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ABSTRACT 

Synchrotron radiation by a point charge is a familiar subject in 

classical electrodynamics. Perhaps less familiar are some quantum 

mechanical corrections to the classical results. In section I, we 

describe some of those quantum aspects of synchrotron radiation. One 

of the quantum effects leads to the expectation that electrons in a 

storage ring will polarize themselves to 92% --a surprisingly high value. 

Section II gives a semi-classical derivation of the quantum effects 

described in section I. An effort has been made to minimize the need of 

using quantum mechanics. 

Results of the previous sections are put together in section III to 

derive a final expression of beam polarization. Conditions under which 

the expected 92% polarization is destroyed are found and-attributed to 

depolarization resonances. The various depolarization mechanisms are 

first illustrated by an idealized example and then systematically treated 

by a matrix formalism. It is shown that the strength of depolarization 

is specified by a key quantity called the spin chromaticity. Finally as 

an application of the obtained results, we include an estimate of the 

achievable level of beam polarization for two existing electron storage 

rings SPEAR and PEP. 
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1. Some Quantum Mechanical Aspects of Synchrotron Radiation 

As an electron travels in a circular accelerator, it is accelerated 

sideways and radiates electromagnetic waves known as the synchrotron 

radiation. The phenomenon of synchrotron radiation is a much studied 

subject. For instance, one finds in textbooksly that the instantaneous 

power radiated by a relativistic electron of energy E is given by 

classical electrodynamics: 

9 
2 e2y4c =-- 

class 3 
P2 

(1) 

with e the electron charge, y = E/mc2 the Lorentz factor, m the electron 

mass, c the speed of light and p the instantaneous bending radius. The 

frequency spectrum of the radiation is somewhat complicated. It covers 

more or less all frequencies up to a critical frequency defined by 

w 3Y3C - 
C P (2) 

which is essentially y3 times the revolution frequency of the electron. 

The above results assume that the electron follows a prescribed 

circular trajectory and is unperturbed by its radiation. This is a good 

approximation if the radiation can be regarded as being continuously 

emitted rather than being emitted as quantized photons as dictated by 

quantum mechanics. A more accurate picture is in fact to imagine an 

electron emitting discrete photons as it circulates along. The photon 

energies are typically around the value hwc but their exact values are 

otherwise unpredictable. As a quantum is emitted, the electron receives 

a recoil. The effective energy of the electron during the emission 

process is thus not E, but slightly lower than E by an amount comparable 

to the energy of the quantum. Assuming%wc << E, this slight reduction 

in the effective electron energy means the synchrotron radiation power 

is slightly reduced from expression (1). A quantum mechanical calcula- 

tion3 shows in fact 

LP= 9 
class 
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The correction term to the classical expression (1) is of the order of 

%wc/E. The fact the correction involves the Planck constant % is a 

distinct sign of quantum mechanical considerations. Equation (3) has 

included only the leading term linear in %; higher order terms have been 

ignored. 

In practical electron storage rings,?iwc/E is very small. Take 

E = 5 GeV and p = 25 meters, for instance, we find%wc/E = 4.5 x 10 -6 . 

This means the quantum correction in Eq. (3) is not easy to detect. How- 

ever, the discreteness of quantum emissions does have an easily detectable 

effect in practical accelerators. The equilibrium emittances of a bunch 

of electrons in an electron storage ring, for example, is determined by 

the balance between a damping effect (the "radiation damping," which is 

a purely classical phenomenon) and a diffusion effect (the "quantum 

diffusion," which is a quantum phenomenon) of the electron trajectories.4'5 

Should all electrons radiate continuously, the electron bunch will 

eventually shrink into a point bunch of zero dimensions due to radiation 

damping. The discreteness of photon emissions introduces noise into the 

electron trajectories and causes the beam dimensions to grow by diffusion, 

which counteracts and balances the damping at equilibrium. The fact that 

the beam does have a finite size in a storage ring is therefore a quantum 

mechanical effect. Indeed, if we take the rms energy spread of the beam 

for example, it does contain a factor of %: 

55 hLl 
C =- - 

1926 E 
(4) 

The energy spread is thus of the order of the square root of%wc/E. With 

$/E = 4.5 x 10 -6 as in the example mentioned above, we find 
-3 AE/E=O.gxlO , which is easy to detect. 

In addition to the discreteness of photon emissions, there is another 

quantum mechanical aspect of synchrotron radiation, namely that associated 

with the spin of the electron. Since spin is a quantum mechanical 

quantity with its magnitude in units of ‘fi, all spin effects of synchrotron 

radiation involve the Planck constant and are necessarily of quantum 

mechanical origin. The problem becomes complicated when spin is taken 
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into account; one now has to distinguish between two cases whether the 

electron spin stays in its initial state or flips over after emitting 

the synchrotron photon. 

Let A be the spin orientation in the electron's rest frame before 

photon emission. In case of no spin-flip, the main contribution to the 

synchrotron radiation power is still given by (l), but the % correction 

term now has a spin-dependent term in addition to that given by Eq. (3):6 

-z!- 
166 

(5) 

where 9 is the direction of magnetic field that bends the electron. If 

we average over all spin orientations f;, we obtain Eq. (3) as it should. 

Again, this spin correction term is very small in practice and is dif- 

ficult to observe experimentally. However, the other spin effect that 

involves spin-flips does have an easily observable effect on the electron 

beam--that on its spin polarization. One can of course calculate the 

instantaneous power radiated with spin-flip and compare with Eq. (5), 

but the more relevant quantity here is the instantaneous-transition rate 

that involves spin-flip,7 

w _ 5J5 e2y5% 
-16 m2c203 [ 

1-$(;1.2)2+8;l.j 
5J5 I 

(6) 

which we note is linear in ?I. In (6), 2 is the unit vector in the direc- 

tion of motion of the electron. Remembering that the power is equal to 

the transition rate multiplied by the energy carried by each photon%m, 

we note the spin-flip power contains a factor of %2 and is smaller than 

the classical power by a factor of C$W~/E)~, which typically can be-10-11. 

In a storage ring, the guiding magnetic field is in the vertical 

direction q. If we specify n to be either along the field -(the up state) 

or against the field (the down state), we find that the transition rate 

from up state to down state, W++, is larger than that from down state to 

up state, W 4-f : 
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(7) 

If we inject into a storage ring an unpolarized electron beam, the 

imbalance between the two transition rates would cause the beam to 

accumulate a net polarization in the direction against the guiding field. 

One then observes that W++ and W++ are not only different but also so 

very different that the net polarization can potentially reach almost a 

full level: 

W - ‘s+ a 
po = w++ + w = - = 92.38% 

++ 4-f 5J5 
(8) 

Furthermore, the time constant that this equilibrium polarization is 

approached by the initially unpolarized beam, inspite of being propor- 

tionalto +i -1 , is short enough to be practical. The time constant is 

T = (W++ + w+p ._ 
0 

(9) 

Taking again E = 5 GeV and p = 25 m, the time constant is found to be 

a minutes. One can now imagine the excitement when it was realized that 

the electron beam would polarize itself to a high degree and all we have 

to do is to inject an unpolarized beam into a storage ring and wait a 

quarter of an hour or so. For once, we seem to be getting something 

free from mother nature. 

If we draw an anology to how equilibrium emittances are established 

in a storage ring, saying the beam will polarize to the full value of 

92% due to spin-flip radiation is the same as saying the beam will shrink 

into a dimensionless size due to radiation damping. What we have for- 

gotten here is the fact that the discrete photon emissions have introduced 

noise into the system, and when taken into account, there is a diffusion 

effect on both the emittances and the spin orientations of the electrons. 
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The equilibrium value of beam polarization, just like the emittances, must 

be determined by a balance between the polarizing effect of spin-flip 

radiation and the depolarizing effect of quantum diffusion. The analogy 

is illustrated in Table 1. In particular, it is necessary to calculate 

the quantum diffusion rate of spin orientation. We will find then that 

the pleasant situation of the beam building up 92% polarization all on 

its own is subject to a stormy environment in a jungle of what is known 

as the depolarization resonances, near which the spin diffusion rate 

becomes large and the beam polarization can be much reduced from 92%. 

Table 1 

The Analogy Between the Mechanisms for the 

Orbital and Spin Equilibrium 

damping - diffusion equilibrium 

orbital motion 
radiation quantum diffusion emittances 

damping - on orbit ._ 

spin motion 
radiative quantum diffusion beam 

polarization- on spin polarization 

The spin diffusion rate has been treated by several authors8~g~10~11 

using different methods. The one we shall adopt utilizes the beam trans- 

port matrices discussed in Courant's lecture.4 The difference here is 

that those matrices, which describe the orbital motions of electrons, 

will be generalized to include spin motions as well. The advantage of 

using matrices is that one can put the orbital and the spin motions of an 

electron on equal footing. The analogy of Table 1 is then taken care 

of more easily. Once quantum diffusion is introduced, this matrix 

formalism provides the calculations for beam emittances and polarization 

simultaneously. How to develop those matrices and how to use them are 

also subjects that we want to cover. 



-a- 

2. Semi-Classical Description of Spin Effects on Synchrotron Radiation 

Although spin effects are necessarily quantum mechanical, it is 

possible to derive most of the results of the previous section semi- 

classically provided we start with an effective Ramiltonian that includes 

a term that describes the interaction between electron spin and electro- 

magnetic fields. These derivations will be given in this section. The 

purpose of doing this is not to replace the more rigorous quantum mechani- 

cal calculations7y8 but to do a calculation that avoids the need of 

explicitly introducing the Dirac equation or the commutation relations of 

various operators. The procedure of such a calculation has 

in the literature6y12 and what we will do in this Section 2 

such an effort. Readers who are not interested in detailed 

can skip Sections 2.2 to 2.7. 

been discussed 

is to continue 

derivations 

2.1 Spin Precession in an Electromagnetic Field 

Spin of a particle interacts with an electromagnetic field through 

the magnetic moment associated with the spin. Let%2 be the spin repre- 

sented as a 3-dimensional vector, the associated magnetic moment is given 

by 

;:=f-p (10) 

where g is the gyromagnetic ratio of the particle. For electrons, g is 

very close to 2. The deviation of g from 2, attributed to an "anomalous" 

magnetic moment of an electron, is specified by the parameter 

(11) 

The value of a is approximately given by the fine structure constant l/137 

divided by 2~. More accurately, it is found both theoretically and experi- 

mentally that a = 0.00115965. 

