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ABSTRACT 

Using the SLAC lattice Hamiltonian QCD theory, we compute the decay 

width for the decay p + +o -tTiT. There is reasonable agreement between 

the theoretical result and observation. There are two key ingredients 

involved in our calculation. One is the vacuum insertion technique of 

Lee, Primack and Treiman for the evaluation of light hadron matrix ele- 

ments of effective low energy interaction densities. The.other is the 

identification of the SLAC lattice currents with the physical hadron 

currents to leading order in the SLAC order l/g2 effective Hamiltonian 

for the fluxless light hadron sector-- in the spirit of Gell-Mann's work 

in current algebra. Our result suggests that the SLAC theory, taken 

together with these two ingredients, p rovides a viable technique for 

calculating large distance light hadron dynamics. 
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1. Introduction 

One of the most popular candidates for the theory of the usual strong 
-. 

interaction is QCD-quantum chromodynamics. 1 Among the outstanding ques- 

tions in this (continuum) QCD strong interaction scenario is the detailed 

mechanism involved in the confinement of quarks. It was with this ques- 

tion in mind that Wilson2 introduced the lattice approach to the large 

distance behavior of QCD. For, since the confinement of quarks is pre- 

sumably a large distance phenomenon, one could hope that the short distance 

part of the QCD theory, which appears to be consistent with observation, 

could be cut-off in a gauge invariant way without affecting, significantly, 

the true large distance properties of the theory. Wilson's lattice QCD 

theory represents an effort to construct just such a gauge invariant short 

distance cut-off. And, indeed, Wilson found that his lattice QCD theory 

confines infinitely heavy colored quarks. The issue of dynamical, light 

quark confinement on the lattice remains an open question. 

Indeed, in Wilson's original formulation, there were a number of un- 

resolved issues, as is always true in any entirely new development. Among 

these issues was the fact that Wilson's arguments also led to confinement 

for Abelian lattice gauge theories, while weakly coupled QED does not con- 

fine. In addition, in order to avoid spurious fermionic degrees of freedom 

on his lattice, Wilson had to introduce chiral non-invariant terms into the 

lattice QCD'theory with massless fermions--such terms made the discussion 

of the chiral aspects of low energy hadron dynamics difficult on the lat- 

tice itself, if not impossible.3 It was with such questions in mind that 

the SLAC group4 introduced what we will refer to as the SLAC lattice 

approach to strong interaction dynamics. 
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Onesmay naturally ask what are the key differences between the SLAC 

lattice and the Wilson lattice. A significant calculational difference 

is that the SLAC theory uses a continuous time variable and latticed 

spatial coordinates together with a Hamiltonian formalism whereas Wilson's 

theory is most simply described as a Lagrangian theory in which all four 

Lorentz coordinates are latticed, with the time coordinate taken to be 

imaginary (Euclidean quantum field theory). But, from the point of view 

of chiral symmetry, the primary difference is that Wilson's theory uses 

the usual difference definition of differentiation on a lattice whereas 

the SLAC group has introduced into hadron dynamics the lattice derivative 

vf(ja) z c ikf(k)eikja 
k 

(1) 

where 

f(ja) f c f(k)eikja .. 
k 

(2) 

for a function f(ja) defined on a one-dimensional lattice. Here, the sum 

on k is over 

k = 2mT/((2N + l>a) , m = -N, -N + 1, . . . , N . (3) 

It has been shown in Ref. 4 that the derivative (1) alleviates spurious 

fermionic modes on the lattice and, yet, maintains local y5-symmetry for 

massless fermions on the respective lattice. Thus, the chiral symmetry 

properties of low energy hadron dynamics on a lattice are more readily 

discussed with (1) than with Wilson's difference derivative.5-8 

In addition, the SLAC group has been able to argue that, in Abelian 

lattice gauge theories, there is a phase transition so that such theories 

only confine (heavy) quarks at strong coupling. At weak coupling, a 

theory like lattice QED would not confine heavy quarks. This is an 
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important result for the entire lattice framework, since one does not 

believe that heavy weakly charged particles are confined by QED in the 

continuum. Thus, a confining result for lattice QED in this case would 

have indicated that the lattice theory does not accurately represent the 

large distance properties of the attendant continuum theory. A more 

detailed proof of the existence of this phase transition in Abelian lat- 

tice gauge theory has been given by Guth.g 

As we have attempted to emphasize, while all of these results about 

confinement are encouraging, they nonetheless refer to heavy quarks 

(static quarks). At some point, one must face the issue of dynamical 

light quarks in the lattice QCD framework. For, one would like to feel 

that the known low energy phenomena of light hadrons were not inconsistent 

with the lattice framework. Toward this end, the SLAC group has made sub- 

stantial progress. . 

