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1. Introduction 

Design criteria for a unity magnification second-order magnetic 

optical a:hromat have been described in a previous publication by 

K. L. Brown 111. The achromat is a periodic array of n (n > 3) 

identical magnetic optical cells. The transformation matrix for the 

total system is the identity matrix and all second order transverse 

geometric and chromatic aberration terms are identically zero. Each 

cell of the achromat contains focusing and defocusing quadrupole 

components. One or more dipoles are added to each cell to provide 

momentum dispersion and two sextupole components are inserted into each 

cell, one for each transverse plane . One sextupole is positioned so as 

to couple more strongly to the x phase space and the other so as to 

couple more strongly to the y phase space. Corresponding x and y 

sextupoles in all cells are identical. Thus there are two families of 

sextupoles, one for the x plane and one for the y plane. The quadrupole 

components are adjusted to provide a unity first-order transformation 

matrix in each transverse plane. The two sextupole families are then 

adjusted to cancel one second order chromatic aberration term in each 

plane. When this is done all of the second order geometric and chromatic 

aberration terms vanish. The vanishing of the geometric terms is a 

direct consequence of the inherent symmetry in the cellular structure of 

the design. The chromatic terms vanish because the sextupoles are 

situated at the same position in each cell. A simple proof of this is 

given in the paper by Brown, and D. C. Carey has subsequently provided a 

more rigorous mathematical proof of the vanishing of the chromatic 

aberration terms [2]. 
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The achromat described above is ideal for transporting a beam of 

charged particles where it is desired that the phase space configuration 

at the final point be a faithful reproduction of the beam at the 

entrance of the system. However there are many applications where it is 

desired to magnify or demagnify the beam size and at the same time have 

a system where the second order aberration terms either vanish or remain 

sufficiently small. It is the purpose of this paper to describe the 

design criteria for such a system which we shall call a "Magnifying 

Achromat". The notation used in this paper is that of TRANSPORT [3,4] 

and some traditional circular machine notation [5]. 

A typical cell structure for an achromat is the following: 

where Q is a quadrupole focusing in the x plane, 
QY 

is a quadrupole 
X 

focusing in the y plane, Sx is a sextupole coupling predominantly to the 

x phase space, Sy is a sextupole coupling predominantly to the y phase 

space, and D is a dipole bending in the x plane. In this example each 

cell begins with Q and ends at the beginning of the next Q . Four or 
X X 

more such cells adjusted to a total phase shift of 271 (a unity trans- 

formation matrix) constitute a second-order achromat when S and S are 
X Y 

adjusted so the second-order chromatic aberrations vanish. The 

transformation matrix for each cell (in each phase plane x and y) may be 

expressed as follows: 

cos p + ix sin p f3 sin p 
RA = (1) 

- y sin 1-i cos p - a sin 1-1 
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where 6 and a have the same values at the same relative position in each 

unit cell [5]. The transformation matrix for n such cells in sequence 

is 

n cos np + a sin np 6 sin np 
RA = (2) 

- y sin "1-I cos np - a sin nu 

2. The magnifying achromat 

The magnifying achromat is constructed in a similar manner to the 

unity magnification achromat described above but with some important 

differences. It is made of n cells c . ..cn which transport a beam so 
1 

that the parameters B1a1,B2a2...Bnan describing the beam at the entrance 

of each cell satisfy the following relations: 

( O2 )1/2 = 
B1 

( 8;1 )1/2 = 
i 

n+l &- 
n 

and 

al = a2 = ai = an = a 

1 l/2 = r’ 

(4) 

These relations define a beam envelope magnification factor, r, 

from cell to cell. We now define a matrix M as follows 

r 0 
M = (5) 

0 l/r 

The transformation matrices of the successive cells may now be expressed 

in the following way: 
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for the first cell 

Rl = MR* 

for the ith cell 

Ri 
= Mi-l R1 M-(i-l) = Mi RA M-(i-1) 

(6) 

(7) 

and the total transformation matrix for n cells is 

q = Rn....R1 = M" R; (8) 

When the cells are adjusted so that u = 2T/n, the total phase shift is 

21-r and the transformation matrix ~ simplifies to 

(9) 

where r n is the total optical magnification of the system. Appendix 2 

contains a proof that such an array is always achromatic to first order. 

