation*}
$$

so, if and only if, either
(a) $\quad v=0:$ (every cell is achromatic),
or
(b) $R_{A}^{n}=I:($ the phase space advance is a multiple of 2π).

Appendix 2
Denote by T_{A} the 3×3 transformation matrix of each cell of a nonmagnifying achromat. Appendix 1 showed that T_{A}^{n} is achromatic when $\mathrm{T}_{\mathrm{A}}^{\mathrm{n}}=\mathrm{I}$.

The transformation matrices of the corresponding magnifying
achromat are

$$
\begin{align*}
& T_{1}=M T_{A} \\
& T_{2}=M^{2} T_{A} M^{-1} \tag{19}\\
& T_{n}=M^{n} T_{A} M^{-(n-1)}
\end{align*}
$$

Then the total transformation matrix is

$$
\begin{equation*}
T_{t}=T_{n} \ldots T_{1}=M^{n} T_{A}^{n} \tag{20}
\end{equation*}
$$

Since M^{n} is a diagonal matrix, we can state:
T_{t} is achromatic if and only if $\mathrm{T}_{\mathrm{A}}^{\mathrm{n}}$ is achromatic
and using appendix 1 , we have:
T_{t} is achromatic if and only if
(a) each cell is achromatic,
or
(b) the total phase advance is a multiple of 2π.

1\#EXAMPLEI// MAGNIFYING 2ND-ORDER ACHROMAT// R V S 5/4/81

	Length		B_{0}		Aperture		Strength		Rho		Alpha		$\sin (\mathrm{alpha})$
SEXT	1.28994	M	6.45725	KG	309.58618	MM	$2.605 \mathrm{E}-01 \mathrm{~N}$	M-2					
QUAD	4.29981		7.25172	KG	924.42065	MM	$1.011 \mathrm{E}-01 \mathrm{~N}$	M-1					
DRIFT	8.59963												
SEXT	1.28994		-14.39964	KG	309.58618		-5.810E-01	M-2					
QUAD	4.29981	M	-8.31280	KG	924.42065	MM	-1.159E-01	$\mathrm{M}-1$					
DRIFT	6.85453												
- *BEND*	3.49011	M	1.60862						207.360	M	0.964		$1.682 \mathrm{E}-02$
DRIFT	6.85453												
SEXT	0.89579	M	6.45725	KG	196.25885		4.502E-01	M-2					
QUAD	2.98598		7.25172	KG	445.80469	MM	$1.456 \mathrm{E}-01 \mathrm{M}$	M-1					
DRIFT	5.97196												
SEXT	0.89579	M	-14.39964	KG	196.25885	MM	-1.004	M-2					
QUAD	2.98598		-8.31280	KG	445.80469	MM	-1.669E-01	M-1					
DRIFT	4.22684												
BEND	3.49018	M	1.93034	KG					172.800	M	1.157	DEG	$2.019 \mathrm{E}-02$
DRIFT	4.22684												
SEXT	0.62208	M	6.45725	KG	124.41599	MM	7.780E-01	M-2					
QUAD	2.07360	M	7.25172	KG	214.99081	MM	$2.097 \mathrm{E}-01$	M-1					
DRIFT	4.14720												
SEXT	0.62208		-14.39964	KG	124.41599	MM	-1.735	M-2					
* QUAD*	2.07360	M	-8.31280	KG	214.99081	MM	-2.404E-01	M-1					
DRIFT	2.40197												
BEND	3.49029	M	2.31641	KG					144.000	M	1.389	DEG	$2.424 \mathrm{E}-02$
DRIFT	2.40197												
SEXT	0.43200	M	6.45725	KG	78.87201		1.344	M-2					
QUAD	1.44000	M	7.25172	KG	103.67998	MM	$3.019 \mathrm{E}-01$	M-1					
DRIFT	2.88000												
SEXT	0.43200	M	-14.39964	KG	78.87201	MM	-2.998	M-2					
QUAD	1.44000	M	-8.31280	KG	103.67998	MM	-3.461E-01	M-1					
*DRIFT**	1.13465												
BEND	3.49044		2.77970	KG					120.000	M	1.667	DEG	$2.909 \mathrm{E}-02$
DRIFT	1.13465												
* SEXT*	0.30000	M	6.45725	KG	50.00000	MM	2.323	M-2					
QUAD	1.00000	M	7.25172	KG	50.00000		4.348E-01	M-1					
DRIFT	2.00000												
* SEXT*	0.30000	M	-14.39964	KG	50.00000	MM	-5.180	M-2					
QUAD	1.00000	M	-8.31280	KG	50.00000	MM	-4.984E-01	M-1					
DRIFT	0.25449												
BEND	3.49066	M	3.33564	KG					100.000		2.000	DEG	3.490E-02
DRIFT	0.25449												
			0.009		13.021 MM								
			0.002		0.622 MR		0.000						
			0.0		0.832 MM		0.00 .0						
			0.0		0.636 MR		$0.0 \quad 0.0$	-0.00					
			-0.000		0.011 CM		-0.000 0.000	0.0	0.0				
			0.0		1.600 PC		$-0.000-0.000$	0.0	0.0	-	. 998		