Consider an electron at rest in a magnetic field 8. The precession 

equation of motion for the spin is 

d3 6x$ -= 
dt (12) 
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with the precession angular velocity given by13 

(13) 

Eqs. (12) and (13) describe the precession for a stationary electron, but 

we need an equation for a relativistic electron moving in an electro- 

magnetic field 2 and d. Let c$ be the instantaneous velocity of the 

electron, it is obvious that we need to make a Lorentz transformation to 

the electron's rest frame. When doing so, the form of the precession 

equation remains to be (12); only 8 needs to be transformed. Note that 

we are not Lorentz transforming 2, so in the final equation, ?! will be 

a quantity in the electron's rest frame, while all other quantities t, 
+ 
E and 3 refer to the laboratory frame. One may find it necessary to 

stretch his imagination somewhat here. A covariant description does 

exist,l but for our purpose, it is not necessary. 

The magnetic field in the rest frame is given by a Lorentz trans- 

formation from the laboratory frame: 

6R=y3pd -$3x2 II (14) ._ 

with sland "i,, the components of 8 perpendicular and parallel to 5. The 

angular velocity 8 in the laboratory frame consists of two terms. The 

first term is 

lgeif 
- 7 2mc R (15a> 

where we have included a factor of l/y to take care of the time dilation. 

The second term is due to Thomas precession* which contributes an ad- 

ditional term to the angular velocity when the electron is accelerated 

sideways: 

(y - l) if x i = - ,,(,‘: 1) (8 x 2 
B2 

- B2siL) (15b) 

*Two successive Lorentz transformations along 3 l+and+$2 can be combined 
into one single Lorentz transformation only if 6111 B2. Otherwise, the 
two Lorentz transformations can be combined into a Lorentz transformation 
plus a rotation. The additional rotation needed here is the origin of 
the Thomas precession. 
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Adding the two terms and substituting Eq. (14) into the result, we obtain 

which, when substituted into Eq. (12), is called the BMT equation,14 

where BMT stands for Bargman, Michel, and Telegdi. 

To describe the spin motion in a storage ring, it is more convenient 

to change the time variable t into the distance travelled by the electron 

s = ct. In a storage ring, we apply several types of electric and mag- 

netic fields to confine the electrons. These fields as seen by a circu- 

lating electron are periodic in s with the period equal to the circumfer- 

ence ~ITR of the storage ring. Many of those applied fields, such as those 

provided by quadrupole and sextupole magnets, have effects on a particle 

only if its trajectory deviates from the designed circular orbit. An 

ideal electron travelling along the designed orbit sees only the guiding 

magnetic field and the accelerating electric field. The accelerating 

field does not cause spin precession on the ideal electron because the 

electric field is parallel (or anti-parallel, rather, for negatively ._ 
-charged electrons) to the velocity 3 and the precession is, according to 

(16), proportional to 8 x 8. The guiding field $ = Be(s) i, with 
-+ 
B. (s + 27~R) = to (s), on the other hand, does give rise to a precession 

d8 eBo (s-1 1 
x=-=2- (a +-) 9 x 2 

Y (17) 

With the precession axis along G, the y-component of spin Sy is preserved. 

If we adopt the coordinate system (x,$,;) that rotates with the ideal elec- 

tron with i along the electron's velocity and G the horizontal direction, the 

other two spin components S and S 
X 

z rotates with the angular speed ayeBo/E 

which is a-y times the speed that the coordinate system rotates. As the 

electron completes one revolution, the coordinate system rotates by 27~ 

and the spin has precessed around G by an angle 2ray. In analogy to the 

definitions of tunes v v 
x' Y 

and vs for the horizontal and the vertical 

betatron motions and the longitudinal synchrotron motion, we define 
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spin tune = ay, (18) 

which can be easily shown to be identically equal to E/0.44065 GeV. 

Consider an electron beam polarized initially in a certain direction. 

As the beam circulates around, only the polarization projection along $ 
n A 

is preserved; components perpendicular to y precess around y and since 

different particles precess with somewhat different rates, rapidly smear 

out. As a result, if the beam is polarized at all, the equilibrium 

polarization can only be in the 9 direction. It is also interesting to 

note the fact that the spin tune involves not the gyromagnetic ratio g but 

only the anomalous part of g, i.e., g-2 is a consequence of the Thomas 

precession. 

2.2 The Hamiltonian 

For a non-relativistic electron in a magnet 

Hamiltonian is 

Id x, the 

where p is the magnetic moment defined in Eq. (11) and A is the vector 

potential associated with 3. In the semiclassical calculation of elec- 

tromagnetic radiation, one needs the part of Hamiltonian that describes 

the interaction between the electron and the field x: 

H 

int 
= -ex . I- c l if (20) 

+2 
We have dropped from (19) the term p /2m that describes a free electron 

and the term e2 12/2mc2 that describes the negligible two-photon 

processes. 

Eq. (20) is the Hamiltonian in the non-relativistic limit. To 

describe the radiation by a relativistic electron, we need the rela- 

tivistic generalization by Eq. (20). A rigorous derivation of the rela- 

tivistic semi-classical Hamiltonian should be obtained by making canonical 

transformations on the Dirac Hamiltonian,13 but since this is not a course 

on relativistic quantum mechanics, we shall content ourselves with some- 

thing less glorious. The first term in (20) does not require extra work; 
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it remains the same relativistically. To see that, we note that the 

Hamiltonian ($ - 9 ;4)2/2 m should be replaced by the relativistic counter- 

part [m2c4 + c2 (3 - fx)2]!i which, up to the ynear order in el, can be 

written as a free particle term [m 2 4 c + c2S2] 2 plus an interaction term 

-e$ l x. To generalize the second term of (20), we first rewrite it as 

where 8 is given by the non-relativistic expression (13) and use has 

been made of Eq. (11). Generalization is then obtained simply by insert- 

ing the relativistic expression (16) to replace (13) into 6. Adding the 

two terms together, the Hamiltonian read.s6p12 

H e% + 
int =-e$ .l-mcS. 1 (22) 

In the non-relativistic limit,(22) reduces to (20) as it should. 

2.3 Power and Transition Rate of Synchrotron Radiation 

To describe synchrotron radiation, we let 2, 2 and 3 in the inter- ._ 
action Hamiltonian to contain, in addition to an external applied field, 

the field due to radiation. The interaction Hamiltonian then contains 

two terms: a time-independent term due to external fields and a time- 

varying term due to radiation field. The external-field term is grouped 

with the free particle term to form an "unperturbed" Hamiltonian (unper- 

turbed by radiation field), Ho. The total Hamiltonian is then written as 

Ho + Hint, where Hint is given by (22) with the understanding that 1, ?? 

and 3 only contain the radiation field: 

;5= E^(- 2?l+-lc $ k ) e -iT: l : + iwt 
(23) 

where E^, w and 2 are the polarization, the frequency and wave vector of 

the emitted synchrotron photon, respectively. The normalization constant 

of -A is chosen so that there is one such photon per unit volume. Complex 

conjugate of 1 is not included in (23) since it contributes to a photon 

absorption process that does not concern us here. From the Maxwell's 

equations, we have 
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To find the synchrotron radiation power and transition rate, we use the 

standard technique of quantum mechanics used to deal with time-dependent 

perturbations.13 Let In(t)> be the n-th eigenstate of the unperturbed 

Hamiltonian that evolves in time according to exp(-iEnt/%). Let the 

electron be initially in the state Ii(t)>. The time-dependent perturba- 

tion theory says that the probability amplitude that the electron is 

found in the state If(t)> after perturbation, to first order of the 

perturbation strength, is given by 

C 1 
fi =s 

/ 
dt (f(t) 1 Hint(t) 1 i(t)) 

-00 
(25) 

H int in Eq. (25) is obtained by inserting (23) and (24) into (22): 

H 
int 

= (-eE^*$+iy e%kz 21~f5c l* 
* 3) (-g-).2 e. 

-iZ l Z + iwt (26) 
._ 

where we have followed JacksonI to define 

$=(a++)i,x;-x”.cx,, 
y+1 $CB -(a+- 

-f A 
yil)@ x E (27) 

The first term of the interaction Hamiltonian (26) describes a spinless 

point charge and is independent of % aside from a normalization constant. 

The second term involves spin and is linear in ?I. 

In expressions (25), (26) and (27), we understand 8, G, 3 and Hint 

are quantum mechanical operators. In our semi-classical calculations, 

however, they will be substituted by their classical values. Consequently, 

we avoid most of the troubles in taking expectation values between Ii> 

and If> and in keeping record of how variables are arranged in order. 

The only exception will be for the spin 3 when spin-flips are involved+, 

of which we take care by using the 2x2 Pauli matrices. 

The differential probability that a photon of polarization G is 

emitted with wave vector between $ and $ + dc is 
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dp = ICfi12 * 
w3 

(28) 

where the factor d3t/(2$3 is the number of photon states per unit volume. 