We now must examine how such a system can be built. A system of n 

identical cells whose transformation matrices RA are adjusted so that 

Rl = I is called a unity magnification achromat. Let us denote it by 

acrl. The system made of the n cells whose transformation matrices are 

R1,R2,- Rn (as defined in [6] and [7]) will be referred to as the 

corresponding magnifying achromat associated with acrl. 
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3. First order properties of the magnifying achromat. 

Consider the transformation matrix of the ith cell, including the 

dispersive terms d and d' 
-. 

C S d 

Ri = C’ S’ d' 

0 0 1 

and extend the magnification matrix M to a 3x3 matrix as follows 

r 0 0 

M = 0 l/r 0 

0 0 1 

(10) 

Let us now design successive cells so that their matrices scale as shown 

in eq. (7). Then 

2 
C sr dr 

R -1 = MRiM = 
i+l cl/r2 S’ d'/r .. (11) 

0 0 1 

Formulae (10) and (11) determine the first-order scaling laws from cell 

to cell. These scaling laws also apply to the corresponding subarray of 

the successive optical cells and in particular to each element of the 

cells. Now let us develop the scaling laws for typical building blocks. 

3.1 Scaling law for a drift distance. 

The matrix for a drift of length R is 

Rdrift = 
Ii :I 

(12) 
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Comparing eq. (12) with eq. (ll), we conclude that the length R scales 

with the matrix element R120 So the length of a drift in cell 2 must be 

r2 times its length in cell 1, and so forth for subsequent cells. 
-. 

3.2 Scaling law for a quadrupole. 

The matrix for a quadrupole is 

Rquad = 
cos kR sin kR/k 

-k sin kR cos kG I 
(13) 

where sin and cos become sinh and cash for the defocusing plane. RI1 is 

constant from cell to cell, therefore kG must be constant. Since RI2 

scales as r2 , k and k2R must scale as r -2. 

3.3 Scaling for a uniform field wedge bending magnet. 

The matrix for a uniform field wedge bending magnet referred to the 

center of the magnet is 

1 0 0 
R 

bend = -sin a /p 1 sin a (14) 

0 0 1 

The above matrix must be premultiplied and postmultiplied by the matrix 

of a drift of length ptancL/2 to obtain the first order transformation 

matrix of a wedge magnet. The physical length of the dipole is equal 

to R = pa. Correct first order scaling of the focusing and dispersive 

properties of the dipole is achieved when sin a scales as r-1 and p 

scales as r. This implies that R scales according to a more complex law 

for large a. However, for small angles sin a = a and R is approximately 

constant. Since distances between centers of successive elements must 
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scale as r 
2 

, additional drift spaces have to be added on each side of 

the dipoles in successive cells. In the vertical plane the wedge dipole 

acts like-a drift space of length R. This length should scale as r2 

which conflicts with the exact scaling needed for the horizontal plane. 

Therefore for large bending angles the first order fitting will only be 

approximate. This can be observed in example 2, given below. However 

for most high energy applications tano = sina = a is a valid 

approximation. In this limit, the dipole scaling laws are quite 

satisfactory as is illustrated in example 1. 

4. Second order properties of the magnifying achromat. 

For this analysis we refer the reader to the theory and notation 

developed_in reference [4] and in particular to tables 1 and 8 which 

define the notation and the formalism which we shall now use. 

4.1 Scaling of the sine-like, cosine-like and the dispersion functions. 

In reference [4], the R 
12 

matrix element of eq. (10) above is 

called the sine-like function s, the R 
11 

matrix element is the cosine- 

like function c, and R13 is the dispersion function d. There is no 

scaling law from cell to cell for the s, c and d functions in a given 

achromat. However, if we compare the functions so, co and do as defined 

for the nonmagnifying achromat, acrl, with the functions s, c and d of 

the corresponding magnifying achromat as we move from cell to cell, the 

ratios s/s 
0’ 

c/c 
0’ 

and d/d scale as r and the ratios s'/s', c'/c' and 
0 0 0 

-1 
d'/d& scale as r . This permits us to determine the second order 

scaling laws. 
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4.2 Scaling law for the sextupole strengths. 