More specifically, working in their QCD lattice Hamiltonian framework, 

the SLAC group has been able to showlo that, in order l/g 2 , where g is the 

gauge coupling constant, there arises an approximate W(6) X SU(6) X U(1) 

symmetry of light hadron physics. A number of important results follow 

from their work: up/uN = -312, g,/g, # -513, both vector mesons and 

pseudoscalar mesons are pseudo-Goldstone bosons, etc. Thus, one can say 

that this SLAC lattice theory for QCD is not obviously inconsistent with 

the general aspects of the dynamics of light hadrons (hadrons composed of 

u, d, and s quarks). It is, therefore, tempting to use this theory to 

address more of the details of light hadron dynamics, that is to say, 

more of the details of large distance approximately chirally invariant 

light hadron dynamics. This is our primary objective in the development 

which follows. 
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What we shall do is to use a prototypical large distance light hadron 

process to perform a detailed test of the applicability of the SLAC lattice 

QCD theory to large distance light hadron dynamics. Our prototypical 

process will be 

+ +o 
P -fTll . (4) 

For, experimentally," approximate scaling occurs already for Q2 2 1, GeV2, 

where Q2 represents the magnitude of the squared four-momentum transfer 

+- 
in lepton-hadron inelastic scattering, or s in e e annihilation, the 

squared center of momentum energy, for example. This fact, taken together 

with the recent theoretical result12 that the transition from weak coupling 

asymptotically free behavior1 to strong coupling confining behavior in QCD 

is abrupt means that the process (4), with Q2 2 =m p = .602 GeV2, should be 

in the regime of confinement--in the regime of large distance light hadron 

dynamics. And, indeed, we will find reasonable agreementbetween the 

SLAC lattice theory and observation. This will provide further support 

for the general lattice QCD idea itself as well as the particular SLAC 

representation of that idea. 

Our work will be organized according to the following scheme. In the 

next section, Section 2, we describe the relevant aspects of the SLAC 

theory for the computation of p + +o j7r7-r. In Section 3, we present this 

computation itself and thereby derive an expression for the width 

r(P 
+ -t nfTrO). Section 4 presents the determination of effective value of 

the lattice constant a, which is needed to evaluate the expression 

derived in Section 3 for r(p + -+ .rr'~'). Section 5 contains the determina- 

tion of the effective gauge coupling constant g which is needed to evaluate 

our expression for r(p + 
-f lTflTO). Section 6 then presents this evaluation 

of T(P 
+ 

-+ .+IT') and compares our result with observation, with due 
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discussi'on of the various theoretical procedures involved in our work. 

Finally, Section 7 contains some concluding remarks. 

2. The SLAC Lattice Theory 

+ 
Our objective is to calculate the process p + vr+-rro. We shall do 

this using the SLAC lattice theory. Here, we wish to delineate those 

aspects of the SLAC theory which are relevant to our calculation. 

More precisely, the SLAC theory consists of the lattice HamiltonianlO 

H&,4 = a 

where we have used the notation of Ref. 10. 
cif 

Thus; the spinor field $, 
-! 

at site f carries color index c1 and flavor index f. 
J 

The operators 

E -t h measure the units of color flux created by the operators U, on the 
j,v 

link joining site T to site f + 1;. 
j,G 

The c1 are Dirac's matrices--we will 
u 

always represent them in the convention of Bjorken and Drell.13 The 

parameter a is the lattice spacing and, to repeat, g is the gauge coupling 

constant. Finally, we note that the quantity a'(n) in (5) is defined so 

that 

is the SLAC derivative on a lattice. Thus, taking 2N + 1 lattice sites 

along each coordinate axis, 

N 

a’(n) = 2N\ 1 c ik(m) exp[-ik(m)n] 
m=-N 

(7) 
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where I 

k(m) = 2vm/(2N + 1) . (8) 

In our work, we shall always be interested in the infinite volume limit 

N + ~0. In this limit, 6'(n) becomes 

6'(n) + (-1) n+l 
In . (9) 

This completes the definition of the SLAC lattice QCD theory to the extent 

required by our analysis. 

To continue with our discussion, we further observe that, working to 

order l/g2 in the large g (large distance) regime in the fluxless sector 

of the Hilbert space associated with H, the SLAC group has derived the 

following effective second-order Hamiltonian: 

c a'(n)6'(-n) $taf , (10) 
-2 J ,n,l.l (112)g2b/cF ? 

by the standard degenerate state perturbative methods. Here, NC is the 

number of colors, and C F is the value of the quadratic Casimir operator 

of SU(Nc) in the fundamental representation: 

N2 - 1 
CF = C2N . (11) 

C 

In the case of primary import, NC = 3. The matrix c1 
1-1 

in (10) is repre- 

sented by 

(12) 

in the familiar notation of Ref. 13. 

It is this interaction (10) which we shall employ to compute 

+ +o 
P +lT?l. We turn to this calculation in the next section. 
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3. TheI Decay Width I'(p+ -+ a+lT") 

We wish to use the interaction (10) to compute the rate for p 
+ + 7r+lT" . 

-~ 
We begin by discussing the relevant aspects of the particle spectrum 

associated with (5) and (10). 

More specifically, in the particle spectrum attendant to (5) and (lo), 

the SLAC group has found,1° among other things, that both the p and the IT 

are Goldstone particles of an approximate SU(12) symmetry. The correspond- 

ing broken charge densities are as follows: 

+ P : +z 7 0 x+ qJ, sj +(i) 
j j Yh 

+ 
Tr : e; Y5 @ A+ lJj 

J j 

(13) 

(14) 

where 

a 
Jx ajy ajz -+- 

yox ctz 
+ jz $ a& _ -f 

x Y z Y x 
=yox+s 

and where, here, we suppress color and we take X+ to be equal to the usual 

isospin raising Gell-Mann matrix. The analogous correspondences hold for 

0 
the p-, p , IT- and 71'. Of course, the correspondences for the pions are 

well known. Thus, as a first step toward our computation, we may define, 

with the idea that the particle states are pseudo-Goldstone manifestations 

of the same broken symmetry, 

(15) 

(16) 

where f 7T is the familiar pion decay constant, fp is the p decay constant, 

-+ 
E is the polarization vector of the p + in the state Ip+(p), z) of four 

momentum p = (m , B), and IT +-\ (p), is the 71 
+ state of four momentum i. 

