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I. INTRODUCTION 

The main purpose of this talk is to describe the Free 

Electron Laser (FEL) in terms that are familiar to accelera- 

tor physicists. Since many of you are not acceIerator 

physicists some discussion will be included to describe how 

an accelerator works. Once the similarity between the 

design and operation of an accelerator and a FEL is under- 

stood it will be possible to use the methods of accelerator 

design to assist us in the understanding and design of 

FEL's. 

Shortly after the first successful operation of the FEL 

at Stanford1 the first conference in this series was held in 

1977 at Telluride.2 This conference was extremely valuable 

in conveying much of the information about free electron 

lasers to the rest of the community. From these Telluride 
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lectures it was clear that it is possible to describe the 

FEL with a classical theory,3 and for many cases it is 

possible to use a single electron analysis.4 The following 

summer (1978) in La Jolla the results from the first 

Telluride Conference were used to study the FEL with a 

formulation developed for the design and operation of high 

energy accelerators and storage rings.5 By the time of the 

next Telluride Conference in 1979,6 accelerator terms were 

in wide use in many of the presented papers. Before des- 

cribing what an FEL is and how it works let us begin by 

reviewing some properties of accelerators and storage rings. 

II. REVIEW OF RELEVANT ACCELERATOR PROPERTIES 

In a circular accelerator it is possible to define a 

closed or "equilibrium" orbit, which is a function of parti- 

cle energy, such that if a particle is launched on this 

orbit at one point in the ring it will return to the same 

point in the ring traveling in the same initial direction. 

Generally there is only one such closed orbit for each 

particle energy. Two such equilibrium orbits are shown in 

Fig. 2.1, one for energy y (measured in terms of the parti- 

cle rest mass) and the second for energy y + 6~. 

The separation of the equilibrium orbits for different 

energies is given by 6x = 17(&y/y), where n, a function of 

azimuth in the accelerator, is called the dispersion. The 

difference between the total path length of two different 

energy equilibrium orbits is given by 

6L 
-T= 3 ($1 

B 
(2.1) 
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Betatron 
Osc~llatlon 

Path Length 
L+6L 

Fig.. 2.1. Display of equilibrium orbits 
for various energies. 

where a is an integral around the azimuth called the 

momentum compaction factor. The integral involves the 

n-function and the local bending radius. When particles are 

not initially on their equilibrium orbit, appropriate to 

their energy, they perform "betatron" oscillations about the 

equilibrium orbit as shown in Fig. 2.1. 

Since both the speed (v) and the path length (L) depend 

upon particle energy (y) the change in the total angular 

revolution frequency (w,) is given by 

6w 
0 

-= 
w 

(~-Ls) 

0 

which may be written as 

(2.2) 

(2.3) 
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We see that at a particular energy denoted as the transition 

eneriiv, Y t 
= (y , the increase in particle speed with 

energy is exactly compensated by the increase in path length 

with energy. Now consider the case where an electric field 

in an rf cavity in the ring is oscillating at harmonic (h) 

of the nominal angular revolution frequency (w,). We find 

that the average change in the phase ($) of the electric 

field in the cavity between the time of successive passages 

of the particle through the cavity is given by 

(Ad one revolution = 
~ITR 

(2 04) 

where R is the average ring radius equal to the circum- 

ference divided by 2n, and z is a coordinate measured along 

the nominal equilibrium orbit. We see that the rate of the 

phase change with energy is determined by a change in both 

the particle velocity and the path length traveled along the 

closed orbit. 

In order to accelerate particles in an accelerator we 

use rf cavities to produce an electric field in the 

longitudinal direction of the particle motion. Two such 

cavities are shown in Fig. 2.2 separated by a distance I. 

In such cavities the sense and magnitude of the electric 

field oscillate with time, When the electric force is in 

the same direction as the particle velocity the particle is 

accelerated and the electric field has transfered energy to 

the particle. Conversely, if the electric force opposes the 

velocity of the particle the particle is decelerated and 

energy is transferred to the electric field. Thus accelera- 



Fig. 2.2. Illustration of acceleration 
with rf cavities. 

tion or deceleration depends upon the relative phase between 

the longitudinal velocity vector vz and the longitudinal 

electric field vector E, at the time when the particle 

passes through the cavity. The rate of change in the parti- 

cle energy may be written as 

dy q<Ez> 

dz = mc2 sin ' 

. 
(2.5) 

where q is the particle's charge, mc2 the rest mass energy 

of the particle, <EZ> the magnitude of the average electric 

field the particle experiences in traveling distance dz, and 

Q is the relative phase between the longitudinal electric 

force vector and the longitudinal particle velocity vector 

defined above. 

In particle accelerators the arrangement of acceler- 

ating cavities can vary widely. In a linac many cavities 

are arrayed in a straight line and the particles pass 

through each of them once. In a circular accelerator there 

may be one or several cavities and the particles pass 

through all of them on each revolution. For our present 

purpose let us presume we are dealing with a circular 

accelerator with only one accelerating cavity so that L is 
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the circumference of the nominal equilibrium orbit. In this 

case, there is a synchronous (resonant) phase Jlr between the 

velocity vz and the electric field Ez of the cavity at which 

a particle will gain or lose exactly the proper energy to 

remain synchronous. The synchronous phase obeys the 

equation 

dyr q<EZ> 
-= 

dz - sin JI, . 2 
mc 

(2.6) 

By defining the energy deviation 6y = y-y, we obtain the 

following differential equation for the energy deviation of 

a particle which is not riding at the synchronous phase. 

d( 6~) q<EZ> 
-= 

dz 2 (sin J, - sin $,) . 
mc 

(2.7) 

The differential equation for the phase.(+) is given by 

Eq. (2.4). Equations (2.4) and (2.7) are the standard rf 

equations used by accelerator designers for years and a 

great deal of work has been done in analyzing these 

equations.7 Later we will demonstrate the similarity 

between these equations and those which describe the FEL and 

show how the analysis of accelerator designers may be used 

for FEL design. 

For the case where the changes in the parameters are 

adiabatic we can immediately draw the trajectories in phase 

space which correspond to the solutions of Eqs. (2.4) and 

(2.7). These trajectories are shown in Fig. 2.3 for parti- 

cles with energies below transition energy, and therefore 

with sin $I, > 0. [For accelerator designers the synchro- 

nous phase reference is chosen such that below transition 

energy the synchronous particle is accelerated when 
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Fig. 2.3. Trajectories in I#, 6y phase 
plane for +, > 0 below transition energy. 