The integrated strength of a sextupole is S 
j 

= BoL/a2Bo. Let us 

look at the second order geometric aberration terms in table VII of 

ref [4] and consider only the contribution coming from the sextupoles. 

What must be the scaling applied to their strengths so that the second 

order geometric aberration terms are zero at the end of a ~-IT phase 

shift? These geometric terms are all of the form: 

where 

c sj sn cm 

n+m = 3 

(15) 

and where the summation extends over the entire achromat. Comparing 

this sum to the one that would be obtained for the nonmagnifying 

achromat we observe that the function ratios c/co and s/so scale as r 

from cell to cell. In order to obtain the same contribution as for the 

non magnifying achromat, S., 
3 

the integrated sextupole strength, must 

-3 scaleasr . It is easily verified that this scaling law will 

guarantee an exact cancellation of all geometric terms arising from the 

presence of the sextupoles. The sextupole strengths may now be adjusted 

to cancel the chromatic terms arising from the quadrupoles and the 

dipoles as in the nonmagnifying achromat. The length of the sextupoles 

should scale as r 2 although this is not rigorously necessary in most 

applications since the effective position of the sextupole is at its 

center. 
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4.3 Second order aberrations caused bv the dipoles. 

Tine second order geometric and chromatic terms produced by the 

dipole magnets in a magnifying achromat will not vanish at the 277 phase 

shift point in contrast to the unity magnifying achromat. This is 

verified by using ref. 143 and is observed in the computer simulations 

of magnifying achromat designs. The importance of these residual terms 

increases with the dipole strengths. Example 1 and example 2 given in 

the following paragraph illustrate this fact clearly. 

5. Examples of uses of the magnifying achromat. 

5.1 We now present here an example of a magnifying achromat to 

illustrate the scaling laws and to demonstrate its aberration properties 

with a TRANSPORT run output. 

The achromat example shown is made of five cells each characterized 

by a magnification factor of r = 1.2. The total achromat has a 

magnification factor of r5 = 2.48832 equal to its optical magnification. 

In order to observe the scaling laws most clearly, the output should be 

scanned from the last element upwards. For the benefit of the reader, 

we have added to the standard TRANSPORT output the values of sin a for 

the dipoles and the integrated strengths of the quadrupoles and 

sextupoles. 

The reader should observe that the following scaling laws are used 

in the examples shown: 

All lengths, except those of the dipoles and their immediately 

adjoining drifts, scale as r2 = (1.2)2 = 1.44. 
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The radius of curvature in the dipoles scale as r = 1.2. 

,,The field strength in the dipoles scales as r-l = l/1.2. 

The value of sina in the dipoles scales as r-1 = l/1.2. 

The quadrupole strengths k2Q = BoL/aBp scale as r -2 = (1.2>-2. 

The sextupole strengths S = BoL/a2Bp scale as rs3 = (1.2ja3. 

The sum D1+LB+D2 of the equivalent dipole length, LB, and its 

two adjoining drift lengths scale as r 2 
= 1.44. Note that for 

scaling purposes L 
B 

= 2ptano/2, where p is the bending radius of 

the dipole. 

Note that in the TRANSPORT runs the scaling of the quadrupole 

strengths was achieved by scaling the aperture, a, according to r 4 and 

keeping the field, B, constant. Similarly the scaling of the sextupole 

strengths was achieved by scaling the aperture, a, according to r 5/2 and 

keeping the field B constant. This set up allows TRANSPORT to link the 

elements of one family from cell to cell and thereby find a solution to 

the fitting problem. 

To within the accuracy allowed by the single precision IBM run of 

TRANSPORT 3 the first order achromaticity and the cancellation of all 

second order chromatic aberrations are verified. This is illustrated in 

example 1. 
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5.2 Example 2. 