P 
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We continue to suppress color. It is well known that 

fr A 98.4 MeV . (17) 

Further, the value of f is also well known14 
P 

to be (see Appendix I) 

fp G 140 MeV . (18) 

We shall now show that (17) and (18) allow us to evaluate the amplitude 

for p 
+ 

-f IT+IT' using (10). 

Toward this end, we employ two key techniques well tested in other 

problems in theoretical particle physics. The first is inspired by the 

idea of Gell-MannI to abstract the properties of a quasi-realistic model 

field theory and attribute them to the full hadron interacting currents. 

Here, we will argue that although the "currents" in (10) are restricted to 

the lattice, we are only going to use (10) in regimes where the dominant 

strong interaction effects are already represented if we use the algebraic 

structure of the interaction in (10). In this regime, the-fact that the 

currents in (10) are on a lattice does not prevent us from remembering 

that these currents have been derived by restricting the fully interacting 

QCD theory to the lattice. For the evaluation of our matrix elements, we 

shall so remember. We discuss this point in more detail in Section 6. 

The second key idea to be employed here is borrowed from the work of 

Lee, Primack and Treiman16 on AS # 0, AQ = 0 effects in what were once 

candidate gauge theories of the weak and electromagnetic interaction. 

Here S is strangeness and Q is electric charge. We have reference to the 

vacuum insertion technique for evaluating the light hadron matrix elements 

of four-fermion effective interaction Lagrangians. This technique allows 

one to understand,16 quantitatively, phenomena such as KL -+ 11~ and 

mIcL - mK S , where m A is the mass of A, A = 52 KS. We may now proceed with 

the computation of p 
+ +o 

+lTTf. 
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+ 
First, we observe that the amplitude for P -+ 7r+x" is , to lowest 

order in Hi::, 

s 

03 -~ 
d2 = (7i+7r"/-i dt HL:;\p+) . (19) 

--m 

The relevant kinematics is summarized in Fig. 1, where we work in the ps 

rest frame so that ql = (m,, 6) . The vacuum insertion technique then 

invites us to evaluate the following four expressions: 

- ( lT+Tr” 1 Qf (cIu)L)lv2 $’ IO ) (0 l*yf: %J)~102 etncv I p+ > ’ (21) jv, 2 j+nwl 2 

( 1 0 I/lTCLf t “I.r liit 
j+nZ 

jP+)(‘+Tr”I$yf: au $JZf’lo) , (22) 
J j+w j 

- 0 $l”f (au)vlv2 lj~f’lp+) (n+T”,Qf: ( 1 (yJo ; iBf .. lo) - (23) 
jv, ju, j+nl-lol 1 2 T+nGv2 

Here, ol, a2, vl, and v2 are Dirac spinor indices. We note that the 

expressions (20) and (22) vanish by the Wigner-Eckart theorem in the flavor 

space associated with the indices f, f'. Thus, we only have to evaluate 

(21) and (23). 

To evaluate (21) and (23), we use the standard Dirac matrix algebra 

to write 

16 
*'"f' 

f 
*Bf = 

t h J+n+ J+WV2 c 
sgn(Jtc9 , (25) 

n=l 
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where, in accordance with Refs. 10, we take the notation of Ref. 13 for 

n the Dirac matrices ,& : 

&z-P = 1, Ye, -iauv, Ygy y5Yp (26) 

and sgn(dKn) is such that 

(,4v y 2 sgn(,Kn) = 1 . 

The results (24) and (25) allow us to write (21) as 

(27) 

1 
-16 C( 

Q,rl’ (28) 

an entirely analogous expression may be written for (23). Thus, our 

problem is now formulated as the evaluation of (28). 

For this purpose, we use our variant of Gell-Mann's ideal5 to re- 

implement the Lorentz group so that, for example, we identify 

iP l x 
$l"f=e oP -; pf 

-iP 
(0) e 

op l + J (29) 

where 

X E (t, 34 , (30) 
s 

Pi-l 
oP 

is the 4-momentum operator and, now, JI +Orf (0) is the fully Lorentz 

covariant Heisenberg field of the QCD theory at the origin of Minkowski 

space. With this identification, the expression in (28) becomes 

1 
c 

[i(s2 +q3 
-16 e - ql) l xT1(n+ao[$+~f(o)&~ pf’ (0) lo) 

. 

( 1 0 gJtBf’ (O),/iP’ Pf (0) I P’) 

I 

(31) 
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For, since q 1 = (m p, a), the factor exp(+i<l l nCa> produced when 

exp(-iP l x 
oP t ) acts on Ip+) is equal to 1. Thus, (31) is independent 
-~ J+4 

of n. 
\ 

Note that the analog of (31) for the expression (23) will also be 

independent of n ultimately because Gl = 6 so that, after summation over 

f, z2 + G3 will also be constrained to be d; this renders 

exp i(q2 + q3) l x 

{ y+nC > 

independent of n. And, the latter phase is the 

only possible source of n-dependence in the analog of (31) for the expres- 

sion (23). (The neglect of umklapps will be justified presently.) 