0 < JI, < n/2. This custom is in accordance with Eq. (2.6).] 

The closed trajectories correspond to particles trapped in 

buckets and which perform stable "synchrotron" oscillations 

about the resonant phase and energy. The maximum stable 

phase curve of a single bucket is shown in Fig. 2.4. The 

maximum value of 6y for which a particle may be trapped in a . 
bucket is given by 

6Y = [ 
2B2Rq<EZ>y 

m hKmc2 

l/2 
3 r(*,) 

Mowmum Closed 
Phase Curve 

(2.8) 

Fig. 2.4. Stable phase plane trajectories. 
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-. 
with 

K = r+- 4 
Y 

(2 09) 

and 

r (Jt ) = [cos I#, - (f sin Q, - 6,) sin IJ.J~]~'~ . 

(2.10) 

We note that r varies between its maximum value of one 

(at +r = 0) to zero (at Q = n/2). Within the bucket small 
r 

amplitude motion is nearly sinusoidal with a frequency of 

% = [ 

hK<EZ) cos Q, l/2 

B2y R mc2 J l 

(2.11) 

The terms spontaneous and stimulated emission are often 

used by laser physicists and it will be useful to illustrate 

how an accelerator physicist views these phenomena. Con- 

sider an empty rf cavity, at time t < 0, i.e., one where 

EZ = 0 for t < 0 (see Fig. 2.2). Let a particle of charge q 

enter the cavity with velocity vz at time t = 0 and exit at 

time t = tl0 At time t > tl this charge will have excited a 

field in the cavity at various modes. For the Xth mode this 

excited field may be written as 

+ -f 
EAG) = q r<;> (2.12) 

+ 
where ?<;t') is independent of q, the bar over a quantity 

denotes a complex phasor at frequency wx, and g is the posi- 
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-~ tie: in the cavity. The phase of the longitudinal component 

of r(r) is opposite to the phase of the particle velocity 

VZ* 
The stored energy in the Xth cavity mode following the 

passage of the particle is independent of time (for a 

perfectly conducting cavity) and is given by 

+ 
u = kq2 l ?(;) . f(:) d: (2.13) 

where k is a constant of proportionality that depends on the 

units used. 

If instead of a single particle traveling through the 

rf cavity we imagine a continuous uniform beam we find that 

we have a superposition of fields from many particles all at 

separate phases. The sum of all of these separate fields 

would be zero (if we ignored the effect of the field from 

one particle acting on another particle). Thus.for a beam 

of particles to excite or leave behind stored energy in the 

cavity it is necessary to have a density fluctuation in the 

beam at the resonant mode frequency of the cavity. This 

fluctuation may be noise due to statistical, quantum, or 

other sources. A plot of the response of the cavity as a 

function of the frequency of the density variation is given 

by Fig. 2.5. A laser physicist would call this "the gain 

curve for spontaneous emission. 

Next we consider this same rf cavity except we assume 

that at t = 0 there is an electromagnetic field present (see 

Fig. 2.2) given by 

-b -f 

EZ 
= Eo(:) (2.14) 
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8-81 
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4,74*5 

Fig. 2.5. Gain curve for spontaneous 
emission. 

with an initial stored energy 

+ 

uO 
= k I ?o(;) . Eo(;) d; . (2.15) 

After the particle has left the cavity the electric field in 

the cavity is given by sum of the original field and the 

induced field, i.e., 

+ -+ + 

EZ 
= Eo(Z) + q?(S) (2.16) 

and the stored energy is given by 

u = U. + 2kq Real Part [ 1 ?o(:) l ;(:, dr+] 

+ q2k 1 &:, 
+ 

l i(t) d; . (2.17) 

The change in the stored energy of the cavity is due to 

two terms. The second term on the rhs of Eq. (2.17) is the 

stimulated emission while the third term is the spontaneous 

emission discussed above. 
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It is possible to write the second or stimulated term, 

which represents the interference between the spontaneous 

induced electric field and the original electric field, as 

AU = - q <EZ> sin 9 (2.18) 

where + is minus the phase between the induced electric 

field (which opposes the longitudinal particle velocity) and 

the original electric field. 

In other words the stimulated emission (or absorption 

for positive +) is just the transfer of energy from the 

particle as it is decelerated (or accelerated) and depends 

upon the relative phase between the particle's longitudinal 

velocity vz and the electric field in the cavity. Usually 

the stimulated emission is much larger than the spontaneous 

emission and we can treat the total effect as if a charged 

particle is decelerated (or accelerated) by the electro- 

magnetic field in the cavity. 

III. DESCRIPTION OF A FEL 

A free electron laser consists of a wiggler field 

through which a beam of electrons passes, together with a 

plane electromagnetic wave as shown in Fig. 3.1. The 

wiggler field may be either a periodic magnetic bending 

field or a different electromagnetic wave traveling in the 

opposite direction. Laser people refer to this wiggler 

field as the pump field. For simplicity we will restrict 

our consideration only to periodic magnetic wiggler fields. 

The electrons enter the wiggler at y(O) and leave the 
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Fig. 3.1. Schematic representation 
of free-electron-laser. 

wiggler with energy y(L), while the intensity of the 

electromagnetic radiation enters with an initial value a,(O) 

and exits with a value a,(L). For FEL operation it is im- 

portant that energy from the electron beam be transferred to 

the electromagnetic radiation, i.e., 

Y(L) < Y(O) and as(L) > a,(O) l 

There are two operating regimes for the FEL. The 

first, called the Raman regime, is characterized by collec- 

tive interactions between the electrons being important, and 

occurs for high electron beam currents and low electron 

energy (y h 1). The second, called the Compton regime, is 

the single particle regime where collective effects may be 

ignored, and occurs for large values of electron energy 

(Y > 10). 

The FEL is classified as an amplifier if the electro- 

magnetic wave passes through the FEL only once. For this 

mode of operation to be useful it is necessary to have a 

high gain, i.e., as(L) >> as(O). If mirrors are used to 

recirculate the photons then the FEL is classified as an 

oscillator and low gain devices in which as(L) 7 a,(O) are 

useful. 
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Similarly we can use a linac to produce a beam of elec- 

trons which pass through the FEL only once or use a storage 

ring to recirculate the electron beam so the same electrons 

pass through the FEL many times. 