The power d9is given by the probability dp times the photon energy ‘fiw, 

times the instantaneous frequency of revolution cS/27rp. This gives the 

instantaneous power radiated per unit solid angle, per unit frequency 

interval, and summed over the two possibilities of photon polarizations: 

d2g = 
dwdR (29) 

Substituting explicitly Eqs. (25) and (26) into the above expression, 

we find 

d2@ W2 = 
dwdR c II1 + 1212 

(2d3P ; 
where we have defined a spin-independent integral ._ 

co 

11 = 
/ 

dt (f (t)l-eE" * 3 emi' 

-co 

(30) 

(31) 

and a spin-dependent integral proportional to %: 

m 

I2 = 
/ 

dt (f(t)/ + 3 . $ eBiT: . S + iw tjictj) 
(32) 

-m 

Transition rate is, of course, obtained by taking away a factor of %U 

from the power: 

d2W 1 d2p 
dwdR = t;w dwdR 

2.4 The Classical Limit 

(33) 

The classical result of synchrotron radiation is obtained by ignor- 

ing terms involving %'s. The integral I2 is therefore dropped from 
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Eq. (30), and if we do not care about the electron motion after photon 

emission, the integral 11 can be replaced by 

-. co 
h 

11 = -Ed l 

/ 

dt g(t) e -it l ?(t) + iwt 
(34) 

-co 

with J(t) and G(t) now given by their classical values. Calculation of 

11 using Eq. (34) can be found in textbooks. We first note that there is 

the identity 

(35) 

for any complex vectors 3, and ‘i,. If we consider both 2, and 2, to be 

the integral 

evaluated in 

I L I L 

that appears in (34), we realize that the quantity to be 

the classical limit is 

m ,. 
kx dt x(t) eei' 

. G(t)+iwt 
(36) 

The coordinate system is shown in Figure 1. The bending field is along 9; 

8 and $ define the direction of photon emission: 

i; = ii cost3 + i? sine co& + 9 sin8 sin@ (37) 

In the classical limit, the electron motion is unperturbed by radiation 

and follows a circular path: 

3 (t) = B (ii cos y + 4 sin- act 
P ) 

(38) 
Z(t) = p[ii sin y+ E; (1 - cos y)] 

We recall that synchrotron radiation by a relativistic electron almost 

always is emitted in the direction of electron motion. The angle between 

the directions of motion of the electron and the photons is of the order 

of l/y. We therefore expect 0 $ l/y. Also, for a given 2, the time 
6 

interval that takes an electron to emit a photon in the k direction can 
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Fig. 1 Relative orientations of the 
coordinate system, the electzon tra- 
jectory and the wave vector k of an 
emitted synchrotron photon. The bend- 
ing magnetic field is in the 9 direc- 
tion. The polar angle 13 is defined 
relative to 2. 

only last for a short time: 1 Bet/p I 5 l/Y. What we do is now straight- 

forward; substitute Eqs. (37) and (38) into (36), keeping only leading 

terms in l/y. The quantity (36) is found to be (a phase factor has been 

dropped): 

2P (1 + t2)' [&Kl/3 (n) + i; (1 + t2)' K2/3 (n)] (39) 

It follows that the classical differential radiation po&r is 

d2<lass 2 2 

dwdS-l = 
e PW 

61~~c~y~ 
(1 + t2) [t2K:/3 (n) + (1 + t2) K22/3 (n)] (40) 

where we have, again following Jackson,12 defined 

t = 0ysin$ 

312 
(41) 

11 = " (1 + t2) 
c 

with w c the critical frequency given by Eq. (2). Geometrically, t/y is 
,. 

the angle between k and the orbital plane of the electron. -The modified 

Bessel functions K1/3 and K2/3, together with some useful integrals 

involving them, are given in Table 2. Integrating (40) over w gives the 

angular distribution of instantaneous power: 

d?Aass 7 + 12t2 _ e2cy5 
dR 

32np2 (1 + t2)7" 
(42) 
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Table 2 

Definition and Some Integrals of the 

Modified Bessel Functions K1/3 and K2/3 

00 

/ 

du e izou + -u '; 3 = 2 ($f K1/3 (+ z:'2 j 

-co 

00 

/ 

i3 2i 
du ue izou + -U = - Z,K2/3 3 6 

($ zo3'2j 

-05 

m 

5*2 x2 K:/3(x)dx = 144 

0 

fo 

7R2 x2 K22/3 (x) dx = - 
144 

0 

co 

16~ ~~K:/~(x)dx=- 

0 
alJ7 

35Tr2 x3 K1/3 (x> K2/3 (x> dx = - 864 
0 

co 

J- 

2oTr x3 K22/3(x)dx = - 
al6 

0 

Making a change of variable 

One can integrate (42) over solid angles. The result is, of course, just 

Eq. (1). 



- ia - 

2.5 Quantum Correction for a Spinless Charge 

By quantum correction here we mean correction to the classical -~ 
results up to first order in 'n. When we wrote down the integrals 11 and 

I2 for the synchrotron radiation power, we were not too careful about the 

order in which the various operators appeared. Since non-commutability 

of operators are of the order of h, this carelessness is acceptable for 

I2, which is already first order in %. It is, in fact, also acceptable 

for 11 because 11 is independent of spin and it is only the spin-dependent 

% correction that we are interested in for later calculations. Neverthe- 

less, one can insist on doing the job right and obtain the quantum cor- 

rection for a spinless charge (for which I2 vanishes). This has been 

done by Schwinger,3 who showed that the first order correction can be 

obtained by simply making a replacement 

in the-classical result of (40). One can then integrate the result over 

frequency to obtain the angular distribution ._ 

d?Lass 
dSL 1 

I 

(44) 

Integrating again over solid angles gives Eq. (3). 

2.6 Radiation Tower without Spin-flip 

Although the fact that g is not exactly equal to 2 plays an 

important role in how spin precesses in a storage ring, it is not so 

essential for the synchrotron radiation of the electron. In the rest of 

this section, we choose to ignore the difference between g and 2. 

Just like 11 defined by Eq. (31) can be approximated by a classical 

integral, Eq. (34), similar approximation can be made on 12: 

m 
-+ 

I = ie%k' 
2 mc 1 

dt (f 12 (t) 1 i) . $(t) eDi' * r(t) + ht 

-co 
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where 3, s are now classical quantities, Ii> and If> refer to the initial 

and final spin states of the electron. To find 12, we need to evaluate 

<f 13(tbj 1 i>. 

Let the electron spin be instantaneously (t = 0) in the direction n 

and define angles B. and $ 
0 

as shown in Figure 2. Note that B. is 

defined with respect to 9, while Cl of Figure 1 is defined with respect 

to ii. We distinguish between two cases according to whether there is a 

spin flip or not after photon emission. In case of no spin-flip, 

<f/x(t)/i> is easy to find. Knowing n at time t = 0 and knowing that, 

for g = 2, spin precesses with the same angular frequency w o = lelBo/mcy 

as the electron circulates in the field If 
0’ 

we find 

CI h 

(f/Z(t)li) = 5 sine0 sin (oat + $,) +I c0s8~ + $ sine0 cos hot + $,I (46) 

where a factor of l/2 is included on the right-hand side because the 

electron spin is $/2. 

h 

Y 

Fig. 2 Relative orientations of the 
coordinate system, the electron tra- 
jectory and the instantaneous direc- 
tion ;i of electron spin. The bend- 
ing magnetic field is in the 9 direc- 

2 tion. The polar angle 8, is defined 
7 6, e- 4 ,L'A relative to 9. 
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We insert Eq. (46) and the expression (27) for 3 (remembering we 

have set g = 2 or equivalently a = 0) into I2 to obtain 

I2 
ie%k h =K& * U. + 

u2 sineoe -i$o+ 
u3 (47) 

where we have defined three more new symbols: 

;+ = i x /,, [i+ _ $1 e-ii: - T: W + iid 
-00 

(48) 

i- h 
u2,3 = (ii 7 ix) X 

-co 

In the expression for z2,3, the upper signs are for z2 and the lower 

signs are for Z 3' The reason we factor E^ outside of the parentheses in 

Eq. (47) is so that we can make use of the identity (35). 

The % correction to synchrotron radiation power involves, from ._ 
hq. (30), the interference between the spin-independent amplitude and the 

spin-dependent amplitude. Explicitly, it involves the real part of 

; (I& Making use of Eq. (35), one finds 
E 

(49) 

l i x 

i ( 

cOseoZ: + 2 1 sineoe -Q,-+ * + 1 sine eiOo ;: * 

u2 2 0 3 )I 

The quantity in the first pair of square brackets has been evaluated 

before; it is given by Eq. (39). Similar steps that led to‘(39) also 

lead to 
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* h +* 
kxu = 1 2 pz (1 + t2)+ K1/3 (n) 

J? y3c 
-. (50) 

2 kxz2t3 = -- - 
“3 

‘/i n 
+ ift)K,/3 (n) + i& (1 + t2) A yc K-~/3(n) 1 

which can be readily substituted into (49) to find the spin-dependent 

correction to synchrotron radiation power to first order in%. If we put 

this result together with our previous spin-independent results, we obtain 

+ 
e2pt-m3 

6r3mc4 y5 
(1 + 

312 _ 
t2> (-n * $+2&a 2) K1/3 (rl) K2/3 (d 

From (51), we have 

d&P dPclass liw 64 c 5+9t2 
dR= dR 

i 

‘i --- 
3&L E (~4)~/~(7+1=!t2) 

+35 
+iw * 

6 EC 
-n l $+2t;I l ; 

(1+t2)(7+12t2) 1 

(51) 

(52) 

in which the spin-independent terms are those that appeared in Eq. (44). 

For a longitudinally polarized electron, the term proportional to n l i 

gives rise to an up-down asymmetry of synchrotron radiation. With posi- 

tive helicity (n = i), there is more radiation in the upper plane, while 

with negative helicity (n = -g), more radiation is found in the lower 

plane. Integrating over solid angles averages out the up-down asymmetry 

and we get Eq. (5). We now see an asymmetry with respect to whether the 

spin is up (n = $) or down (n = -q); more energy is radiated if the 

electron spin points against the bending magnetic field. As we will see 

in section 3.5, the n l q term in Eq. (5) plays a role in determining the 

beam polarization in an electron storage ring. 
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2.7 Transition Rate with Spin-flip 

The spin-independent integral 11 does not contribute to spin-flip 

radiation. To evaluate I2 using Eq. (45), we need first to find the spin 

transition amplitude <fI$(t)li>. Unlike the case without spin-flip, this 

can not be done in two lines. 

Let us choose the spin operator at time t = 0 to be z(O) = z/2 with 
-P 
o the Pauli matrices: 

ux=[;-:] , uy=[;-;j , uz=[ 3 (53) 

(We have made a cyclic permutation upon the more familiar definition of 

Pauli matrices. This choice is more convenient because our magnetic 

field 2, is in the G direction.) The spin operator at other times can be 

obtained from z(O) by considering the precession: 

sx(t) = 3 (ax cos blot + uz sin uot) 

Sy(t) = L u ._ 
2 Y 

(54) 

Sz(t) = 3 (-ax sin wet + 0 
Z 

cos wet) 

Again let n be the direction of the electron spin before radiation. The 

initial and final states Ii> and If > in the matrix representation are 

(55) 

which are eigenstates of the operator 6 . g with eigenvalues +l and -1, 

respectively. Angles e. and 4, are the same as before (see Figure 2). 