To proceed further, we need to evaluate the expressions 

in (31). One easily verifies the following: if 

where sn,(u) = +l, we have 

= s nl (~1 tr(dPdMn’) 

(32) 

(33) 

(34) 

= 4sn,(v> sgn(,Kn)Gn,, . 

We list the values of sn(.u) and sgn(,&n)in Table I. In the Appendix II, 

we show that only&n = ui and,.Kn = y' contribute to the amplitude in (28) 

and (31) and that only the contributions of An. = ai are,significant. The 

..Kn = yR terms are small because m*/m 
4 P 

is small, where rnt is the SU(2) 

symmetric u and d current quark mass.17 Using (34), the results in Table I 

and the results (AII.3) - (AII.18) in Appendix II, we find that (31) is 

approximately the same as 
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i 

--e 4 
Mq:! + q3 - ql) l 21 

{( 
n+lTOl++af(0) ai lpf'(0) lo) 

“(c&J+8f’(0) cxi lff(0)IP+) (-l)l-Biu > 

1 [i(q2+q3-ql) *x+1 l-6. 
= --e 

4 J (-1) 1l.l (a+*o/S"'(o) Yi Jlaf'm\o) (35) 

x ( 1 0 Ypf’ (0) yi- l/JBf (0) IP+) 

1 [i(q:!+q3-ql) *+-I l-6. i E m 
= --e 

4 J C-1) =w fp - 
2 (q3 - q21ia6 

d- 2'4; 
p AF~~mQ--5~~ ' 

where F is the pion form factor, and we have restored the factors of a TT 

which have been scaled-out of the fields in (10). The expression (23), 

which only differs from (21) in the interchange ((a+aOl,/O)) * ((01, IP+)), 

can easily be seen to give a result which only differs from (35) in that the 

phase exp[i(q2+q3 -ql) ax+] is replaced by exp[i((q2+q3).:x+ 
j j+n;‘ 

-ql ox,)]. 
j 

Thus, the sum of (21) and (23) gives 

[i(q2+q3 -41) l x+l [i((q2+q3) l ~+n;-ql*FJ)l 

t 

-1 
J +e (-1) QlJ. 

(36) 

The result (36) is sufficient to evaluate (19). 

Indeed, introducing (36) into (19), one finds 
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&= ,,;,,, /-a dt a33g 6'(d;;(-d {e'i(q2+q3-ql)* "?I 

r. -co 

P(( 92 + 43) l x-b 
l-6 

+e j+ne 
- 41 l X-J] 

J C-1) 
il-l 2fp E' mp F,(mf) (q3 - q2)'a3 

w464(q2 + q3 - ql) 2i 
= 

2g2aCF c 
G1>n+lGlrn (-1) 2.f 

InI3 P 
n#O 

(q3 - 4,) ia 
xJq@ 

(37) 

= (21T)464(q1-q2-q3) * fp Fn(mz) 
, g aCF 

= pap 64 (ql - q2 - q3) J+Q- fp v+ 

g 'F 

where G(3) is the Riemann zeta function evaluated at 3. This expression 

(37) is our basic result. A few comments about the steps in deriving it 

are in order. 

Namely, we have passed to the limit of the infinite volume. Thus, 

in (37), we take 

3 c -i(;i,+;,) *]a 
a e -t (21T)3 63(;2 +T3) 

f 
J 

and 

(38) 

c -=2<(3) . 
n#O In; 

3 (39) 



- 15 - 

Here, we anticipate that 2r/a N 1 GeV so that, by conservation of energy, 

no reciprocal lattice vectors appear in (38). With these remarks, we may 

now proceed with the calculation of p + +o +-TIT. 

In particular, the standard methods can easily be seen to give 

F(P 
+ + ,IfaO) = (2n)464(41-42-43)lfp121FTl(m2p)I 

x a4(lY$3-G212/3) --+j'-l- 
d3q2 d3q3 (40) 

2q1 2q; 2q; (2r) 6 

or 
24 2 312 

r(P 
+ +. TCTO) = 2 

(21(3))2/Fn(m~)121fpl a (mp/4 - rni) 

3lT c;g4 
, (41) 

where, for simplicity, we take m Gm 
IT0 IT+ 

G 137.3 MeV f m 71' The formula 

(41) isthe advertised result of this paper. The issue of its relation- 

ship to the experimental result18 . 

rb+ -+ T+IT') G 158 MeV (42) 

will now be discussed in some detail. 

More specifically, to evaluate (41), we need theoretical and/or experi- 

mental values for the following parameters: 

(a) the lattice constant a 

(b) the coupling constant g. 

For, from (ll), we know that, for NC = 3, Nt Ci = (4)2 = 16. Further, f 
P 

is given by (18) and, the experimental results lg for F (mL) are consistent 
IT P 

with 

Fn(rnE) b 6.0 . (43) 

In addition, the Reimann function of argument 3 in (41) has the value 

c(3) --L 1.202 . (44) 
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Thus, values of a and g will allow us to compare (41) with (42). We dis- 

cuss these two parameters in the next two sections. We consider the 

constant a first. 

4. Determination of the Lattice Constant a 

In this section, we wish to determine the value of the lattice con- 

stant a to be used in the evaluation of T(p ' + IT+IT') in (41). We proceed 

by analyzing an appropriate normalization condition on the lattice. 