One of the important differences between the acceler- 

ating cavity described above and the FEL is, that the 

electric field in the accelerating cavity is in the 

longitudinal direction of the electron beam motion while the 

electric field of the FEL is in the transverse direction 

perpendicular to the longitudinal velocity of the electron 

beam. In order for the electron and the optical electro- 

magnetic field to exchange energy it is necessary for the 

electron to have a velocity in the same direction as the 

transverse electric field of the optical wave. One method 

of obtaining this transverse velocity is by the use of a 

wiggler magnetic field. A wiggler magnet is one-with a 

transverse magnetic field which oscillates in amplitude as a 

function of the longitudinal coordinate. There are two 

types of wigglers; the helical type as originally used by 

Madey to amplify circularly polarized light and the linear 

wiggler which amplifies linearly polarized light. An 

example of an linear wiggler and the transverse particle 

motion is shown at the top of Fig. 3.2. The magnetic field 

is given by 

B = fi B sin k,z (3.1) 
Y 0 

with B, the rms magnetic field strength and X = 2nlkw the 
W 

wiggler wavelength. The transverse angle of the oscillation 

in such a wiggler is given by 
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Wiggler 
Wavelength 
A,= 2-rr/k,., 

Particle “x-+2 
Motion iti 

Ex(tl) I IkYk 1 

Ex (13) 
t itYt 

j, t2 = +, +q2v* t3 = t2 + b/“, I l, 

Fig. 3.2. Interaction of electron trans- 
verse velocity with transverse electric 
force of optical electromagnetic wave at 
various times and positions in FEL. 

a 
2 cos kwz 

Z 
Y . 

where a w is the reduced wiggler vector potential 

eB 
0 a = 

W kw mc2 

(3.2) 

(3.3) 

and we have neglected the explicit dependence of the trans- 

verse electron motion upon the optical electromagnetic 

field. This last approximation is quite good; for example, 

a 1 nm laser with an intensity of 10 Gwatt/cm2 has a less- 

than-one-part-in-lo4 effect on the transverse electron 

velocity. 

In Fig. 3.2 we display the mechanism for the transfer 

of energy between the electron and the transverse electric 

field of the optical plane wave. We consider an electron in 

the wiggler at time tl with its transverse velocity vx 
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r~ positive as shown in Fig. 3.2. At time t 
2 

= tl + Xw/2vz the 

electron has traveled along the wiggler one-half of a 

wiggler period and the sign of vx has changed, while at time 

t3 
= tl + Xw/vz the electron has traveled one full wiggler 

period and vx is positive. The electric force from the 

optical wave is represented by arrows displayed in Fig. 3.2 

labeled E, for the various times. Notice that at time tl 

the electric force from the optical wave opposes the trans- 

verse velocity vx of the electron. This electric force 

arrow is marked with a large tail. We consider the case 

where the optical wavelength is chosen such that at time t2 

the optical wave has traveled one-half of an optical wave 

further in the longitudinal direction than the electron 

beam. The new electric force vector is now one-half wave- 

length behind the original electric force vector (with the 

tail) and opposes the new transverse electron velocity. 

Similarly at time t3 the optical wave has moved ahead of the 

electron by one full optical wavelength and again the elec- 

tric force opposes the transverse electron velocity. For 

the transverse electron velocity to remain in phase with the 

optical force the electron slips behind the optical wave by 

one optical wavelength in traveling one wiggler period. 

This is the condition for resonance where, on the average, 

the electron will either give or receive energy from the 

optical field depending upon the initial phase between the 

transverse electron velocity and the electric force of the 

optical wave. 

The distance the electron slips behind the optical wave 

is due to two effects. The first effect results from the 

fact that speed v of the electron is less than the phase 

velocity c of the optical wave. The second effect occurs 

because in one wiggler period, the path length (L) traveled 
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- by the electron is greater than the distance (A,) traveled 

by the optical wave. Note that the change in the phase of 

the transverse electron velocity equals 21r in one wiggler 

period (Fig. 3.2). The net rate of change in the phase 

between the transverse electron velocity and the optical 

electric force is therefore given by 

d$ 2~ --- 
dz=hw 

W 

(3.4) 

where A, is the optical wavelength. We use the approximate 

relationships 

L-xw - 

x = + (x')2 (3.5) 
W 

and C-V = c/2y 
2 

, to obtain 

. 
dQ 
dz = kw -k"( 

2Y2 
1 + a:) (3.6) 

where we have used (x')~ to indicate the average of (x'>~ 

over one wiggler period, Eq. (3.2) for x', and k, is the 

optical wave number = 2x/X . The resonance condition is 
S 

given by d+/dz = 0 or 

(3.7) 

The subscript r on y indicates the value of the electron 

energy (designated as the resonance energy) for which the 

resonance relationship between X 
S 

and Xw exists. 

For electron energies different from the resonance 

energy the phase (which we designated by +) between the 

transverse electric velocity and the optical electric force 

is no longer constant, and its rate of change is given by 
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(3.8) 

where k, = 2v/X, is the optical wave number. 

b/v is the change in electron speed due to 

the energy difference. 

&L/L is the change in the path length 

traveled by electron due to the energy 

difference. 

The difference between trajectories for an electron at 

energy y, and for an electron with y = y, + 6y is shown in 

Fig. 3.3. The higher energy electron travels a shorter path 

(opposite to the usual case for circular accelerators) by an 

amount 

6L = 6 I ds = >2 dz . (3.9) 

Fig. 3.3. Trajectories for electrons 
with different energies. 

Using the expression for x', Eq. (3.2), we have 

6L 
L= 

-(S)&+. 

y: 

(3.10) 

The higher energy electron also has a higher speed given by 
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-~ 

6V 
-= 

V 
(4):. (3.11) 

Thus the equation of motion for the change in the phase 

difference between the transverse electron velocity and the 

optical electron field is given by 

a2 
2 = k,(++<)?. 

'r 'r 

(3.12) 

Except for a sign difference in the definition of I# this 

expression may be compared to the equation of motion for the 

rf phase variable used in accelerator theory [Eq. (2.4)]. 