Example 2 is similar to example 1, except that the field strength . . 

of the first dipole has been increased by a factor of ten. The four 

other dipoles are scaled according to the scaling laws given above. The 

purpose of this example is to illustrate that the residual second-order 

geometric aberration terms increase with the strength of the dipoles, 

and that the first-order fitting is not perfect in the y plane because 

sin a * a. 

5.3 Use of the magnifying achromat in a circular machine. 

The authors have used the principle of the magnifying achromat as a 

basis for studying the design of low beta insertions in storage rings 
. 

[6,71. 
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LetTA be the 3x3 transformation matrix representing each cell in a 

unity magnification achromat. 

C S d RA 
TA = C’ S’ d' = 

0 0 1 0 

where v is the dispersion vector ( d ), d' 
then 

R" 
T; = 

CR;-' + R;-2 + . . . + I 

0 1 

R" - I)(RA - I)-l]v 
= 

I 0 1 

V 

(16) 

1 

(17) 

We conclude that Ti is achromatic to first order if and only if 

[ CR; - I)(RA - I)-l]v = 0 , 

so, if and only if, either 

(18) 

(a) v = O:(every cell is achromatic), 

or 

(b) R; = I:(the phase space advance is a multiple of 271). 
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Appendix 2 

Denote by TA the 3x3 transformation matrix of each cell of a 

nonmagnifying achromat. Appendix 1 showed that Ti is achromatic when -. 

T;= I. 

The transformation matrices of the corresponding magnifying 

achromat are 
T1 = MTA 

T2 
-1 

= M2 TAM 
(19) 

Tn = M" TA M -(n-l) 

Then the total transformation matrix is 

Tt = T,...T 1 = M" T; (20) 
. 

Since M" is a diagonal matrix, we can state: 

T, is achromatic if and only if Ti is achromatic 

and using appendix 1, we have: 

Tt is achromatic if and only if 

(a> each cell is achromatic, 

or 

(b) the total phase advance is a multiple of HIT. 
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lf/EXAMF'LEl// MAGrJIFYING 2ND-ORDER ACHROMAT// R V S 5/4/31 

*SEXT* 
*QUAD* 
*DRIFT* 
"SEXT" 
*QUAD* 
*DRIFT* 

-*BEND* 
*DRIFT* 
*SEXT* 
*QUAD* 
*DRIFT* 
"SEXT* 
*QUAD* 
*DRIFT* 
*BEND* 
*DRIFT* 
*SEXT* 
*QUAD* 
*DRIFT* 
*SEXT* 
*QUAD* 
*DRIFT* 
*BEND* 
*DRIFT* 
*SEXT* 
*QUAD* 
*DRIFT* 
*SEXT* 
*QUAD* 
*DRIFT* 
*BEND* 
*DRIFT* 
*SEXT* 
*QUAD* 
*DRIFT* 
*SEXT* 
*QUAD* 
*DRIFT* 
*BEND* 
*DRIFT* 