We observe that a formula such as (15) for fT allows one, on a 

lattice, to determine the relationship between fTI, the effective quark 

mass m 
4 

on the lattice, and the lattice spacing a. For, the momentum 

transfer on the lattice to the current in (15) is small, rnz, and, thus, 

the current is being probed at large distances. The fact that the pion 

is a Goldstone particle on this lattice then gives us confidence that 

the standard PCAC ideas2' should be applicable for the appropriate m . 
9 

What this means is that we can reduce--in the pion in (15) and use PCAC to 

write (15) as 

= 

i- 
-3 

2P0 s 

d4kl )y"y5 X- 

27r tr 
[ 
i(Gl+m i(ik2 +mqho y5 A+] 

C 
2 2 

Lattice m +ic kl- q I[ ki-mz+ic 1 
im 2 

IT 
X 

( 
-ifi fn poq 

) 

where the kinematics is summarized by Fig. 2 and k2 = kl. The only 

unusual things about (45) are the following: 

(45) 
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(a) The "integral" over the lattice is 

(46) 

where g 1 E (k;, k;, k;). This restriction to latticed Fourier 

components is forced by the lattice current in (15)--it only 

contains such Fourier components. 

(b) The exact fermion propagators for the quarks in Fig. 2 have been 

replaced by the effective free propagators 

i i 
x -m +is ' (47) 

1 q 52 -mq+iE 

with the effective mass parameter m . 
4 

For, in the theory (5), 

we are working to leading order in l/g 2. , in the.large distance 

regime. The interaction (10) already represents the inter- 

actions to this order. Thus, we can treat the quarks as 

"free"21 ('g I nore further terms of order l/g 2 > as long as we 

use the large distance quark mass: this mass parameter is 

well known17 as the constituent mass 

mq 
I 343 MeV . (48) 

With these remarks, we proceed.22 

Namely, the result (45) becomes, in the approximation of replacing 

the integration region {-T/a 2 k; L T/a, -r/a 5 k: 5 r/a, -n/a 5 kr 5 ?'r/a) 

by a sphere of the same volume centered at the origin of cl-space, 
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7(6/71) 
l/3 

+ 
amq 

1 + a2(6/~> 2'3/(a2 m29, 

(49) 

71(6/7r) 
l/3 

1 + am ~r~(6/1~) 2'3/(a2mi) . 
4 

Solving for a by the Newton method one finds 

a A 5.74 GeV -1 . (50) 

This completes the determination of the effective lattice constant a. 

Our value for a is consistent with (38). We turn next to the effective 

value of the coupling g in (41). 

5. Determination of the Effective Coupling g 

The lone remaining ingredient required for the evaluation of (41) is 

the value of the parameter g-- the strong coupling gauge coupling constant. 

We determine this in a phenomenological use of the results in Refs. 1. 

More specifically, we first observe that g is not to be confused with 

the value at a in (50) of the function g(a) used by Creutz12 in his Monte 

Carlo work. For, Creutz' function is the effective gauge coupling at 

lattice spacing a in the presence of an appropriate renormalization scheme 

asymptotic freedom scale. What we want is the value of the gauge coupling 

I 

To determine this value 

uses a lattice function 

that characterizes momentum transfers 

(.776)2 GeV2 = .602 GeV2 . (51) 

of g, we should add that we do not care whether one 

g(a) or a continuum space formula1 such as 

12n 

23 ln(Q2/A2) 
(52) 

with A 2 obtained from experiment. We choose to use (52). 
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More precisely, when one includes non-perturbative effects, the 

various results23 from deeply inelastic lepton-hadron scattering and e+e- 
-~ 

annihilation are consistent with 

A &.34GeV . (53) 

This gives, from (52), 

g2 G 12.5 . (54) 

We now have all of the parameters required for the evaluation (41). 

This evaluation is effected in the next section, where its ramifications 

are also discussed. 

6. Comparison 

Using the formula (41) and the results for a and g, we find the 

theoretical result 

lY(p+ -t IT+*') f 162 MeV (55) 

to be compared with the experimental value 158 MeV. As one can see, the 

theory is in reasonable agreement with observation. This is the advertised 

state of affairs. One can ask, "What are the major ramifications of this 

agreement?" 

The primary ingredient in (55) is the SLAC lattice interaction (10). 

Thus, we may consider (55) as a direct support for the deeper significance 

of (10). The obvious issue of the application of (10) to other large dis- 

tance phenomena is then extremely pertinent. This issue will be taken up 

elsewhere.24 

Somewhat subordinate to the interaction (10) were the various 

theoretical methods used to apply it to p + +o -tTlT. These were as follows: 
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(a) Our variant of Gell-Mann's idea of abstracting for the 

physical hadron currents properties derived from quasi-realistic 

_1 field theory models. 

(b) The vacuum insertion technique for hadron matrix elements of 

four-fermion operators. 

(c) The use of the large distance quark mass m in an effective 
4 

free-quark propagator in the evaluation of a. 

(d) The identification of g with the asymptotic freedom formula 

(52) evaluated at q2 2 =m. 
P 

We wish to discuss these key theoretical ingredients in turn. 