The matrix representation of If> can be obtained from that of Ii> by 

replacing (eo, $,) -f (V - eo, r + 9,). Having obtained (54) and (55), 

it is straightforward by matrix multiplication to find 
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A 

<flZ(t)li> = -f sine0 + cos2> 2 
A 

( ) 
T+iF e -Q. - iw,t 

(56) 

_ sin2 ‘0 ii * 2 y-i: e ( ) i0, + iw,t 

We are now in the position to calculate 12. Eq. (45) gives 

I2 
iehk A 

=2111Cc - 
-sin0 Z 0 1 

_ sin2+ ei'Oz2 + cos2+ eeimoG3) (57) 

+ 
using ul,2,3 already defined in Eq. (48). The next step, by now familiar, 

is to sum over the photon polarizations L using the identity (35). After 
* -f 

doing so, we get an expression that contains kx u 1,2,3' 
Substituting 

from (50) then yields 

d2W= e2!iw3 p 
dwdR 241~~ m2 c6 y6 

sin2CIo K12,3 

+ 1+t2 ( I( i+ c0s2e 
0 

2 11 
K&3 + K53 1 ._ 

(58) % KI/3 K2/3 + tcosQlosin2eo K12/3 

- 3 cos2Qosin2eo K2!,3 - (l- t') Kf,3]/ 

We have given the transition rate rather than the power. The reason has 

been explained when we discussed Eq. (7). Integrating over frequency 

gives 

+ 105GlT 
256 cOseo (l+t2)' + tcos$o sin20 - ~cos2~0sin280(l+ 9t2) 

0 

We have kept the five terms in the curly brackets in the same order as 

we had them in Eq. (58). The fourth term, being proportional to t, 

gives an up-down asymmetry to spin-flip radiation. This asymmetry dis- 

appears if the spin direction is in the xz-plane or in the xy-plane. 
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For qample, one does not observe up-down asymmetry if i is along 2, or 

$ or G. The total spin-flip transition rate is obtained by integrating 

(59) over solid angles. Using the fact that cos B. = n * i and 

sine 
0 

cos~o = f; l ;, we discover Eq. (6). 

2.8 Radiative Polarization 

We briefly mentioned the mechanism for the beam to polarize itself 

naturally in a storage ring when we discussed Eqs. (7), (8) and (9). We 

will now do it more systematically. 

In the above semi-classical treatments, we have been considering 

the radiation by a single electron. Polarization, of course, is the 

net spin of a group of many electrons. Let z be the polarization vector. 

Its direction is along the direction of the net spin and its magnitude 

5 (flOO%) is the beam polarization. The equation of motion of z con- 

tains, of course, precession described by the BMT terms, Eq. (16). In 

addition, it must also take into account the polarizing effect of spin- 

flip synchrotron radiation. In fact, it even has to include the various 

-depolarization effects so far not yet described. Here, .let us consider 

an idealistic situation in which the electrons form a point bunch of 

zero emittances and no energy spread; all electrons follow the circular 

designed trajectory and see only a guiding magnetic field in the verti- 

cal direction $. The only relevant terms are then the BMT precession 

and the spin-flip transition rate, Eq. (6): 

8 2) +- 9 (60) 
5fi 1 

where the factor ay, we recognize; is the spin tune; c/p is the revolu- 

tion frequency of the electron and r. has been defined in Eq. (9). An 

additional factor of 2 appears in the transition rate term because in 

one spin-flip event, polarization changes by 2 units of electron spin. 

Admittedly Eq. (60) is somewhat awkward since in the first pre- 

cession term, we have included, and indeed we must include, the fact 

that g 4 2. In the second spin-flip term, however, we have insisted to 

set g = 2. The justification is that taking into account of g $ 2 in 
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the second term does not change our final result much (since, after all, 

g is very close to 2), while the mathematics becomes much more compli- 

cated. Those who are interested in the general case for arbitrary g -~ 
should refer to the literature.6,12 [See also Eq. (65).] 

Let us rewrite (60) in terms of the three components <,, 5 
Y 

, and cz 

of the polarization in a coordinate system that rotates with the beam. 

(61) 

t, = 
7 -ay$ 5, - - 9-r <z 

0 

Note that 5, and 5, are.coupled while 5 
Y 

is independent. From Eq. (61), 

we observe that at equilibrium when ix = i 
Y 

= iz = 0, we must have 

5 5 = =Oand< = -8156 = -92.38%. 
X Z Y 

In order to get a feeling about how this polarization is reached in 

time, let us simplify the problem by considering-a uniform magnetic 

field; p and r are then constants. We readily solve 5 : 
0 Y 

Cy(t) = cy(0) + -!- e 
1 

-t/To 8 - - 
543 543 

(62) 

The vertical component of polarization thus approaches its equilibrium 

with time constant 'I 
0’ 

To find the time evolution for 5, and 5, we first 

note that if we ignore spin precession, 

T -l 

5, will approach 0 with a rate 

0 
while 5 

Z 
will take a slightly lower rate, 7-r. -1 /9, to reach its 0. 

Both rates are very slow compared with the rate aye/p at which 5, and 5, 

rotate and mix into each other. It is therefore a good approximation if 
. 

we replace l/.ro in the ix equation and 7/9.ro in the 5, equation by their 

average value 8/9ro. After doing so, we can solve 5, and cz:' 
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s,(t) = [cx(0) =os ayct 
P 

+ cz(0) sin 71 e-8t'9ro 

(63) 
-~ ayct cZ(t) = [-Cx(0) sin - ayct 

P 
+Cz(0) cos- 

P 1 e -8t/9r, 

Eqs. (62) and (63) describe the time evolution of polarization if we inject 

into a storage ring a beam with initial polarization z(O). In particular, 

if the injected beam is unpolarized, the spin-flip synchrotron radiation 

will cause the beam to build up its polarization against the field: 

8 
Z(t) = - - 

-t/T G<l-e O) (64) 
56 

Up to now, we have been considering electrons. For positrons, the 

equilibrium polarization will be parallel to the magnetic field. One may 

try to draw a more intuitive picture of the effect of polarization 

build-up. For that, one imagines a magnetic moment z in a magnetic 

field 5. Two energy states are generated, one with c parallel to 3, 

another with z anti-parallel to if. Particles, of course, prefer to stay 

in the lower energy state, namely the one with G parallel to 2. One 

-concludes then that electrons must polarize against rf while positrons 

are polarized along 3. The difficulty with such a picture has been dis- 

cussed by Jackson.12 The two states cannot be regarded as isolated 

states; orbital motion of the electron or the positron must be considered 

together with the spin as one coupled system. During the time interval 

it takes an electron to complete the process of emitting a photon, the 

electron has rotated by an angle -l/y. In the mean time, the electron 

spin has precessed by an angle ay times as much, i.e., it has precessed 

by an angle -a. In order for the two energy states to be regarded as 

being isolated, the spin must complete at least one turn of precession 

during the photon emission process. This is true only if la/ ~2~r, or 

equivalently, lg/ >4n. For electrons and positrons, this is far from 

being valid. The above intuitive picture remains not too much more than - 

a quick way to memorize the direction of polarization correctly for both 

electrons and positrons. In fact, even for this limited purpose, the 

fact that it does work is only accidental. According to this picture, 

electron polarization will be in the -$ direction if g > 0 and +G 
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direction if g < 0. The general calculation, which is not only valid for 

g = 2 as we have done, but also valid for arbitrary values of g, shows 

differently: the electron polarization switches direction between -$ and 

+lj not at g = 0 but at g = 1.198. More explicitly, let us copy the 

result for the case of arbitrary g:6*12 

To (a> 
___ = 

T [ 
(1 + -j$ a - $ a2 - 6 a3 + j$ a4j .-al al 

0 

---$*(l++$a-+-$a2-+$a3+a4)e -&YIal 

(65) 

a + 8a2 + y a3 + y a4 + $ a5) 1 -1 

PO(a) 23 3 = - -- 8 To(a> 
56 To 

(1 + ?$ a + 8a2 + 3 a + +j a4 + 5 a5) 

Plotted in Figures 3(A) and 3(B) are the values of r,(a)/?, and P,(a) 

versus a. For large [al, the magnetic moment is large; the polarization 

time constant becomes short and the level of polarization approaches 100% 

as we would expect. Our results, however, correspond only to the values 

at a = 0. - If we insist on using the right value of a = 0.00116, the 

equilibrium polarization would have been 92.44%, somewhat higher than the 

value 92.38% we have been talking about; and the polarization time con- 

stant would have been shorter by about half a percent. 

0 
-2 -I 0 I -2 -I 0 

0 0 

Fig. 3 (A) The characteristic time 
T,(a) for radiative polarization build- 
up, normalized by r. of Eq. (9), ver- 
sus the magnetic anomaly parameter a. 
(B) The equilibrium beam polarization 
P,(a) versus the parameter a. Our 
results of 'lo and PO correspond to the 
values at a = 0. The dotted curves 
indicate what one would expect from an 
intuitive picture that is valid for 
large lal. 
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a = 1.793, a proton beam will be fully radiative 

is its polarization time: with ro(l.793)/r 

(9), the polarization time is about 101' 
0 

minutes 

Km radius. 