Length B 
0 

Aperture Strength 

1.28994 M 6.45725 KG 309.58618 MM 2.605E-01 M-2 
4.29981 M 7.25172 KG 924.42065 MM l.OllE-01 M-l 
8.59963 M 
1.28994 M -14.39964 KG 309.58618 MM -5.810E-01 M-2 
4.29981 M -8.31280 KG 924.42065 MM -1.159E-01 M-l 
6.85453 M 
3.49011 M 1.60862 KG 
6.85453 M 
0.89579 M 6.45725 KG 196.25885 MM 4.502E-01 M-2 
2.98598 M 7.25172 KG 445.80469 MM 1.456E-01 M-l 
5.97196 M 
0.89579 M -14.39964 KG 196.25885 MM -1.004 M-2 
2.98598 M -8.31280 KG 445.80469 MM -1.669E-01 M-l 
4.22684 M 
3.49018 M 1.93034 KG 
4.22684 M 
0.62208 M 6.45725 KG 124.41599 MM 7.780E-01 M-2 
2.07360 M 7.25172 KG 214.99081 MM 2.097E-01 M-l 
4.14720 M 
0.62208 M -14.39964 KG 124.41599 MM -1.735 M-2 
2.07360 M -8.31280 KG 214.99081 MM -2.404E-01 M-l 
2.40197 M 
3.49029 M 2.31641 KG 
2.40197 M 
0.43200 M 6.45725 KG 78.87201 MM 1.344 M-2 
1.44000 M 7.25172 KG 103.67998 MM 3.019E-01 M-l 
2.88000 M 
0.43200 M -14.39964 KG 78.87201 bW -2.998 M-2 
1.44000 M -8.31280 KG 103.67998 MM -3.461E-01 M-l 
1.13465 M 
3.49044 M 2.77970 KG 
1.13465 M 
0.30000 M 6.45125 KG 50.00000 MM 2.323 M-2 
1.00000 M 7.25172 KG 50.00000 MM 4.348E-01 M-l 
2.00000 M 
0.30000 M -14.39964 KG 50.00000 MM -5.180 M-2 
1.00000 M -8.31280 KG 50.00000 MM -4.984E-01 M-l 
0.25449 M 
3.49066 M 3.33564 KG 
0.25449 M 

0.009 13.021 MM 
0.002 0.622 MR 0 .ooo 
0.0 0.832 MM 0.0 0.0 

Rho Alpha sin(alpha) 

207.360 M 0.964 DEG 1.682E-02 

172.800 M 1.157 DEG 2.019E-02 

144.000 M 1.389 DEG 2.424E-02 

. 

120.000 M 1.667 DEG 2.909E-02 

lOO.OOO M 2.000 DEG 3.490E-02 

0.0 0.636 MR 0.0 0.0 -0.001 
-0.000 0.011 CM -0.000 0.000 0.0 0.0 

0.0 1.600 PC -0.000 -0.000 0.0 0 .o -0.998 
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"TRANSFORM I* 
0.4o;aa 0.00004 0.0 0.0 0.0 -0.00010 
0 .ooooo 2.48833 0.0 0.0 0.0 -0.00003 
0.0 0.0 0.40194 -0.00013 0.0 0.0 
0.0 -. 0.0 -0.00020 2.48789 0.0 0.0 