We see that the FEL has a negative momentum compaction 

factor [see Eq. (2.1)]; this mean that no special or transi- - 
tion energy exists for which the increase in electron 

velocity with energy is compensated by- a change in the path 

length with energy. This is an important difference as we 

will see when we discuss the gain-expanded FEL. It is 

possible to use the resonance definition for Q [Eq. (3.7)] 

to rewrite Eq. (3.12) as 

2 = 2kw (5). (3.13) 

Now the change in the energy of the electron is propor- 

tional to the transverse velocity of the electron, the 

transverse electric field of the wave, and the sine of the 

relative phase $, so we can write the equation of motion for 

this energy change as 

dy ks as aw 
dz =y’=- Y 

sin $ (3.14) 

where 
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-~ 

e(Ex)rms a = . 
S k mc2 

(3.15) 

S 

We define the relationship between the resonant phase (~l~) 

and the resonant energy (y,) by 

yi=- 
ks as a 

Y w 
sin JI, . 

r 
(3.16) 

Then defining 6y = y-yr we can obtain the following equation 

of motion. 

d( SY> ks as a w - = - 
dz (sin Jo - sin $,) . (3.17) 

'r 

For the FEL, Eqs. (3.13) and (3.17) describe the same type 

of motion about the resonant energy as is described by Eqs. 

(2.4) and (2.7) for the synchrotron motion in accelerators. 

The phase space motion of the electron in an FEL may there- 

fore be described by the same phase space curves as dis- 

played in Figs. 2.3 and 2.4. 

We make the transfer from the synchrotron equations of 

motion used in accelerator design to those used in FEL 

design by 

q<EZ> ks as a W 
- -f - 

2 mc 'r 
(3.18) 

and 

-.(A- a) + ks($+ 
+ Y: r 

(3.19) 

When these relations are substituted into the accelerator 

synchrotron equations for the bucket parameters, Eqs. (2.8) 

and (2.11), we obtain 
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(A+!) = 2 [ asaw y2 r(q),) 
1 + a2 

W 

(3.20) 

for the maximum energy excursion contained in the bucket, 

and 

= 2kw [aw 
a 

54, 

s cos JI, l/2 

1 + a2 
I l 

W 

(3.21) 

for the frequency of small amplitude energy oscillations. 

By combining these equations we may rewrite Eq. (3.21) as 

nL 
= k [cos 4J, 11’2 6Ym 

-W r(br) 
(y) l 

(3.22) 

The use of buckets to describe the electron synchrotron 

motion in the FEL has been presented in many other 

places,5'6 but because of the importance of this concept as 

well as for completeness we will present the work again in 

this paper. 

xv. CONSTANT PARAMETER WIGGLER 

The "standard operational mode" of the FEL, which was 

the mode used in the Madey experiment, is one in which the 

wiggler wave number kw and field amplitude aw are constant. 

The resonant energy y, is therefore also constant, and the 

resonant phase I& = 0 . From Eq. (3.7) we have 
3 

1 + aL 
= ks(2k "I* 

W 

(4.1) 

In this mode the buckets are nonaccelerating or stationary. 

At first glance it is a little difficult to understand how 
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such a device can work since the energies of electrons in- 

jected near the resonant energy with a uniform phase distri- 

bution will oscillate about the resonant energy (which 

remains constant). The key to successful operation of the 

FEL in this mode is to inject the electrons above the 

resonant energy and to allow them to complete only a frac- 

tion of an oscillation, as shown in Fig. 4.1. 

Fig. 4.1. Evolution of the electron 
energy distribution: (a) initial 
distribution; (b) after one-half 
oscillation; and (c) after nearly 
one-oscillation. 
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The electrons with either large or small energy devia- 

tions (compared to 6~~) will have only a small average 

energy change, while electrons with an initial energy 

deviation dyi * 6ym and which perform approximately one-half 

of an oscillation will have their average energy reduced the 

most. For maximum gain it is important to choose both the 

initial energy and the wiggler length correctly. Figure 4.2 

shows how for a fixed wiggler length, the energy extracted 

from the beam depends upon the initial energy. 

. 

Fig. 4.2. Gain curve for stimulated 
emission. Energy loss of electrons 
versus initial energy or signal 
frequency. 

It is clear that either we can regard the electron 

energy as the quantity which differs from its resonant value 

or we can regard the signal frequency (ws = ksc) a-s the 

quantity which differs from its resonant value. The 

relation relating these two viewpoints is 

% -= 
w 

S 

2 (5). (4 -2) 
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r~ Therefore, Fig. 4.2 may also be regarded as a plot of the 

signal intensity increase as a function of the signal fre- 

quency. The width of this "gain" curve is of the order of 

the bucket height (6ym/y), so that for a beam of electrons 

with an initial energy spread much larger than the bucket 

height, only a small fraction will transfer energy to the 

optical wave. We see from Fig. 4.1 and Eq. (3.20) with 

$, = 0 that the maximum energy loss by the electrons is 

given by 

(+lrnax loss - (>) = 2[asaw/(l + at)]1'2 

(4.3) 

while electrons emerge from the wiggler with an energy 

spread . 

(T)spread - (2) l 
(4.4) 

The optimum wiggler length for maximum energy transfer from 

the electrons to the signal wave follows from Eq. (3.22) 

x 
L=-+ 

L &' 
(4.5) 

When this equation is combined with Eq. (4.3) we find that 

the maximum energy that can be extracted from the electrons 

in this mode of operation is given by the simple relation- 

ship 

(?)rnax loss N & (4.6) 

where N is the number of wiggler magnet periods. The fact 
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that, for a constant parameter wiggler, the average energy 

spread produced by the FEL is always equal or greater than 

the average energy loss follows from a more general theorem 

proved by Madey. 8 This places a severe restriction on the 

efficiency of this type of FEL. Renierig has shown that if 

such an FEL is operated in a storage ring, with the synchro- 

tron radiation used to damp the energy spread due to the 

FEL, the maximum obtainable laser power is related to the 

power radiated into synchrotron radiation by 

P laser G 2P synch(>) l 

(4.7) 

There are FEL-storage ring projects, which use the radiation 

damping to limit the energy spread of the electrons, at 

Orsay, Frascati, Brookhaven and Novosibirsk. 