3. Beam Polarization 

When we discussed spin precession in the previous section, we 

mentioned that if an electron follows the designed trajectory exactly, 

its spin will precess around the vertical direction 9; and if all 

electrons do so, the net beam polarization direction n will have to be 

along $. We defined a spin tune as the rate of spin precession and 

found it is equal to ay. Then in section 2.8, we concluded that under 

this same condition the radiative beam polarization will be 92%. In 

other words, we showed: 
h 

r?=y (66a) 

spin tune = ay (66b) 

and 

P = 92% . (66c) 
0 

We know the assumption that all electrons follow the designed 

trajectory is never fulfilled because the beam distribution has a finite 

size. Even if we build a storage ring for which all electric and mag- 

netic devices are constructed and installed perfectly, the designed 

trajectory is followed only by the center of beam distribution and not 

by all electrons. One urgent question to be answered is what happens 

to the polarization properties (66) if we take into account the finite 

size of the beam.* 

3.1 Polarization for a Perfect Storage Ring 

Finite beam sizes in an electron storage ring come from the 

recoil perturbations that electrons receive as they radiate synchrotron 

photons. Let us define the orbital state of an electron by a vector 

*For this discussion, we assume that the perfect storage ring does not 
have skew quadrupole and sextupole fields. Those fields will be later 
discussed as error fields. 
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x= 

X 

X’ 

Y I! Y’ 

~E/E 

(67) 

where x, y and z are the displacements of the electron relative to the 

center of particle distribution; x' and y' are the corresponding conju- 

gate momenta defined to be the slopes of the electron's trajectory; 

AE/E is the relative energy deviation. Immediately after radiation, 

only the AE/E-coordinate of the electron is perturbed. As the electron 

keeps on circulating, this perturbation in AE/E in general propagates 

into the other five orbital coordinates, giving the beam finite sizes 

in all six dimensions. In a perfect storage ring, however, the perturba- 

tion on AE/E propagates only into the x-, x'- and z-coordinates, leaving 

y- and y'- coordinates free from being perturbed. As a result, the beam 

distribution is an infinitely thin ribbon with finite width and length 

but zero height. A particle in such a ribbon distribution sees, in 

addition to the bending magnetic field and the rf accelerating electric 

field seen along the designed trajectory, the perturbing.‘magnetic fields 

in the quadrupoles. The nice thing is, with y = o, these quadrupole 

fields are all along 9. If we look at the BMT equation (16), we find 

that the spin precession angular velocity 8 is also along i. [The 

second term in Eq. (16) vanishes, the other two terms are along $.I 

This establishes (66a) since any polarization components perpendicular 

to $ will disappear rapidly due to the different precession phases and 

rates of different particles. We also find from Eq. (16) that the 

contributions from quadrupoles and rf cavities oscillate between posi- 

tive and negative values as x and x' executes betatron and synchrotron 

oscillations.* As a result, the average rate of spin precession is 

determined by the bending magnets alone. This establishes (66b). (It 

is in fact a general result that the spin tune is always determined 

from the EM field seen along the closed orbit.) But we shall keep in 

*In general, x contains a betatron part and a synchrotron part. 
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mind that the actual spin precession angle per turn deviates slightly 

from the average value 2Tay by an amount that depends on the betatron 

and synchrotron motions of the electron. This effect of "frequency 

modulation," as we will see later, is in fact one o‘f the mechanisms 

that depolarize the beam. As to the level of radiative polarization, 

Eq. (66c), it is also unaffected by the finite size of the beam. This 

is because the rate of spin-flip transition, which we recall is the 

mechanism responsible for polarization build-up, is proportional to the 

magnetic field to the cubic power [see Eq. (60)]. The magnetic field 

in quadrupoles is too weak to have an appreciable effect on radiative 

polarization build-up. We thus conclude that in a perfectly constructed 

storage ring, beam polarization satisfies the nice properties listed in 

(66) * 

3.2 The Case of a Ribbon Beam 

<A real storage ring is never perfect. So we want to know what 

happens to beam polarization if the storage ring contains error fields. 

Let us first consider two types of error fields: those due to 

sextupole magnets and those accidental dipole fields that cause a hori- 

zontal closed orbit distortion. An example of the later type is when a 

quadrupole magnet is horizontally misaligned. These error fields are 

special because they do not cause particles to execute vertical motions 

and the beam keeps its ribbon distribution. The perturbing magnetic 

fields seen by particles always point in the ?q directions. Most of 

the previous discussions for a perfect machine still apply. In particu- 

lar, (66a) follows from the fact that 6 is always along 5; directions. 

Remembering that the beam distribution center always follows the closed 

orbit to rotate 277 radians per turn-- no matter how distorted the closed 

orbit may be--and that spin precesses ay times faster than the coordi- 

nate does, we find the spin tune is always equal to ay, i.e., (66b) is 

assured. As to (66c), it again follows if the perturbing fields are 

weaker than the main .bending fields, which is satisfied for almost all 
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practical cases.+ We thus conclude that as long as particles do not 

execute y-motions, the beam (a ribbon beam!) will happily polarize itself 

according to (66). 

3.3 Integer Resonances 

Problems occur as soon as we include error fields that cause y 

excursions in particle motion. One might think these fields are weak and 

question why should they do any harm. For example, if an electron 

passes through a quadrupole of strength GR = 50 kilogauss off-centered by 

1 mm, the spin precesses by an angle of 0.3 mrad, which looks harmless. 

The answer to this question lies in two facts: (1) the electron passes 

through this quadrupole not just once but again and again as it circulates 

around. The innocent-looking 0.3 mrad may add up every time the electron 

passes through the quadrupole. The conditions for those small spin 

rotations to add up are referred to as the depolarization resonance condi- 

tions. (2) Even more importantly, the strengths of some of those depolari- 

zationresonances are greatly enhanced due to the presence of a noise 

source--the synchrotron radiation. The enhancement factor involved is 

typically as large as 106. 
. 

Before we go on to discuss depolarization effects, let me make a 

comment here. In storage rings, typical error fields coming from, for 

example, magnet misalignments are proportional to beam energy E. (This 

is because strengths of all magnets scale with E.) This means as a 

particle passes through the error field, its angular deflection 8 is 

independent of E. The same thing does not happen for spin; it is per- 

turbed by an angle aye which is proportional to E. In other words, the 

higher the beam energy is, the more sensitive are the particle spins to 

magnet misalignments and therefore the more vulnerable is the beam 

polarization to the depolarization resonances. 

* That is all except one. If we insert a wiggler device--a series of 
bending magnets with alternating positive and negative polarities--in 
the storage ring, the beam remains ribbon-shaped but the associated 
"error" fields are strong enough to have an appreciable effect on 
polarization level. In fact, it always makes the polarization lower. 
See problem 6. 
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One type of depolarization resonances occurs when the spin tune ay 

is close to an integer. To see that, let us start with Eq. (66a), i.e., 

the polarization direction f; is along the vertical direction G. The 

reason Eq. (66a) is important is that the radiative polarization built up 

painstakingly by the spin-flip synchrotron radiation is along $. If 

ii # G, the beam will keep only the polarization component along n and the 

net beam polarization will be reduced by a cosine factor n l $. Clearly, 

one loses polarization if n deviates appreciably from $.* 

Consider a particle at the center of beam distribution. It follows 

the closed orbit and sees an external EM field that is periodic in s with 

period 2vR. Its spin therefore precesses with a periodic angular velocity. 

Starting with s, we can integrate this angular velocity through one turn 

to obtain a net rotation on spin. If the spin is represented as a 

3-dimensional vector: 

(68) 

the net rotation can be written as a 3 x 3 matrix R(s). The beam polar- 

ization direction n(s) is then given by the rotational axis of R(s) (use 

right-hand rule): 

R(s) f;(s) = f;(s). (69) 

In case particles do not execute y-motions (the ribbon beam case), R(s) 

is simply a rotation about $: 

cos2Tay 0 sin2ray 

R(s) = 0 10 (70) 

-sin2Tay 0 cos2ray 1 
The rotational axis of (70) is n(s) = i, which of course is just (66a). 

The calculation of R(s) and n(s) for the general case will-be described 

*Strictly speaking, such a loss of polarization is not a "depolarization" 
mechanism. It is rather a "lack of polarization." 
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in detail later. Here let us consider a somewhat idealized case in 

which the spin precession from s = 0 to s = ~ITR is given by Eq. (70) but 

at s = 0 there is a perturbing magnetic field Bx along the horizontal 

direction. Such a field may come from a vertical closed orbit distortion 

at a quadrupole. The spin rotation across the perturbing field is 

described by 

[ 

1 0 0 

0 c0se sine 

0 -sine c0se I 

(71) 

with 8 = (1 + ar> Bxk/Bp. The total rotation matrix for one revolution 

is given by the product of (70) and (71). It can easily be shown that 

the corresponding rotational axis n(s) everywhere outside the perturbing 

field region has the cosine factor n . $ = l/Jl+tan2B csc2 nay. It 

follows that the beam polarization vanishes (n s q = 0) on an "integer 

resonance," i.e., when the spin tune ay is equal to an integer k. One can 

also calculate the width in ay-k within which beam polarization is signi- 

ficantly reduced. The width is found to be of the order of 8/2n. Taking 

again 6 = 0.3 mrad as a typical value from our numerical-example men- 

tioned before, the resonance width is about 0.5 x 10 -4 , which is much 

narrower than the spacing between the integer resonances. This menas 

integer depolarization resonances are easy to avoid. Furthermore, the 

integer resonances depolarize the beam through the cosine factor f; * 9. 

Unlike other depolarization resonances to be mentioned later, they are 

not enhanced by the noise due to synchrotron radiation. We thus expect 

that integer resonances are not a serious problem in storage rings. 

3.4 Sideband Resonances 

In the previous idealized example, we have followed a particle at 

the beam center to obtain the polarization direction n. Consider now 

instead a particle that executes a horizontal betatron oscillation x 
B 

. 

The part of precession described by Eq. (70) needs to be modified; the 

angle 2nay now contains an additional term that is proportional to the 

betatron amplitude x6 and is oscillatory with the betatron tune v . 
X 

One might say that the spin precession motion is "frequency modulated" 
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by the xg-motion. A result of such a frequency modulation is the occur- 

rence of frequency sidebands. In other words, to first order in 4 
6 

the 

system%ow contains, in addition to the natural frequency ay, two more 

frequencies ay * vx. If we now introduce the perturbation (71), the 

spin motion will be seriously influenced if ay * vx is equal to an 

integer k. 

A similar thing happens if the electron executes a synchrotron 

oscillation. The spin precession motion described by Eq. (70), is 

frequency modulated by the synchrotron motion at the synchrotron tune vs. 

Two sidebands at ay + vs occur and the spin motion is seriously influ- 

enced by the perturbation (71) if ay + vs = k. 

The spin motion is also seriously perturbed at the vertical beta- 

tron sidebands ay 2 v = k. 
Y 

The mechanism, however, is different from 

the frequency modulation mechanism for the previous cases. In the 

idealized example, the source of the problem is now not Eq. (70) but 

Eq. (71). As the particle executes a yb-oscillation, the magnetic 

field it experiences at the quadrupole contains two terms: the static 

Bx that causes the spin to precess according to Eq. (71) .and an addi- 

tional Bx that oscillates with y One might now say that the simple % 
B 

. 

harmonic spin precession is "driven" by an oscillatory driving force 
'\ 

every time the electron passes through the quadrupole. If the frequency 

V 
Y 

of the driving force and the natural simple harmonic frequency ay 

satisfy the resonance condition ay 2 v 
Y 

= k, we expect a strong response 

of spin to the driving. 