-0.00000 0.00000 0.0 
0.0 0.0 0.0 

0*2ND ORDER TRANSFORM* 

0.0 1.00000 -0.00703 
0.0 0.0 1 .ooooo 

1 11 8.277E-06 
1 12 -4.032E-04 
1 13 0.0 

-1 14 0.0 
1 15 0.0 
1 16 1.470E-05 

2 11 1.986E-06 
2 12 -1.129E-04 
2 13 0.0 
2 14 0.0 
2 15 0.0 
2 16 6.651E-06 

3 11 0.0 
3 12 0.0 
3 13 -2.657E-06 
3 14 2.932E-05- 
3 15 0.0 
3 16 0.0 

4 11 0.0 
4 12 0.0 
4 13 1.297E-05 
4 14 1.623E-05 
4 15 0.0 
4 16 0.0 

5 11 -7.724E-09 
5 12 2.032E-07 
5 13 0.0 
5 14 0.0 
5 15 0.0 
5 16 2.140E-08 

1 22 4.196E-03 
1 23 0.0 
1 24 0.0 
1 25 0.0 
1 26 -4.531E-07 

2 22 1.314E-03 
2 23 0.0 
2 24 0.0 
2 25 0.0 
2 26 -9.350E-05 

3 22 0.01 
3 23 1.713E-04 
3 24 -3.161E-04 
3 25 0.0 
3 26 0.0 

4 22 0.0 
4 23 -3.769E-04 
4 24 -l.O48E-03 
4 25 0.0 
4 26 0.0 

5 22 2.260E-07 
5 23 0.0 
5 24 0.0 
5 25 0.0 
5 26 -l.O24E-06 

1 33 3.046E-05 
1 34 1.748E-04 
1 35 0.0 
1 36 0.0 

2 33 6.717E-06 
2 34 1.719E-05 
2 35 0.0 
2 36 0.0 

3 33 0.0 
3 34 0.0 
3 35 0.0 
3 36 -2.596E-05 

4 33 0.0 
4 34 0.0 _ 
4 35 0.0 
4 36 a.a97i+-05 

5 33 -1.762E-07 
5 34 -5.879E-07 
5 35 0.0 
5 36 0.0 

1 44 -2.047E-04 
1 45 0.0 1 55 0.0 
1 46 0.0 1 56 0.0 

1 66 -2.682E-05 

2 44 -l.O76E-04 
2 45 0.0 2 55 0.0 
2 46 0.0 2 56 0.0 

2 66 -2.806E-06 

3 44 0.0 
3 45 0.0 3 55 0.0 
3 46 -2.07aE-04 . 

4 44 0.0 
4 45 0.0 4 55 0.0 
4 46 1.631E-04 

5 44 -3.13aE-06 
5 45 0.0 5 55 0.0 
5 46 0.0 5 56 0.0 

5 66 -1.728E-04 
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l#EXAMPLE2// MAGNIFYING 2ND-QRDER ACHRQMAT// R V S 514151 

Length. Bo Aperture Strength 

*SEXT* 1.28994 M 0.63766 KG 309.58618 MM 2.572E-02 M-2 
*QUAD* 4.29981 M 7.12808 KG 924.42065 MM 9.941E-02 M-l 
*DKIFT* a.59963 M 
"SEXT" 1.28994 M -1.44317 KG 309.58618 MM -5.a23E-02 ~-2 
*QUAD* 4.29981 n -8.28693 KG 924.42065 MM -l.l55E-01 M-l 
*DRIFT* 6.95412 M 
*BEND* 3.43590 PI 16.08620 KG 
*DRIFT* 6.95412 M 
"SEXT" 0.89579 M 0.63766 KG 196.25885 MM 4.446E-02 M-2 
*QUAD* 2.98598 M 7.12808 KG 445.80469 MM 1.431E-01 M-l 
*DRIFT* 5.97196 M 
*SEXT* 0.89579 M -1.44317 KG 196.25885 MM -l.O06E-01 M-2 
*QUAD* 2.98598 M -a.28693 KG 445.80469 MM -1.664E-01 M-l 
*DRIFT* 4.29782 M 
*BEND* 3.44293 M 19.30344 KG 
*DRIFT* 4.29782 M 
*SEXT* 0.62208 M 0.63766 KG 124.41599 !@l 7.683E-02 M-2 
*QUAD* 2.07360 M 7.128'08 KG 214.99081 MM 2.061E-01 M-1 
*DRIFT* 4.14720 M 
*SEXT* 0.62208 M -1.44317 KG 124.41599 MM -1.739E-01 M-2 
*QUAD* 2.07360 M -8.28693 KG 214.99081 MM -2.397E-01 M-l 
*DRIFT* 2.4491l M 
*BEND* 3.45320 M 23.16412 KG 
*DRIFT* 2.44911 M 
*SEXT* 0.43200 M 0.63766 KG 78.87201 MM 1.328E-01 M-2 
*QUAD* 1.44000 M 7.12808 KG 103.67998 MM 2.968E-01 M-l 
"DRIFT* 2.88000 M 
*SEXT* 0.43200 M -1.44317 KG 78.87201 MM -3.005E-01 M-2 
*QUAD* 1.44000 M -8.28693 KG 103.67998 MM -3.450E-01 M-l 
*DRIFT* 1.15926 M 
*BEND* 3.46828 M 27.79698 KG 
*DRIFT* 1.15926 M 
"SEXT" 0.30000 M 0.63766 KG 50.00000 ml 2.294E-01 M-2 
*QJJAD* 1.00000 M 7.12808 KG 50.00000 MM 4.2748-01 M-l 
"DRIFT* 2.00000 M 
*SEXT* 0.30000 M -1.44317 KG 50.00000 MM -5.193E-01 M-2 
*QUAD* 1.00000 M -8.28693 KG 50.00000 MM -4.96aE-01 M-l 
*DRIFT* 0.25449 M 
*BEND* 3.49066 M 33.35637 KG 
*DRIFT* 0.25449 M 