Concerning (a), it should be realized that the identification of the 

currents in (10) with the physical hadronic currents is more than an ab- 

straction. For, the interaction Hamiltonian (10) contains, to order l/g2, 

all of the effects of the strong interaction in the sector-.of Hilbert space 

of interest. Thus, using the full hadron currents is entirely justified 

to leading order in l/g' in the strong coupling regime. 

Concerning (b), we refer the reader to Ref. 16 for a detailed under- 

standing of the nature of the approximation involved in the use of (b) in 

our work. Phenomenologically, this approximation appears to be accurate 

to approximately 20% or, perhaps, even better--when properly used. 

The procedure (c), which was essential in the evaluation of the lattice 

constant a, asserts that the dynamics on the lattice is indeed large dis- 

tance dynamics for the relevant value of a. Please understand that this 

does not preclude one from considering, in theoretical work such as that 

in Ref. 12, the limit a + 0, the continuum limit. Rather, our point is 

that, in our particular application, the theory is probed to large distances. 
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The short distance regime, which is perturbative,l gives, in the simplest 

view, a small correction to the corresponding large distance effects. It 

is these large distance effects which we have calculated. Correspondingly, 

the effective lattice constant a then represents the distance cut-off for 

large distance phenomena in hadron dynamics. It is seen that a is of the 

order of the radii of the typical light hadron bags in the M.I.T. bag 

model, for example.25 This gives us additional confidence in the procedure 

cc> * 

Clearly the crucial point in (c) is the use of the large distance 

mass m . 
4 

We feel that, given the resulting size of a, the use of 

mq 
G 343 MeV is self-consistently justified. Had we found a much smaller 

value for a, one could then question (50)--but, we didn't. 

Finally, we emphasize that the procedure (d) is extremely natural 

because of the recent results23 for the QCD scale .A. For;-the result (52) 

should be reliable whenever cis/~ is small1 compared to unity, where 

0‘ 
S 

:g . (56) 

Using (52), we see that, in our problem, 

ash A .317 , (57) 

so that we have reason to believe that the procedure (d) is not a gross 

approximation. 

Our basic conclusion is that the procedures and methods used to com- 

pute (55) are all entirely reasonable, although one can hardly claim 

complete rigor! 
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7. Discussion 

What we have accomplished here is the computation of the width 

r(P + + G','> to leading order in the l/g2 expansion of the SLAC lattice 

Hamiltonian theory. The agreement between the theoretical result and 

observation is a reasonable agreement. It gives us additional evidence of 

the intimate relationship between the confining property of the strong 

interaction and the detailed structure of light hadron dynamics. More 

importantly, our result for r(p + + IT+IT') supports the specific QCD theory-- 

its short distance behavior as computed in Ref. 1 and its long distance 

behavior as computed in Refs. 2 and 4. The natural question is how does 

one obtain further checks of this QCD scenario for the strong interactions 

of light hadrons? 

An obvious answer to this question is to apply the ideas and methods 

in this paper to further large distance processes, such as K* + Kr, 

Q -t KK, n + mm, etc. Such processes will be taken up elsewhere.24 

We do wish to emphasize, however, that the methods in this paper should 

pertain only to large distance dominated hadron dynamics. Thus, a process 

such as q/J + PIT would require arguments in addition to those given in 

this paper. For, m2 $/J t 9.6 GeV2 is well within the scaling region of the 

QCD theory, i.e., is well above 1, (GeV)2. But, to be sure, one should be 

able to use the methods presented in the text above for the purely large 

distance aspects of processes dominated by short distance interactions when 

the corresponding large distance effects are not trivial. In general, we 

expect that the respective appropriate synthesis of large and small dis- 

tance QCD behavior may be quite involved, but tractable. 
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In 'summary, we feel the following is a fair assessment of the results 

of this paper: the decay width T(p 
+ + ~+a') has been used to test the 

applicability of the SLAC lattice QCD Hamiltonian theory to light hadron 

dynamics --the theory passed this test. 
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APPENDIX I: EVALUATION OF fp FROM ,r+ + p+T, 

In-,this appendix, we wish, for completeness, to use the decay 

+ T -f P+GT (AI.l) 

to determine the value of f 
P 

in (16) in the text. For, the result for f 
P 

is well known14y26 and our purpose here is primarily to set our notation 

and conventions. The relevant Feynman diagram is shown in Fig. 3 for 

the standard SU2 x Ul weak-electromagnetic mode127 in which the mass of 

3 is zero. T The invariant amplitude is 

(-igw> 
2fi 

T-r (P> Y,, (I- Y,) v3,(kl) 

X (p+(k2),s1 J:(o) 

where the kinematics is summarized by Fig. 3. 

tion vector, gw is the SU2 coupling parameter 

is the mass of the charged intermediate vector 

weak vector hadronic current J + L, is the adjoint 

ticed spatial components appear in (16). Thus, 

(AI.2) 

O> 
. 

Here, E is the p+ polariza- 

n the SU2 x Ul model, Mw 

boson in the model and the 

of the current whose lat- 

(pf(k2),c\J:(0)/O) = fi fp ev mp 1 . (AI.3) 

d- 
2k; 

The spinors ;r and v- 
VT 

are defined in the well-known convention of 

Ref. 13. 