It should be noted that the equations of motion derived 

above are Hamiltonian, guaranteeing that the phase area is 

conserved. The net increase in the energy spread is due to 

a combination of phase area filamentation and a smearing of 

the optical phase angle as the electrons travel around the 

storage ring from the end of the FEL back to the entrance. 

DeaconlO has analyzed the operation of a constant 

parameter FEL in an isochronous storage ring. As an elec- 

tron travels around the ring, such a device maintains the 

phase relationship between the electron and the optical 

wave. The electron is trapped in the optical bucket and can 

transfer energy from the low frequency rf cavity to the high 

frequency optical cavity. He discusses the design of a 

storage ring capable of restricting the spread in the 

longitudinal position of the electrons to be less than a 

fraction of the optical wavelength. This requires of the 

storage ring a very low momentum compaction factor, and 
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consequently the longitudinal focusing is very weak in the 

absence of the optical wave. At the present time, this idea 

has not been explored experimentally. 

v. VARIABLE PARAMETER WIGGLER SCHEMES 

While it is gratifying to note that it is possible to 

use the graphic techniques of accelerator designers to 

derive the results of the constant parameter wiggler, the 

real advantage of establishing the relationship between the 

FEL physics and accelerator physics is that we can use the 

results of accelerator physics to design other types of 

FELs. 

As our first example of an accelerator design which has 

been appropriated to design a new kind of FEL we consider 

the case of a standing wave linac (used for nonrelativistic 

particles) where the distance between consecutive acceler- 

ating cavities increases along the linac. By analogy it 

suggests the variable parameter wiggler. For this case the 

longitudinal velocity and hence also the energy of the 

resonant particle must increase along the linac in order for 

the particle to remain at a constant synchronous phase with 

respect to the longitudinal electric field of the cavity. 

We see from Eq. (2.6) that the synchronous phase(qr) must be 

greater than zero and the average accelerating field 

<EZ> must be large enough to produce the necessary rate of 

energy gain. From Fig. 2.3 we see that the group of trapped 

particles, near the resonant particle in energy and phase, 

will be accelerated along with the resonant particle. 

This scheme has been used in the des‘ign of a variable 

parameter wiggler for FEL operation by allowing the wiggler 
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wave number (k,) and the magnetic vector potential (aw> to 

vary along the longitudinal direction of the wiggler. The 

main difference between this scheme and the standing-wave 

linac is that, in the FEL, rather than accelerate the elec- 

trons, we want to decelerate them and transfer energy to the 

optical wave. Equation (3.16) tells us that this is 

possible for J: > 0. For a sufficiently large value of 

optical field intensity (a,) electrons will be trapped in 

the decelerating optical bucket, and will have their average 

energy reduced by an amount equal to the decrease in the 

resonant energy. 

"r = [Y,(O) - Yr(LT) I 

where LT is the total length of the FEL. It follows from 

the resonance condition Eq. (3.7) that the change in the 

resonance energy is related to the change in the wiggler 

parameter by 

kS 
1 + a2 

A(Y;) = 2 A( k “) l 

W 

(5.2) 

There are many options in how to change a, and kw as func- 

tions of z to satisfy Eq. (5.2) for a desired variation of 

Yr9 several of which were discussed at the 1979 Telluride 

Conference. As we see from Fig. 5.1 only a portion of the 

electrons are trapped in the bucket and hence decelerated. 

The remaining untrapped electrons actually have their energy 

increased slightly so that the electrons will exit the FEL 

with a large spread in the energy. This large energy spread 

in the beam makes it difficult to reuse the electrons in the 

FEL again. 
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1 __------ -@ y,(L) 

(a) (b) (cl 

Fig. 5.1. Electron phase area 
distribution: (a) at the wiggler 
entrance; (b) at the wiggler center; 
and (c) at the wiggler exit. 

At the present time in this country there are three 

experiments under way to study this mode of FEL operation. 

These experiments are located at TRW, LASL and Math. Sci. 

N. W. and they will be discussed later in this meeting. 

In circular accelerators the method of adiabatic 

capture has been used to capture and accelerate nearly all 

of the injected particles in an rf bucket. This is accom- 

plished by using a "stationary" bucket where 9, = 0, so that 

the bucket extends in phase from -71 to 71, and by increasing 

the accelerating field E, with time from an initial value of 

zero. In this method of operation we see that the bucket 

area increases from an initial value of zero as [<Ez>]1'2. 

If the rate of increase in the bucket area is slow enough 

[compared to the final value of the linear oscillation fre- 

quency flL, Eq. (2.11)] and if the final bucket area is 

larger than the original phase area of the injected parti- 
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cles then nearly all of the particles will be trapped in the 

bucket and the final phase area occupied by the beam will be 

only slightly larger than its initial value. 

After all of the particles are captured in the center 

of the stationary bucket, the guide field of the circular 

accelerator is increased so that the energy of the resonant 

particle must also increase to maintain resonance between 

the particle and the cavity. The resonant phase qr then 

changes from zero to a positive value and the trapped 

particles are subsequently accelerated. The advantage of 

this scheme is that essentially all of the particles are 

trapped and accelerated, and the final energy spread of the 

particles is kept small. 

As our second example where accelerator design has in- 

fluenced the design of FELs we consider an analogous scheme 

of adiabatic capture, deceleration, and decapture that 

permits a reasonable reduction in the energy of all of the 

electrons while at the same time minimizing the increase in 

the energy spread of the electrons.5 This scheme is shown 

in Fig. 5.2. To describe this process we divide the wiggler 

into five regions: Region 1, where adiabatic capture 

occurs; Region 2, where the average phase angle is changed; 

Region 3, where the deceleration occurs; Region 4, where the 

average phase angle decreases to zero; and Region 5, where 

the decapture occurs. In Region 1, we require 

kwW = kS[ 
2Y2 

1 + a:(z) ] 
r 

(5.3) 

for Yr constant equal to y,(O) the average energy of the 

injected beam. As aw is increased along the wiggler from 

zero at the entrance this relation ensures that JI, the 

resonance phase remains zero. 
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Fig. 5.2. Schematic behavior of the y, 
J, phase space distribution as a function 
of z during adiabatic capture, deceleration, 
and decapture processes: (a) initial distri- 
bution; (b) during capture; (c) during increase 
of average $; (d) and (e) deceleration pro- 
cess; (f) during the decrease of the average $J; 
(g) during decapture; and (h) after decapture. 