Once we deviate from our idealized case, the situation rapidly 

becomes complicated. For example, if there is a skew quadrupole field 

somewhere, it produces a perturbation (71) when the electron has an 

x-displacement. The resonance driving mechanism now also applies to the 

ay t v 
X 

= k and the ay ? vs = k sidebands. One can also imagine that 

the simple harmonic precession will be frequency modulated by y 
6 
-motion 

if there are vertical bending dipoles in the storage ring. It is clear 

that studying these effects case by case is cumbersome, if not impossible. 

What is needed is a general, more formal description, which we will offer 

in section 3.7. 
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I have not yet explained the role of synchrotron radiation in enhanc- 

ing the depolarization resonances. Imagine an electron following the 

closed-orbit with its spin zh 
* 

appily polarized along n. Now suddenly it 

emits a photon of energy 6E at time t = 0. After the emission, the 

electron starts to execute orbital oscillations around the closed orbit. 

The oscillations can be decomposed into three modes, which we somewhat 

loosely refer to as the horizontal and vertical betatron modes and the 

synchrotron mode. We know that these excited orbital oscillations are 

damped by radiation damping. The damping times ~~~~ for the three modes 

are somewhat different but they are all comparable, typically about 

several miniseconds. 

A few rrad after the radiation, the electron damps to the closed 

orbit and quiets down again. Meanwhile, 2 starts to precess away from 
A 
n due to the perturbing EM fields seen away from the closed orbit. 

Similar to the orbital motion, this excited spin motion will also quiet 

down. The time constant, however, is not rrad but the polarization time 

constant T o given by Eq. (9), which typically reads at least several 

minutes. We have illustrated in Figures 4(A)-(D) the spin motion during 

this whole process. 

The perturbing EM field that acts on the spin from t = 0 to 

t = a few T rad is oscillatory with frequencies vx, v and vs. This field 
Y 

perturbs the spin through both the frequency modulation and the driving 

mechanisms mentioned before. In case the spin tune ay is such that one 

of the sideband conditions is fulfilled or nearly fulfilled, this photon 

emission event will destroy the polarization of this electron. (In 

Figure 4, this means 8 + 03. ) One can imagine doing a calculation of the 

widths of the sideband resonances just like we did for the integer 

resonances. Within the widths, the angle 8 of Figure 4 is of the order 

of 1 radian. One then probably finds that the widths are very narrow and 

concludes that sideband resonances are not a serious problem for beam 

polarization. What happens, however, is that photons are constantly being 

emitted. Staying outside of such a resonance width not necessarily 

guarantee a good polarization. For example, if each photon emission 

causes the spin to deviate from n by an angle 8 of, say, 10 -6 rad, then 

the spin will random-walk away from f; in about 10 12 emissions. For a 
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Fig. 4 The motion of an electron spin 
-$ foll owing the sudden emission of a 
synchrotron photon of energy 6E. (A) 
Before emission (t< 0), the electron 
is polarized with ?$ along the direc- 
tion n of the net beam polarization. 
(B) Photon emission excites the orbital 
motions of the electron, which cause 
the electron to see some perturbing EM 
fields. After the emission (t > 0) 'and 
before the orbital motions are radia- 
tion damped (t$rrad), 3 precesses 
according to the perturbing fields in 
some complicated manner. The radiation 
damping time Trad is typically several 
miniseconds. (C) After the orbital 
motions are damped (tz rrad), g sees no 
perturbing fields and starts to execute 
a simple precession motion around n. 
The angle 0 is an important parameter 
that determines the strength of depolar- 
ization due to synchrotron radiation. \ 

If 0210-6, one expects loss of polarization. (D) The precessing 3 slowly 
spirals in toward n due to the polarizing effect of synchrotron radiation. 
Signif-icant spiralling occurs after a time ~~ given by the olarization 
time, typically at least several minutes. A few 'lo later, 5 damps to ii. 
The excitation-damping process (A) to (D) is repeated ev.ery time a synchro- 
-tron photon is emitted. 

5 GeV storage ring of 25m radius, this means a. depolarization time of 

about 10' revolutions (there will be lo3 emissions per revolution) or 

about 10 minutes. To guarantee good polarization, the depolarization 

time must be much larger than the polarization time. This means one must 

stay away from the sideband resonances far enough so that 9 is less than 

something like 10 -6 rad rather than 1 rad. Synchrotron radiation thus 

greatly enhances the sideband depolarization resonances. 

Since rrad is so much shorter than T 
0’ 

one can ignore the time period 

Oct2.T rad IF g i ure 4(B)] as far as spin polarization is concerned. For 

t < 0, we have 3- ii = 0. For t > 0, the deviation of 3 from n is propor- 

tional to the perturbation 6E/E. If we extrapolate the spin precession 

motion of Figure 4(c) backwards in time to the moment of emission, t = 0, 

we can write 

2j _ "E". y2$ at -n=- t = 0, (72) 

where we have defined a proportionality vector y an/ay. 
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The vector yaG/ay is a crucial quantity in determining the radiative 

polarization of the beam. It is a 2-dimensional vector perpendicular to i. 

For a ribbon beam, perturbations due to synchrotron radiation is decoupled 

from the spin motion and we have y&/ay = 0. In general, it is a vector 

completely determined by the storage ring lattice depending only on the 

location s where the photon is emitted, independently of synchrotron radia- 

tion and spin. Following Buon,l' we shall call yafi/ay the "spin chromaticity." 

The notation used here follows that of Derbenev, Kondrateno and Skrinsky.g 

It should be mentioned that although this notation suggests more or less its 

physical meaning, it is not to be taken too literally to mean the partial 

derivative of i relative to y. Note also that the angle 8 shown in Figure 4 

is equal to 1 (&E/E) yaA/a-& It specifies the random walk step-size of 

quantum diffusion on spin motion. 

3.5 Determining the Beam Polarization 

We assume that the storage ring fields, including the error fields, 

and the associated closed-orbit distortion are known. From this 

-information, one can obtain the polarization direction s(s) and the spin 

chromaticity y&/ay(s) around the storage ring (see Figure 5). A matrix 

formulation will be described in sections 3.6 and 3.7 for this purpose. 

Here let us assume A and yaA/ay are already known and we will look for an 

expression of beam polarization in terms of these quantities. 

Fig. 5 A schematic drawing of the 
direction of polarization ii and the 
spin chromaticity yak/ay. The 
dotted line indicates the designed 
trajectory. The solid line is the 
distorted closed orbit. Note that 
I?(S) is a unit vector but the magni- 
tude of yac/ay(s) varies with s. 

Consider an unpolarized electron beam stored at time t = 0. Due to 

synchrotron radiation, with all its polarizing as' well as depolarizing 

effects, the beam slowly acquires a polarization c(t); along A. We 

expect G(t) to approach an equilibrium value P with a time constant 'c. 
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The ideal case has been worked out in section 2.8. Here we want to find 

the general expressions for P and T. 

We start with Eq. (60). The first term in (60) describes the pre- 

cession motion. For a polarization along 4, it can be dropped since f; 

is the precession axis. The second term comes from spin-flip radiation. 

It of course must be kept and we have 

i;(t) = --+ s(t) 
0 1 (73) 

where 2 is along the beam motion, G is along the bending magnetic field. 

Since we expect the polarization to be very slowly changing, it is a 

good approximation to average the right-hand side of Eq. (73) over the 

circumference of the ring. Inserting -i. from Eq. (9), this gives 

Eq. (74) is incomplete; it contains only the polarizing effect. We 

will have to include more terms coming from the spin chromatic effects 

due to a nonzero y&/ay. Let us, however, ignore yan/ay for a short 

moment. The equilibrium level of polarization would then be given by 

8 d ds ;;+/ IpI 3 

- = $ds[l-$ (f;. ;)2],l,13 
(75) 

The factor Ei . y is the cosine reduction factor mentioned when we dis- 

cussed integer depolarization resonances. The (less important) factor 
[I-$(;. n2 z) ] in the denominator comes from the slight dependence of 

h 
spin-flip radiation on the z-component of electron spin. 

The effects of spin chromaticity yan/ay are associated with syn- 

chrotron radiation without spin-flips. Consider an electron polarized 

along n. As a photon of energy 6E is emitted, its spin starts to pre- 

cess around f; with a small rotating deviation 3. After emission, the 

electron has lost a polarization 
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Let i be the number of photon emissions per unit time, we obtain 

the quantum diffusion rate on polarization: 

;;(t> = - s(t) 
2~rR 4 

ds(-+) 

. 
where we have averaged over s and (N6E2/E2) is given by integrating 

%r*id2J?/dwdR [see Eq. (40)] over w and R: 

=55 %e2Y5 

246 m2c21p3(s)/ 

(77) 

(78) 

There is another effect on polarization due to the spin chromaticity. 

Consider now an electron that is not perfectly polarized before radiation. 

Let its spin be n + 6 with 8 a small rotating vector orthogonal to n. 

Now the electron emits a photon of energy 6E. After emission, the spin 

acquires another rotating deviation 2. Let do and d, be the values of 

-5 and d extrapolated to the moment of emission. If 6E does not depend on 

Zo, i.e., if the synchrotron radiation does not depend on the instantan- 

eous spin, x0 is uncorrelated with so and we simply have observed a 

random walk in spin motion. The story is quite different if 6E does 

depend on 6. Then x0 correlates with so and the original amount of 

depolarization will decrease or increase according to how d and so are 
0 

correlated. In the former case the correlation is polarizing, while in 

the latter case, depolarizing. 

More quantitatively, the polarization of the electron before and 

after the radiation are equal to 1 - i/6oj2 and 1 - iI?50 + Jo12, 

respectively. Change of polarization due to the radiation is therefore 

2 
AP=-so .$o-+I~oI . (79) 

The second term in (79) is the random walk term already discussed. Summing 

up on photon emission events, the contribution of the first term in (79) to 

the polarization process is found to be 
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(80) 

= - %E)s .y& 
E 0 a-t 

where, as before, ( ) means averaging over the radiation spectrum. In 

addition, an averaging over s is understood. Expression for (i6E) has 

been obtained before; it is given by Eq. (5). The spin-independent terms 

in Eq. (5) do not concern us here. Keeping only the spin-dependent term 

gives 

where the spin direction in Eq. (5) has been replaced by the instanta- 

neous value 3 =ii+L Also since n is perpendicular to yan/ay, the 

vector T; o in Eq. (80)' can be replaced by 3. Substituting Eq. (81) into 

Eq. (80) yields 

(82) 

Since 2 can in principle point in any arbitrary direction, the next step 

is to average over its solid angles, keeping its magnitude constant. 