0.004 13.021 MM 
0.005 0.623 MR 0 .ooo 
0.0 0.846 MM 0.0 0.0 

17.280 M 11.416 DEG 1.979E-01 

0.0 0.627 MR 0.0 0.0 -0.068 

Rho Alpha sin(alpha) 

20.736 M 9.494 DEG 1.649E-01 

14.400 M 

12.000 M 

10.000 M 

13.740 DEG 2.375E-01 

16.560 DEG 2.850E-01 

20.000 DEG 3.42OE-01 

-0.041 1.128 CM 0.000 0.001 0.0 0.0 
0.0 1.600 PC -0.000 -0.000 0.0 0.0 -0.999 
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*TRANSFORM l* 
0.40187 0.00020 0.0 0.0 0.0 -0.00010 
0 .ooooo 2.48835 0 .O 0.0 0.0 -0.00003 
0.0 0.0 0.40852 -0.01438 0.0 0.0 
0.0 -, 0.0 -0.01918 2.44849 0 .O 0.0 
0.00000 -0.00000 0.0 
0.0 0.0 0.0 

0* 2ND ORDER TRANSFORM* 

0.0 1 .ooooo -0.70422 
0.0 0.0 1 .ooooo 

1 11 4.463E-05 
1 12 -1.969E-03 
1 13 0.0 
.I 14 0.0 
1 15 0.0 
1 16 l.O37E-03 

2 11 9.348E-06 
2 12 -5.530E-04 
2 13 0.0 
2 14 0.0 
2 15 0.0 
2 16 4.802E-04 

3 11 0.0 
3 12 0.0 
3 13 -2.534E-05 
3 14 3.077E-04~ 
3 15 0.0 
3 16 0.0 

4 11 0.0 
4 12 0.0 
4 13 9.928E-05 
4 14 1.341E-04 
4 15 0.0 
4 16 0.0 

5 11 -9.648E-07 
5 12 2.581E-05 
5 13 0.0 
5 14 0.0 
5 15 0.0 
5 16 1.529E-05 

1 22 1.658E-02 
1 23 0.0 
1 24 0.0 
1 25 0.0 
1 26 1.314E-03 

2 22 6.093E-03 
2 23 0.0 
2 24 0.0 
2 25 0.0 
2 26 -6.418E-03 

3 22 0.0 
3 23 1.736E-03 
3 24 -3.491E-03 
3 25 0.0 
3 26 0.0 

4 22 0.0 
4 23 -3.05OE-03 
4 24 -l.O13E-02 
4 25 0.0 
4 26 0.0 

5 22 1.645E-05 
5 23 0.0 
5 24 0.0 
5 25 0.0 
5 26 -8.686E-04 

1 33 2.436E-04 
1 34 1.691E-03 
1 35 0.0 
1 36 0.0 

2 33 4.984E-05 
2 34 1.510E-04 
2 35 0.0 
2 36 0.0 

3 33 0.0 
3 34 0.0 
3 35 0.0 
3 36 -1.773E-03 

4 33 0.0 
4 34 0.0 
4 35 0.0 
4 36 5.154E-04 

5 33 -4.911E-07 
5 34 -4.337E-05 
5 35 0.0 
5 36 0.0 

1 44 -1.749E-03 
1 45 0.0 1 55 0.0 
1 46 0.0 1 56 0.0 

1 66 -1.745E-02 

2 44 -9.404E-04 
2 45 0.0 2 55 0.0 
2 46 0.0 2 56 0.0 

2 66 -1.904E-03 

3 44 0.0 
3 45 0.0 
3 46 2.127E-03 

4 44 0.0 
4 45 0.0 
4 46 l.O51E-02 

5 44 2.855E-05 
5 45 0.0 
5 46 0.0 

3 55 0.0 

4 55 0.0 

5 55 0.0 
5 56 0.0 

5 66 -1.569E-02 