The injected electrons with a small initial energy 

spread centered at ~~(0) [see Fig. 5.2(a)] are captured into 

the stationary bucket by the adiabatically increasing height 

of the bucket. The bucket growth may be accomplished by 

increasing aw from zero to a maximum value of one. If the 

initial energy spread of the beam is less than the final 

bucket area, i.e., 

2T ($)initial < 8 [2as I l/2 
(5.4) 

then with an adiabatic change of aw(z) the electrons become 

trapped in the center of the bucket [see Fig. 5.2(b)]. It 

follows from Eq. (5.3) that if aw is held constant a small 

discontinuous increase in kw at the beginning of Region 2 

results in small discontinuous decrease in the resonant 

energy of the bucket. The average phase of the electrons 
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-. will be increased from zero to a positive value in this new 

bucket as shown in Fig. 5.2(c). 

In Region 3 the tapered wiggler described above may be 

used to produce a decelerating bucket that will further 

decrease the energy of the electrons. This process is 

depicted in Figs. 5.2(d) and 5.2(e). Regions 4 and 5 are 

the reverse of Regions 1 and 2 respectively which results in 

the detrapping of the decelerated electrons at an energy 

substantially below the original injected energy with only a 

small increase in the energy spread. 

In order that a large fraction of the electrons be 

decelerated and hence that they transfer energy into the 

optical field for the operational modes of the FEL described 

above, the energy spread of the incoming electron beam must 

be less than the maximum bucket height. This often places a 

severe restriction on the quality of the electron beam or . 
requires a large laser intensity. To solve this problem we 

will discuss another technique used in accelerators called 

phase area displacement.Il 

The method of phase area displacement can cause all of 

the electrons to be decelerated even when the initial energy 

spread (or effective energy spread when transverse emittance 

and magnetic field variation with beam size are included) is 

considerably larger than the bucket height. Phase area dis- 

placement refers to an operational mode in which an empty 

bucket is accelerated through the phase area of the beam 

with the result that the phase area occupied by the-elec- 

trons is displaced downward in energy. An accelerating 

bucket decelerates the particles. Consider the case where 

the accelerating bucket starts with a resonant energy far 

below the energy of the electrons in the beam and is 

adiabatically moved through the beam until the final 
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-~ resonant energy is far above the electron's energy, as 

illustrated in Fig. 5.3. Note that for an accelerating 

bucket $, < 0. The final mean energy of the electrons is 

lowered by the phase area of the empty accelerating bucket 

divided by HIT, while the final energy spread of the beam is 

nearly equal to the initial energy spread, i.e., 

Y 
I 

-----e-Y,(L) 

Fig. 5.3. Phase displacement. Position 
of empty bucket and phase area of elec- 
trons at various positions in the FEL. 

[?O) - Y(L)] = $J 

and 

*Yf - AYi 

(5.5) 

(5.6) 

where J is the area enclosed by the accelerating bucket. 

From Fig. 5.3, we see that the total change in yr must be 

larger than the sum of the bucket height and the energy 
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spread in the beam, i.e., 

IYpJ - Y,(O) ( - ly:LI > 2(6Yjmax + Ayspread . 

(5.7) 

As long as both the adiabatic condition, which is dis- 

cussed above, and the above condition are met, the energy 

spread of the beam is not greatly increased and the average 

energy loss of the electrons is independent of the initial 

energy spread.12 

VI. GAIN-EXPANDED WIGGLER 

Another scheme13 designated as a gain-expanded wiggler 

was proposed by the Stanford Group to reduce the sensitivity 

of the optical gain to the electron energy. The equations 

of motion were presented by Madey and Taber at the last 

conference in Telluride,14 and a more complete review will 

be presented by Kroll at this conference. In addition, 

Madey and Ekstein have obtained new results15 on the 

excitation-canceling FEL with a gain-expanded wiggler. In 

this section we will demonstrate the similarity between the 

study of synchrobetatron coupling in an accelerator and the 

study of the gain-expanded FEL. We will see how one can use 

the results of accelerator orbit theory to derive the 

equations of motion for the gain-expanded FEL. 

The gain-expanded FEL utilizes a transverse gradient in 

the wiggler magnetic field which has the property that the 

average value of the dispersion in the wiggler is constant 

and non-zero. Thus different energy electrons will have 
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-~ different equilibrium trajectories as illustrated in Fig. 

6.1. The constant 17 is defined by averaging over the 

oscillatory excursions which have the wavelength of the 

wiggler. 

Af = $I* (6.1) 
Y 

Fig. 6.1. Trajectories for electrons with 
different energies in gain-expanded wiggler. 

For the gain-expanded wiggler the gradient of the wiggler 

field is chosen so that the increase in the path length, due 

to the increased magnetic field experienced by the higher 

energy electrons, just compensates for the increase in the 

electron speed, i.e., 

AL Av 
L = T' (6 -2) 

This is to be contrasted with the nongain-expanded 

wiggler (Fig. 3.3) where the dispersion is zero and the path 

length decreases with energy. Regardless of their energy, 

electrons entering on their equilibrium orbits will travel 

through the gain-expanded wiggler at the same average rate 

and thus the average rate of change in the relative phase 

between the transverse electron velocity and the optical 
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wave is independent of energy just as it is for particles at 

transition energy in an accelerator [Eq. (2.4)]. 

An electron which enters the wiggler off its equili- 

brium orbit (in position or angle) will not follow the 

trajectory described in Fig. 6.1 but will perform a 

"betatron" oscillation about its equilibrium orbit. This 

betatron oscillation consists of a rapid oscillation, with a 

wave number equal to the wiggler wave number kw, super- 

imposed upon a slow oscillation with a wave number k f3 to be 

deduced later. The transverse motion of both an electron 

traveling on its equilibrium orbit and an electron executing 

betatron oscillations about its equilibrium orbit are shown 

in Fig. 6.2. If we define i = 0 for the electron with 

energy Y, then the averaged equilibrium orbit [in the sense 

of Eq. (6.1)] of an electron with energy y = y 0 
+ 6y is 

given by Xe = {(by/y). The averaged transverse--displace- 

ment, i.e., ignoring the rapid oscillations at the wiggler 

frequency, is the sum of the averaged betatron displacement 

and the averaged equilibrium orbit displacement, i.e., 

&> = xp + 17(6Y/Yo) l (6.3) 

Now because of the gradient present in the wiggler magnet 

the particle following such a trajectory experiences an 

averaged transverse focusing force proportional to the 

averaged betatron displacement, i.e., 

(6 04) 
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Fig. 6.2. Trajectories for electrons with 
as a function of betatron oscillation 
amplitude: (a) f 

8 
= o; and (b) Gp f o. 