When this is done, the factor (3 * G)(?! l yan/ay) becomes 

Jj (i l ya&y) lXj2. Now the question is what to use for lZ12. One may 

argue that since -4 is the unit spin direction, it obviously has lXj2 = 1. 

The correct answer, however, is l-q2 = 3, which comes from the fact that 

the magnitude of the electron spin must be determined from the quantum 

mechanical relation I i%f12 = i(i + 1)%2. Thus, Eq. (82) becomes, 

after averaging over s: 

%fiw h 
i(t) = -& ds --!? gclass + l YE 

2E2 
(83) 

We have now obtained three separate contributions to i(t); they are 

given by Eqs. (74), (77) and (83). Adding them up gives the final 

expression obtained by Derbenev and Kondratenkoz6 
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5fi e2y5 
;w = - --g- ti 

m2 c2 I 
a+ s(t) - -E- CL 

5fi - 3 

where“ 

1 
"+ = - ~ITR c 

1 - 7 2 (f; 

1 
cx =- 

~ITR 
S 

(84) 

(85) 

In Eq. (84), the symbol for the instantaneous direction of beam motion 

has been changed (hopefully for clarity) from i to j; the symbol for the . . . 
magnetic field direction has been changed from q to -4 x $/ I+/ with 6 

along the direction of acceleration. The later change of symbol has the 

advantage that it also takes care of positrons. From Eq. (84), it 

follows that the equilibrium beam polarization is equal to 

and the time constant to reach the equilibrium is 

( 
-1 

T = 5c e2y5% 
m2c2 a+ 

1 
* 

(86) 

(87) 

In the case of a perfect planar storage ring, Eqs. (86) and (87) reduce 

to the results of section 2.8. An indication of why the symbols a+ and 

c1- were chosen can be found by comparing the expressions (86) and (87) 

with (8) and (9). 

We have thus obtained an expression for the equilibrium level of 

beam polarization. The integer resonances ay = k show their effect in 
A 

causing n to deviate from y. They are not enhanced by synchrotron 

radiation noise. The sideband resonances ay I vx v s = k, on the other 
9,) 

hand, cause the spin chromaticity to become large. They are enhanced 

by synchrotron radiation noise and are responsible for most of the loss 

of beam polarization in electron storage rings. 
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An inspection of Eqs. (85) and (86) shows that the spin chromaticity 

appears as a quadratic term in the denominator of P and only linearly in 

the numerator. Loss of polarization occurs if /yi&'ay/ 2 1. This means 

the angle f3 of Figure 4(c) will be bigger than rSE/E, which is of the 

order of %wc/E. The spin chromaticity term $ - ya$ay in c1 is small 

for most practical cases. This follows from the fact that n is nearly 
n 

equal to $ and that yanlay is perpendicular to n. Finally, skeptical 

readers who wonder if P, as given by Eq. (86), could be larger than unity 

(then something is obviously wrong!) should work out problem 9. 

3.6 The Polarization Direction n(s) 

We assume that the 6-dimensional closed-orbit vector X0 = (x0, x6, 

YO' YA9 ZO' 60) in the presence of various error fields has been 

obtained around the storage ring. From the electric and magnetic field 

along the closed orbit, one obtains from Eq. (16) the angular velocity 

75 (X0) y Adopting the thin-lens approximation, we let 3 (X0) to be uni- 

form in a given lattice element. The matrix which transforms the spin 

components (68) as the particle travels through a distance s in a uni- 

form EN field is given by 

i 

Cd2(1 - C) + c ciB(1 - C) - ys ay (1 - C) + BS 

aB(l - c> + YS B2(1 - C) + c By(l - C) - as 
1 

(88) 

1 r%y(l - C) - gs BY(l - C) + as Y2(l - C) + c 1 

wh-re a, 0 and y are the direction cosines fi * ft, fi * i and fi * i; and 

C = cos (Q s) S = sin (n s). Knowing 3(X0), one obtains the 3 x 3 matrix 

which transforms the spin components through a given lattice element. 

One then multiplies all 3 x 3 matrices successively to. obtain the 

total spin precession transformation R tot for one revolution around s = 0. 

A right-handed orthonormal base (f;, m, i) with n rotation axis of Rtot is 

then chosen. Successive transformations bring this base to other posi- 

tions. In one revolution, n comes back to its starting value; but m and 
. 
R have rotated around n by an angle 27rv, where exp(fi2rv) are the two 

nontrivial eigenvalues of Rtot. The quantity v gives the spin precession 
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tune and n gives the direction of beam polarization. For a storage ring with 
A 

planar geometry and without error fields, v is equal to ay and n is along G. 
A 

For rings with error fields, v % ay and n zz y to a high degree of accuracy 

provided ay is a distance >lO-3 away from integers. 

3.7 Spin Chromaticity Y&/aY 

We assume that the closed orbit X0 and the spin base vectors 

(f;, 4, i) are now obtained. The spin of a nearly polarized electron is 

written as 

(89) 

The quantities a and B thus describe the spin to a linear approximation 
12 and 2 (a + S2) specifies the degree of depolarization of this electron. 

The assumption [a,~/ <clis acceptable since, as explained before, we are 

interested in cases down to the ja,~I 5 10m6 level. 

For an electron that deviates from the closed orbit by the state 

vector X, given by Eq. (67), the angular velocity is given by d(Xo + X). 

In a linear approximation, d can be decomposed into $(X0) + z (X), where 

the perturbation w is small compared with R. . 

We need now to know how the orbital coordinates X and the spin 

coordinates a, f3 evolve in time. We know that4 the orbital motion of a 

particle in an accelerator is most conveniently described by the trans- 

port matrices. In the absence of coupling, transport matrices of a small 

dimension (2 x 2 for y-motion, 3 x 3 for x-motion, etc.) will be suffi- 

cient. With x-y coupling, one uses 4 x 4 matrices and in case x-, y- 

and z-motions are all coupled together, one must deal with 6 x 6 matrices. 

It does not require too much imagination to realize that the next step is 

to construct an 8-dimensional state vector 

X 

X’ 

Y 
Y’ 

11 iE,E 
a 
R 

(90) 

The corresponding transport matrices are then 8 x 8. 
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To appreciate the need of dealing with such a generality, we 

remember that the spin motion of an electron depends on the electric and 

magnetic fields it experiences according to the BMT equation; and that 

those fields, in turn, depend on its orbital coordinates. This means 

coupling effects between spin and orbital coordinates play an important 

role as far as spin motion is concerned. 

Concerning the spin-orbit coupling, we mentioned that the spin 

motion is influenced by the orbital motion. In fact, orbital motion of 

an electron is also influenced by its spin. The influence is expected 

to be extremely weak (of the order of %) and will be ignored. To see 

how small these effects are, let us consider a vertically polarized 

electron with magnetic moment c = u$. A quadrupole magnet, which is a 

focusing element for an electric charge, acts on $ as a bending element. 

The bending is done in the horizontal plane and the bending angle is 

Ax' = pGR/E with G the field gradient and R the magnet length. Taking a 

typical quadrupole magnet in an electron storage ring, we might have 

GR = 50 kilogauss, the kicking angle Ax' is found to be about 10 -13 rad. 

Similarly, a sextupole magnet which produces a nonlinear. field for an 

electric change acts on c as a linear focusing element. The focal length 

is given by f -1 = pG'R/E with G' = a2By/ax2 the sextupole strength. 

Again taking a typical sextupole strength G'R = 500 kilogauss/m, we find 

the focal length is about 10 12 meters. Both the bending by quadrupoles 

and focusing by sextupoles are indeed exceedingly weak. 

Noting that n, 6 and i satisfy 

one obtains by substituting Eq. (89) into the precession equation that 
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The 8 x 8 transport matrix looks like 

(92) 

where Tgx 6 means the 6x 6 transport matrices describing the transforma- 

tion among the orbital coordinates; the upper right corner is a 6 x 2 

matrix filled by O's because we are ignoring the effects of spin on 

orbital motions; the spin-orbit coupling coefficients in the 2 x 6 matrix 

D are obtained from Eq. (91). Explicit expressions of the 8 x 8 matrices 

are given in the Appendix. 

One must not forget that, due to the discontinuous transition in the 

definition of the base vectors as the electron travels across s = 27~R, an 

extra transformation for the spin components is required: 

[:I,; 21TR+ = [,n: ::I -1: :::] [1,- 2TR- cg3) 
. 

where v is the spin tune found in section 3.6. Starting from s we multiply 

matrices to obtain a transformation matrix T(s) for one revolution. Let the 

eigenvalues and eigenvectors of T(s) be Xk and Ek(s), respectively, with 

T(s) Ek (s) = Ak Ek (s) 

hk* = Amk (94) 

Ek* = EBk , k = t1, tI1, &III, &IV. 

Eigenvectors at other positions, Ek(s'), are obtained from Ek(s) by suc- 

cessive transformations from s to,s'. The first three sets of eigenmodes 

are the orbital modes. The three eigenvalues give the orbital tunes. 

The corresponding eigenvectors in general carry nonzero spin components. 

The fourth pair of eigenvectors, E+IV, on the other hand, contains only 

spin components and no orbital components. The corresponding eigenvalues 

are given by exp(fi2.rrv) with v the spin tune. 
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Consider an electron that follows the closed orbit with spin along 
A 
n. A photon of energy 6E is emitted at so. Immediately after the 

emission, the electron is left in a state 

Decomposed into eigenstates, it can be written as 

X(so) = 

= 

c q,Ek(so) 
k 

c 
k= +I, *II, +I11 AkEk(So) + 

0 
0 
0 
0 
0 
0 
cl 

8, 
- 0 

(95) 

(96) 

. 

where me have used the fact that E . +1v contain no orbital coordinates. 

Eq. (96) contains 8 unknowns A fI,+II,tIII and i, 8, and 8 equations 

to determine them. The first six equations obtained by equating the 

orbital components of Eq. (96) can be written as 

i 0 0 0 0 0 1 = c k %ek(So) 
-bE/E 

(97) 

where e k is a 6-dimensional vector whose components are the orbital 

coordinates of E k' To find %c' some orthogonality condition on the 

eigenvectors e k is needed. This condition is provided by the symplec- 

ticity property of the transport matrices Tgx 6(s), i.e.,4 

T fjx6ST6x6 = s ’ (98) 



- 47 - 

where a tilde means taking the transpose of a matrix and 

s = 

'0 -1 0 0 0 0‘ 

10 0 0 0 0 

0 0 0 -1 0 0 

0 0 10 0 0 

0 0 0 0 0 -1 

0 0 0 0 1 0 

From Eq. (98), one can find the orthogonality condition 

Z.Se =0 
J i 

unless j = -i. 