l\#EXAMPLE2// MAGNIFYING 2ND-ORDER ACHROMAT// R V S 5/4/81

	Length	B_{0}		Aperture		Strength		Rho		Alpha		$\sin (a l p h a)$
SEXT	1.28994 M	0.63766 K	KG	309.58618		$2.572 \mathrm{E}-02 \mathrm{M}$	M-2					
QUAD	4.29981 M	7.12808 K	KG	924.42065	MM	$9.941 \mathrm{E}-02 \mathrm{M}$	$\mathrm{M}-1$					
DRIFT	8.59963 M											
SEXT	1.28994 M	-1.44317	KG	309.58618	MM	-5.823E-02 M	M-2					
QUAD	4.29981 M	-8.28693 K	KG	924.42065	MM	-1.155E-01 M	M-1					
DRIFT	6.95412 M											
BEND	3.43590 M	16.08620 k	KG					20.736	M	9.494	DEG	$1.649 \mathrm{E}-01$
DRIFT	6.95412 M											
SEXT	0.89579 M	0.63766 KC	KG	196.25885	MM	4.446E-02 M	M-2					
QUAD	2.98598 M	7.12808 K	KG	445.80469	MM	$1.431 \mathrm{E}-01 \mathrm{M}$	M-1					
DRIFT	5.97196 M											
SEXT	0.89579 M	-1.44317	KG	196.25885	MM	-1.006E-01	M-2					
QUAD	2.98598 M	-8.28693 K	KG	445.80469	MM	-1.664E-01 M	M-1					
DRIFT	4.29782 M											
BEND	3.44293 M	19.30344 K	KG					17.280	M	11.416	DEG	$1.979 \mathrm{E}-01$
DRIFT	4.29782 M											
SEXT	0.62208 M	0.63766	KG	124.41599	MM	$7.683 \mathrm{E}-02 \mathrm{M}$	M-2					
QUAD	2.07360 M	7.12808 K	KG	214.99081		$2.061 \mathrm{E}-01 \mathrm{M}$	M-1					
DRIFT	4.14720 M											
SEXT	0.62208 M	-1.44317	KG	124.41599	MM	-1.739E-01	M-2					
QUAD	2.07360 M	-8.28693	KG	214.99081		-2.397E-01 M	M-1					
DKIF'1	2.44915 M											
* BEND*	3.45320 M	23.16412	KG					14.400	M	13.740	DEG	$2.375 \mathrm{E}-01$
DRIFT	2.44911 M											
SEXT	0.43200 M	0.63766	KG	78.87201		$1.328 \mathrm{E}-01 \mathrm{M}$	M-2					
QUAD	1.44000 M	7.12808	KG	103.67998	MM	2.968E-01 M	M-1					
DRIFT	2.88000 M											
SEXT	0.43200 M	-1.44317	KG	78.87201	MM	-3.005E-01	M-2					
QUAD	1.44000 M	-8.28693	KG	103.67998	MM	-3.450E-01 M	M-1					
DRIFT	1.15926 M											
* BEND*	3.46828 M	27.79698	KG					12.000	M	16.560	DEG	2.850E-01
DRIFT	1.15926 M											
SEXT	0.30000 M	0.63766	KC	50.00000	MM	2.294E-01 M	M-2					
QUAD	1.00000 M	7.12808	KG	50.00000	MM	$4.274 \mathrm{E}-01 \mathrm{M}$	M-1					
DRIFT	2.00000 M											
SEXT	0.30000 M	-1.44317	KG	50.00000		-5.193E-01	M-2					
QUAD	1.00000 M	-8.28693	KG	50.00000	MM	-4.968E-01	M-1					
*DRIF'\%	0.25449 M											
* BEND*	3.49066 M	33.35637	KG					10.000	M	20.000	DEG	3.420E-01
* DRIFT*	0.25449 M											
		0.004		13.021 MM								
		0.005		0.623 MR		0.000				.		
		0.0		0.846 MM		0.00 .0						
		0.0		0.627 MR		0.00 .0	-0.068					
		-0.041		1.128 CM		$0.000 \quad 0.001$	0.0	0.0				
		0.0		1.600 PC		-0.000-0.000	0.0	0.0		0.999		

[^0]: * Work supported in part by the Department of Energy under contract DE-AC03-76SF00515 and in part by the Natural Sciences and Engineering Research Council of Canada.
 \dagger Supported in part by the Natural Sciences and Engineering Research Council of Canada.