This equation actually defines k6 and will be connected with 

the wiggler field below. 

If we substitute from Eq. (6.3) for G and allow y to be 

a function of z we obtain 

-11 + k2 ; 
xB BB = ~(6Y/YoY . (6.5) 

The path length traveled by the particle depends upon 

the averaged betatron displacement as may be seen by careful 

scrutiny of Fig. 6.2(b). In the positive part of the 

averaged betatron displacement the electron experiences a 

higher wiggler magnetic field so that the amplitude of its 
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- rapid oscillation and hence the average path length it 

travels is larger than in the negative part where the 

amplitude of its rapid oscillation is smaller. Since the 

speed of the particle is independent of the betatron 

displacement the average rate of change in the phase 

variable $ will then be proportional to the averaged 

betatron displacement, We will derive the equation for 

d$/dz below, and this equation will be discussed by Kroll 

later in the conference in more detail. 

Equation (6.5) is that of a driven oscillator and if 

the frequency of the change in the energy variable is near 

the betatron wave number, then it is possible for the energy 

oscillations to excite the transverse betatron oscillations. 

The same kind of equation appears in circular accelerators 

when the longitudinal or synchrotron motion of the particles 

is somehow coupled to the transverse betatron motion.16 The 

coupling is strongest at a synchrobetatron resonance where 

there is a correlation between the betatron oscillation 

frequency, the synchrotron oscillation frequency and the 

revolution frequency. 

An example is illustrated in Fig. 6.3 where a particle 

enters an accelerating cavity on its equilibrium orbit with 

en-m y1 and gains energy from the cavity field so that the 

particle exits with energy y2. After the particle exits the 

cavity, it discovers that it is not on the proper equili- 

brium orbit for its new energy, and it will start to execute 

betatron motion about its new equilibrium orbit. If the 

betatron frequency is synchronized with the oscillation 

frequency of the energy then on successive passages this 

process can build up and a resonance occurs where the trans- 

verse betatron motion is driven by the longitudinal energy 

oscillations. 
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Fig. 6.3. Excitation of transverse 
betatron motion due to change in 
particle energy passing through an 
rf cavity. 

As an illustration of how accelerator orbit theory may 

be used to study the gain-expanded FEZ we consider the 

original magnetic field used by Madey and Taber14 which has A 
only a y component. 

B = n Bw(l + kx) sin k,z + Bc(l + sx>' . (6 -6) 
Y 

We use the Lorentz force F, = (e/c)v B along with 

definitions bc z (eBc/mc2) 
zy2 

and a w - (eBw/kwmc ) to obtain 

the following equation of motion for the transverse 

displacement. 

x" + [Co + Cl sin kwz]x = [Do + D1 sin kwz] , 

(6.7) 

where 

sb 
co = C 

--9 
Y 

Cl = - 
fikkwa 

W 

Y ' 

(6.8) 

(6.9) 
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(6.10) 

and 

nk a 
D1 = w w 

Y l 

(6.11) 

Equation (6.7) is a common equation used by accelerator 

orbit theorists on a daily basis. For example, the terms Co 

and Cl would represent the quadrupole focusing magnets in a 

circular accelerator while the terms D 0 and D1 would repre- 

sent the d:pole steering magnets. The standard method to 

solve Eq. (6.7) f or x(z) is to represent x as the sum of two 

functions, 

x(z) = x,(z) + x,(z) . (6.12) 

where xB is the solution to the homogenous part of Eq. (6.7) 

while x e is the solution to the general equation with the 

constraint x,(z + X,) = xc(z). We see that xB represents 

the betatron motion while xe represents the equilibrium 

orbit discussed above. 

For the case where the wiggler wave number is large 

compared to the betatron wave number, i.e., kw >> k , the 

approximate solution to Eq. (6.7) may be derived byBa 

"smooth approximation technique".17 This technique gives 

X k21k2 I[ 
2 =- 

e kwDo +? 1 1 'CD 

B w 
I+ [ CIDO - CoD1l sin kwz 

(6.13) 
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? and 

ik z 

XB = xBo e 
f3 r,+s sin kwz] 

W 

(6.14) 

with 

(6.15) 

where the terms we have neglected are of the order of 

times the terms we have retained. To verify the 

validity of the smooth approximation it must be shown a - 
posteriori that k8 << k, of course. We see that solutions 

xe and x 
B 

each contain a slow oscillating part and a rapid 

oscillating part, and since the values of C o, Cl, Do, and D1 

are functions of the energy the solutions for xe and x B 
are 

also functions of the energy. This is illustrated in Figs. 

6.1 and 6.2. 

We choose the value of Xe (xe with the fast oscil- 

lations averaged out) to be zero when the energy equals y,, 

by requiring for y = y . 
0 

CIDl = - 2k% Do (6.16) 

which yields 

k a2 
W bc=-. 

YO 

(6.17) 

With this constraint on the value of Bc we can rewrite 

Eq. (6.13) through first order in &y/y0 as 

’ AX fi aw [l + ’ a] sin k z x=- -- 
e k-s Y, kw Y, k-sy W 

(6.18) 
0 
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^. 
and 

XT a 
x' = 

e 
-2 1+L.q 

Y [ k-s Y, 
cos kwz . 

0 

(6.19) 

The average dispersion, defined by i = x,/(&Y/Y,) is given 

by 

1 
rl =igg (6.20) 

while the betatron wave number is given by 

k; = 
k(k-s)a2 

yO 

w [l + (2k-s); F] . 
0 

(6.21) 

In one wiggler period, the path length traveled by an 

electron on its equilibrium orbit is greater than the dis- 

tance traveled by the optical wave and depends ilpon the 

amplitude of the rapid oscillation of the equilibrium orbit, 

see Eq. (3.5), through the equation 

L - xw 
= 

x + bg2 
W 

(6.22) 

where the average is over one wiggler period. By combining 

Eqs. (3.4), (6.19) and (6.22) we obtain for the average rate 

of change in the phase Q of an electron traveling on its 

equilibrium orbit through first order in 6y/yo. 