(99) 

(100) 

When j = -i, we choose the normalization so that 

z -kS ek = i , k = I, II, III . (101) 

The reason we normalize it to i rather than 1 is, as one can easily show, 

this quantity must be purely imaginary. For k = -1, -11 and -111, they 

are normalized to -i. Conditions (100) and (101) are preserved as a 

-function of s due to the symplecticity of T(s). Using Eqs. (100) and 

(lOl), Eq. (97) yields 

%= 
-i% Et5 (so) (102) 

where E th 
ki means the i component of the vector Ek. 

Having found Al, one then solves the remaining 2 equations corres- 

ponding to the spin part of Eq. (96): 

a 

[ 
E 

= 

k=I,II,III 
S 

0 

I,@,“, Ek7) 

Im(Ec5 Ek8) 1 s 
0 

(103) 

After the photon emission, the orbital components of Eq. (96) are 

rapidly damped by the radiation damping, leaving the spin to precess 
,. 

around n as if it started at s with an initial deviation 31; = Lm+Ei. 
0 

Associating with the definition of the spin chromaticity, we find 
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=-2 c 
k; I,II, III 

h 
> m + Im (EC5 k8 E >i 1 (104) 

S 

in which we have dropped the subscript on s 
0 

since spin chromaticity is 

defined for all s. 

3.8 Numerical Examples 

To calculate the polarization numerically, we have to know the 

arrangement of all lattice elements around the storage ring, including 

elements coming from imperfections. These computational steps are then 

followed: 

(1) the closed orbit X 
0 A 

(2) polarization direction n 

(3) 8 x 8 transport matrices 

(4) spin chromaticity yan/ay 

(5) 'I and P 

A computer code is developed following these steps. It is applied 
. 

to estimate the beam polarizations for the storage rings SPEAR and PEP. 

Lattice elements for the ideal rings include horizontal bending magnets, 

quadrupole magnets, sextupole magnets, rf cavities and drift spaces. 

Without field imperfections, the ideal lattices produce an equilibrium 

polarization of 92%. To simulate field imperfections, we introduce a 

random distribution of vertical orbit kickers. The resulting vertical 

closed orbit distortion makes sextupoles behave like skew quadrupoles 

and quadrupoles behave like additional vertical kickers. In the presence 

of these field imperfections, the degree of polarization P can be plotted 

as a function of the beam energy E. Results will be different for dif- 

ferent simulations of field imperfections. Typical results for SPEAR 

and PEP are shown in Figures 6 and 7, respectively. 



- 49 - 

ay=7 Fig. 6 Expected beam 
polarization P versus 
beam energy E around 
3-4 GeV for a typical 
lattice configuration 
of the SPEAR storage 
ring. The simulated 
field imperfections 
contribute to an rms 
vertical closed orbit 
distortion of 1.2mm. 
Locations of depolar- 
ization resonances are 
indicated by arrows. 

oy=3l 32 33 34 

f t 1’1 I I 1 i i'i t t 1 tltttl i i i’i t i 
10s I I 

Fig. 7 Expected beam polarization 

fections contribute to an rms 

14.0 14.5 / 5.c 
vertical closed orbit distortion 

E (GeV) of 0.6mm. >oe, 

The SPEAR lattice used is specified by the lattice parameters: 

V 
X 

= 5.28, 'v 
Y 

= 5.18, v 
S 

= 0.022, B * = 1.2m, 6" = O.lOm andn: = 0, 
X 

where B* 
Y 

X’ 
BG and n: are the horizontal beta-function, vertical beta- 

function and the energy dispersion function at the points where positron 

and electron beams collide. The strengths of the vertical kickers are 

normalized such that the rms closed orbit distortion after orbit cor- 

rection is Ay,,, = 1.2mm, which is typical for SPEAR operation. 

Locations of the depolarization resonances are indicated by arrows at the 

top of Figure 6. Each integer resonance is surrounded by six sideband 

resonances. The integer resonances and the two nearby synchrotron side- 

band resonances overlap and are shown as single depolarization dips. 
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We have expanded the energy scale of Figure 6 and plotted the result 

again in Figure 8. Superimposed are polarization measurements performed 

by the SPEAR polarization team.16 The agreement between calculation and 

measurements is acceptable except that the calculation has missed the 

depolarization resonance located at ay - vx + vs = 3. In general, there 

are depolarization resonances located at 

ay + nxvx + nyvy + ns vs = k (105) 

for all integers n and k. 
X,Y,S 

The matrix formalism we developed takes 

care of only the integer and the linear sideband resonances. 

+ - 
Fig. 8 Comparison of calculation 
and measurements for SPEAR. Agree- 

1 ment near the two linear sideband 
resonances ay- vy= 3 and ay- vx= 3 
is acceptable. The third resonance 

ay-vy =3 oy-v,+li5:3 07-u,= 3 ay - v,+ vs = 3, however, is missed 
by the calculation. E 8, Gev 1 ,. t. 

The PEP configuration used has vx = 21.15, v = 18.75 and vs = 0.05. 
Y 

The corresponding rms closed orbit distortion is set to be O.Gmm, which 

is half of what we use for SPEAR because PEP has a more sophisticated 

orbit correction scheme. Nevertheless, the expected PEP polarization is 

lower than for SPEAR due to its higher beam energies. 
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Appendix 

GENERALIZED TRANSPORT MATRICES 

The generalized transport matrices for the state vector (x, x', y, 

Y', z, 6, a, B) are listed below for various lattice elements. Thin- 

lens approximation has been used. For the rf cavity, 0, is synchronous 

phase and V is the peak voltage. 

Drift Space 
-1R 0 0 0 0 0 

010 0 0 0 0 

0 OlR 0 0 0 

0 0 010 0 0 

0 0 0 0 10 0 

0 0 0 0 010 

0 0 0 0 0 01 

-0 0 0 0 0 0 0 
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Vertical Bend Magnet or Kicker: q = BxLIi3~ 
F 
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0 0 0 0 0 1 

0 ayqRz 0 0 0 q&X 
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0 

0 

0 

0 

0 

0 
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0 

1 



- 52 - 

Appendix (Cont.) 

Quadrupole: R a 
q=BP ax By 
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Skew Quadrupole: 
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X 
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0 

qxO 

0 
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0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 
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0 

0 

0 

0 

0 

0 

0 
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0 
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0 
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0 

0 

0 

1 

RF Cavity: q = e ? coses/RE ; r = (l+ay) e t sin$s/E 

10 0 0 

0 10 0 

0 0 10 

0 0 01 

0 0 0 0 

3 0 0 0 

3 -rR 0 rR 
Y X 

rm 0 -ml 
Y X 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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10 0 0 

q 10 0 
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Sextupsle: R a2 

q = Bp ;3x2 By ; r = (l+ay)q 

1 

-qxo 

0 

qyO 

-9 2("i - Yi) 

0 

--I: (yokx + Xoky) 

r ( y omx + xomy ) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

0 0 0 

1 
qyO 

0 

0 1 0 

0 
qxO 

1 

0 qxoyo 0 

0 0 0 

0 -r(x R - YoRy) 0 ox 

0 r(xomx - Yomy) 0 
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Problems 

1. Spin precesses ahead of the coordinate system by a factor of ay if 

we bend the trajectory by a magnetic field. What if we bend by an 

electric field? What will be the spin tune? Along which direction 

is the beam polarized? . 
. 

2. Show that the Hamiltonian (21), together with 5 = 2 [H,z] and 

IS,, Sj3 = ix Eijk k S gives the precession equation (13). This is 
k 

true whether 5 is nonrelativistic, Eq. (14), or has been generalized, 

Eq. (16). 

3. Show Eq. (35). Make use of the fact that the two polarization 

vectors i and E are orthogonal to k. 

4. Follow thi calculation of (f\?!(t)li) of section 2.7 to evaluate 

the case without spin flip. One should get Eq. (46). 

5. If the gyromagnetic ratio lgl >> 1, Eq. (65) becomes 

T 
0 
-l=e,$t&,? and p =-f,m 

48 m2c2 p3 0 g * 

Show that these results agree with the intuitive picture discussed 

before Eq. (65). Refer to Ref. 12. 

6. If there are wiggler devices (see the footnote of section 3.2) 

in the storage ring, show that the equilibrium beam polarization is 

still along G but with a reduced magnitude: 
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where p < 0 for a reversed bending. Refer to section 2.8. Remember 

that the "up" and the "down" states switch roles in a reversed bend- 

ing magnet. See also Eq. (75). 

7. Let xn be the spin of an electron as it circulates the n-th revolu- 

tion. Transform the spin according to 

3 n+l = Ml(ay+ E cosnv)M2 (0); n 

where Ml(ay) is the precession matrix (70); M2(0)is the perturba- 

tion matrix (71); 1~1 << 1 is a small parameter; v is the frequency 

at which the spin precession frequency ay is modulated. Starting 

with $ along the rotational axis of the transformation Ml(ay)M2 (CI), 

show that $ deviates from 9 significantly if ay t v is close to an 

integer and then estimate the resonance width. Do the analysis to 

first order in E. Repeat the problem for the case when the spin is 

driven by an oscillating perturbation: . 

'n+l = Ml(ay) M2(c cosnv)zn . 

8. To obtain Eq. (83) from Eq. (82), we have used a semi-classical 

argument to replace the quantity (5 l x)(3 . rf) by 1 * 3 by averag- 

ing over the solid angles of spin 2, where 2 and 3 are arbitrary 

vectors. Prove the quantum mechanical counterpart of this 

argument: 

{ 
(;: * Ii) , (Z * &pi, , 

where G is a vector whose components are the Pauli matrices, { > , 

is the symmetric anti-commutator of two operators. 

9. If one can design a storage ring with arbitrary n and yan/ay, how 

should he choose these quantities so that the beam polarization given 

by Eqs. (85) and (86) is maximized? The answer is given in Ref. 6: 
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The maximum value is Pmax = 72/5m = 94.7%. 