On taking the squared modulus of (AI.2), summing over final states, 

averaging over initial states, and integrating appropriately over 

(27~)~ ~5~(p -kl -k2) d3kl d3k2/(2& one finds the partial width14726 
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where we have identified the Fermi constant G 
F as 

2 
GF gw -=- 
fi 84 

(AI.5) 

and have neglected rnE/g compared to 1. The experimental result, for the 

standard model, is26 

r(T+ -f P+cT) = .22 (l/(2.7 x lo-l3 set)) 
(~1.61 

= .00054 eV . 

Using (AI.6) and taking26 mr = 1.784 GeV, one easily finds from (AI.4) 

f G 140 MeV . (AI.71 
P 

This is the desired result.14p26 It coincides with (18) in the text. 
. 
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APPENDiX II: VACUUM TO PARTICLE STATE MATRIX ELEMENTS FOR p 
+ 

-f lT+r” 

Forthe evaluation of the amplitude &in (19) for p 
+ +- n+lr" , one 

needs the values of the various matrix elements in expressions of the type 

(31) in the text; such matrix elements involve all choices of the Dirac 

matrices An. (We shall work in the p 
+ rest frame so that its four momentum 

isq =(m 1 P’ 
d> * See Fig. 1.) We consider the various choices ofAn in 

turn and compute the respective matrix element required in (31). 

Fordtin = 1, we observe that (Henceforward, whenever we omit the 

argument of a field, it is to be understood as evaluated at x = 0.) 

0 
q1 =- 
mP 

( 1 0 GPf’ y. 4JBf Ip+) 

1-I 
41 =- 
m ( 1 0 qBf’ y, Pf IP’) 

P 

ia -iq l x 
!J =- 

m ( 1 
o g"f' (0) yl-l QBf(0) e IL p+ 

P ' )I x=0 

iP l x 
=- i au (Ole Op ipf ’ (0) 

mP 

-iP l x 
e oP YU 

iP l x 
e oP *B$o) e -iPop l x + 

’ )I P x=0 
= +- a, (OjjTBf ’ (xl YU dJBf b> IPf ) 

P x=0 

= 0 ; (AII.l) 

for, by CVC, the current 

-$Bf’ (x> y u Pf (x) 
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is a conkerved current. It follows that&' = 1 will not contribute to 

(31) in our approximations. 

For..&' = yo, we have 

(1 0 *fBf’dtP lpf’p+) = (o’lpf’ y. lJJBflP+) 

= 0 qBf’(o> $~f~o,lP+) (I (AII.2) 

= 0 ; 

for, thep + is al- state whereas the operator 

$Bf' w $Bfw 

is a Lorentz scalar. It follows that&Z' = y. does not contribute to (31) 

in our approximations. 

For,,&' = y', we have 

(I 0 lJJt8f’,M’l *8f/p+) = (,‘ipf yoyg lpf’p+) . 

The matrix element 0 qBf' yoyL +Bflp+)can also be written as ( ' 

0 
q1 
y- (O’ipf’ 

P 
YoYk Pf IP+) = $ (olsBf’ dlYR pflP+) 

P 

ia -iq l x 
= 1-I (O'pf' ypye p e lL 

m ' )I 
p+ 

P x=0 

ia iP l X 
=1-I ()e Op 

mP 
( 1 

Q3f'(,) e-ipoP. x yuyR 

iP l x 
x e oP $3f(o) e -ipop l X p+ 

I )I x=0 

(AII.3) 

ia 
= -.-AL (,luof' b> YUYR JPf b-9 IP+) i (AII.4) m 

0 x=0 - 
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But, by the standard "current algebraIll manipulations, 

-. iiQaf 6-9 = rni lClaf(x), -iqaf(x)j = rni sBf(x) (AII.5) 

where, in the light quark case of interest to us here, we take the flavor 

W(2) symmetric limit so that17 

m* + 5.9 MeV . 
9 

(AII.6) 

Thus, we can write 

( ’ 0 vBfl yoyp l/JBf Ip') = + (OIJISfl i3-yR *"f (p+) + $ (()l$Bf' i$y" QBf Ip+) 
P 

-m?; 
= --$ (Ol$Bf' yR iBf Ip+) - 1 (()I$Bf' yR ij$ $Bf [p+) 

P P 

+ L(Ol$Bf'lye,i?f.l$Bfjp+) m 
P 

-2m* 
= ----A (()'pf' 

mP 

yL iBflp+)+ 2 (OlijBfl iaR +8flpC) . 
mP 

(AII.7) 

The second term on the RHS (right-hand side) of (AII.7) can be seen 

to be small, in a general sense, as follows. Observe that 

@ : -L qBf'(o) a,qBf(o) = Jlaf'(o) ~~~(0) + J- Jlaf' 
mP 

m (0) a' iBf (0) 
P 

_ p (0) $BfoN 

= FJBf' (0) ( iBf (0) + ---$ aR @f UN) 
P 

_ $Bf’ 
(0) Pf (0) 

= ipf’(O> (lpf(0) + .22a a,qJBf(0)) - LjBf'(0) +Bf(0) 

. $"f' = (0) aBf( 22aji) - $"f'CO) $"f(O> . , 

(AII.8) 
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where we'have used the result (50) for a. Since Ip+) is a l- state, the 

Lorentz scalar $ -5'f(o> lpf(0) t erm on the RHS (AII.8) does not contribute 

to (o'd'P+). Thus, using the parity operator P we have 

(Ol@Ip+)~ (Ol$Bf'(0) $Sf(.22ai)\p+) 

= 0 p JIBfl(0) P-l P $Sf(.22aji) P-l Pip') ( I 
= - ( ’ 0 Yj~"~'(0) $Bf(-.22aX) Ip+) (AII.9) 

so that, from (AII.8) [Here, O(6) denotes of the order of 6.1, 

( ’ 0 $Bfl(0) $'f(.22a?)lp+)= (~l@lp~)+ O((.22)3/3!) . (AII.lO) 

On our lattice, we have excluded variations in fields described by momenta 

>l;/a. Thus, variations of the fields over distances smaller than a are 

suppressed. It follows that, on our lattice, 

<O~$Bf'(0) $Sf(.22aji) ]p')- (01$~~'(0) QBf(0) ]p')= o , @II-11) 

in the sense of the size of the respective matrix elements' in (AII.7). 