2 = [k 
W 

1 + a: )] +$ [l -& aij$ . 

YO 
0 

(6.23) 

For the gain-expanded wiggler we demand that the value 

of d$/dz be independent of energy which requires that 
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-. 
k-s=a. 2 

S W 
(6.24) 

By expanding Eq. (6.14) to first order in 6y/yo we obtain 

I?? ka 

XB = 
xB {1 - k y w [l - $1 sin k,z] (6.25) 

wo 0 

and 

fi ka 
W- (1 - y) cos kwz (6.26) 

0 

where again we have neglected terms in Eq. (6.26) of order 

k8/kw compared to unity. For the case where the electron is 

not on its equilibrium orbit but is performing betatron 

oscillations about its equilibrium orbit the extra distance 
. 

traveled by the electron is given by 

L - xw 

x = $ (XL + xg2 . 
W 

(6.27) 

We combine Eqs. (3.41, (6.19), (6.26) and (6.27) along 

with the constraint Eq. (6.24) to obtain the average rate of 

phase change for an electron performing betatron oscil- 

lations 

(6.28) 

+ higher order terms in (z 
B' "b and 6y/yo) 

where 

-k"( 
2 

q = 
LkW 

2YZ 
1 + a:)] = kw[l - 4 ] - (6.29) 

YO 
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-. The equation of motion for f may be obtained from Eq. 

(6.7) by the smooth approximation which yields 

C D 
11 

X -" + k2 ; = [Do + - 
B 2k2 

3 (6.30) 

W 

where ks is given by Eq. (6.15). 

If we use the definitions for the C's and D's from Eq. 

(6.8) to Eq. (6.11) and the constraint from Eq. (6.17) we 

obtain for the driving term in Eq. (6.30) 

[ Do+!&] 
2k2 

= t$ ++] 
YO 

W 

and for the focusing term in Eq. (6.30) 

(6.31) 

To first order in 6y/yo we have for the driving term 

[ Do+=] = k;;6y 
2k2 YO 

W 

(6.32) 

(6.33) 

where we have used the definition of q given by Eq. (6.20). 

Thus to first order in (6y/yo) the equation of motion for 

the average value of the transverse displacement may be 

written as 

;*' + k2B[x - ;(Gy/yo)] = 0 . (6.34) 

From the definition of x B [Eq. (6.311 we see that this 

agrees with the desired equation of motion [Eq. (6.5)] for 

the gain-expanded FEL, namely 

";; + kt ; = - T-,(~~/~~)'* . 
B 

(6.35) 
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? The remaining equation of motion for the rate of change 

for the energy variable does not explicitly depend upon the 

transverse betatron motion (except for a rapid flutter term 

in the phase which we have ignored) and is given by Eq. 

(3.14), namely 

ks as aw 
y’=- Y sin $J . (6.36) 

The complete set of the equations of motion that des- 

cribe the motion of electrons traveling through the gain- 

expanded FEL consists of Eqs. (6.28), (6.35) and (6.36). 

These equations are essentially the same as those derived by 

Madey and Taberl" and may be compared directly with Eqs. 

(64) of their paper by replacing their expressions by the 

following equivalent expressions used in this paper. 

y. xq . 
[ fi 2n p, 1 + aw’ 

&EL 
2 

+ ?? ks as , 
mc 

(6.37) 

(6.38) 

(k-s) + ; , (6.39) 

and 

k(k-s)'A)2 + k2 
47 2n p, B l 

(6.40) 

For the case of the gain-expanded wiggler where the 

magnetic field and wave number are independent of the 

longitudinal coordinate z the reference energy y, is 

independent of z and we can rewrite Eq. (6.36) to first 
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? 
order in &y/y0 as 

(.4x)’ = - ks as aw 
YO Yfi 

sin J, . (6.41) 

We also can use the constraint Eq. (6.24) to rewrite 

Eq. (6.28) to lowest order in x and 6y/yo as 
B 

Q’ = q- 
ks(l + 2) _ 

(6.42) 

If we take the derivative of Eq. (6.41) and substitute 

it into Eq. (6.35) we obtain the following equation for x 
B 

";; + (k2 - Q; cos $)x = - 
qks 17 as aw 

B B 
cos J, 

(6.43) 

where we have used the fact that y 
0 

= y, to write 

ki(l + af)asaw 4kz as a 
W 2 E = 

(1 + 2) 
RL l 

(6.44) 

There are two regimes where self consistent solutions to 

Eqs. (6.42) and (6.43) may be obtained analytically. One is 

where 
51:. B 

<< k2 and the other where Qi >> k2. 
B 

The character 

of these solutions is very different in the two regimes as 

will be discussed by Kroll later in the conference. 

Note for a small initial value of x 
B 

that when cos + is 

less than zero (i.e., [$I > -IT/~) x increases and becomes 

positive. As we see from Fig. 6.2Bor Eq. (6.42) for 

positive value of G 
6 

the path length traveled by the 

electron increases and the relative phase $ decreases. On 

the other hand, when cos II, is greater than zero (i.e., 
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-’ I$[ < ~r/2) then x6 decreases and becomes negative so that 

the path length traveled by the electron decreases and JI 

increases. The excitation of betatron oscillations occurs 

for values of IQ1 f a/2 and produces a migration of the 

electron towards a value of J, = a/2. From Eq. (6.41) we 

conclude that this tendency for the electrons to bunch at a 

phase near Q = IT/~ will also produce a net deceleration of 

the electrons. The strong bunching of the electrons occurs 

whenever the oscillation frequency of the driving term 

[cos Q in Eq. (6.43)] is near the betatron frequency, i.e., 

when q = k 
!3* 

Thus a gain-expanded wiggler uses the trans- 

verse betatron motion, instead of the energy motion (as in 

the nongain-expanded FEL) to provide the necessary bunching 

of the electrons to transfer energy to the optical wave. 

Further treatment of the gain-expanded FEL may be found 

elsewhere18 and in the presentation by N. M. Kroll later in 

this conference. 
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