Thus, we conclude that (l/m,) (Ol&Bf'(0) 8% 1~'~(0)1p+)is negligible compared 

with the coefficient of 2m*/m q p on the RHS of (AII.7), (Ol$Bf'(0)y'!$Bf(~) Ip+), 

in our calculational scheme. For further reference, note that, since 

+o 
( I lT7r also has Jp = l- here, we can replace the pair ((01, I p')) with the 

pair ((,+IT'~, IO)) respectively everywhere in (AII.7) - (AII.ll). Thus, 

(l/mp)(7r+7r0/$Bf' aR j~"~lO) will also be negligible compared to 

in our scheme. 

The contribution of the first term on the RHS of (AII.7) to the ampli- 

tude (31) will be evaluated in terms of the respective matrix elements of 

Such an evaluation will then be seen to complete the discussion 
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Turning now to ,,+?Zn = oi, we have 

-. ( ' 0 lpf’&?p lJFlp+) = (ollgBf’ ai lJJBf’P+) 

= (O\$J~‘~’ (-1) ooi $Bf Ip+) 

= 0 pf’ yoyi p’p+) ( ’ 
= (O’SBf’ Yi $Bf’P+) * (AII.12) 

As we indicated in the discussion of (13) - (16) in the text, the 1 P”> 

will select, in (31), the combinations of f'f in (AII.12) corresponding to 

the isospin lowering operator h- in Gell-Mann's notation, 

X- = I1 - i I2 (AII.13) 

if Ul, 12, 13) are the generators of isospin SU(2). Thus, to obtain the 

contribution of (AII.12) to (31) we will only need to know 

(AII.14) 

where E 
V is the p+ polarization, and where fp has been computed in the 

Appendix I but is already well known.14y26 

Observe that, as we promised, for i = R in (AII.7) and (AII.ll) the 

RHS of (AII.12) is equal to (-mp/(2m:)) times the y&-term on the RHS of 

(AII.7). Thus, we can indeed evaluate the dominant part of the (01 to 

IP+) matrix element for An = yR in terms of the analogous matrix element 

for&n = at. For, since m*/m 
9 P 

<< 1, we may neglect the y'-term on the 

RHS of (AII.7) compared to 0 $J (' 
-$f' yR $Bf',+)* Further, by (AII.11) the 

all-term on the RHS of (AII.7) is also negligible compared to 

( ' 0 TjPf' y& jJBf 'p+). (The complete neglect of the&n = yR contribution to 

(31) relative to the&n = c1 
i 

contributions will be justified when we show that 
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( I v+,' $"f yoy' ~~~'10) is negligible compared to (r r 1 
+ 0 $"f yR j,8f'10)* 

We will do this presently.) 
-. 

TO complete the computation of the contribution of .&in = ai to (31), 

we will need to know 

( I lT+lT” iJBf yi lff’ ‘0) = (lT”‘pf yi qJBf’jn-(-q2)) , (AII.15) 

where we have used crossing to substitute an anti-particle in the in-state 

for a particle in the out-state of the appropriate four-momentum. See 

Fig. 1 for the kinematics. + 
In the case of interest, when the p has 

selected the operator h- as in (AII.14), the operator h + = I1 + i I2 will 

have been selected in the contributions of (AII.15) to (31). Thus, we will 

need 

(AII.16) 

2 where F.,,(mp) is the usual pion form factor. This completes the discussion 

of the matrix elements required for &'n = cli. 

The contribution of &n = yR will also be complete if we relate 

(7T+n”‘pf yoyQ lpf’ [ 0) 

to (AII.16). Repeating the steps from (AII.3) to (AII.7), one finds 

( ’ 
2m* 

r+n" pf YOYQ $Bf' '0) = --AL mp (~~+TT~I$'~ yQ QBf.'lO) - $(rr+7f"l~"f' iaQ IJ'~IO). 
P 

(AII.17) 

Thus, using the analog of (AII.ll) we may conclude that, for the f,f', of 

interest, 

‘(Ti+7T”‘l/rBf yoyQ $~f”O)/<<‘(n+lTo’~Bf yQ $Bf”o)’ - (AII.18) 

The matrix elements necessary to compute the contribution of An =Y'to 

(31) are all negligible compared with the respective matrix elements 
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involved' in the contribution of ,Mn = cli to (31). It follows that the 

contribution ofAn = y' to (31) is negligible. 
-. 

Considering next ,,#' = -ia i f (-i/Z) E ijk 
Jk where E ijk is the totally 

antisymmetric symbol on three labels and ~~~~ = 1, we need to evaluate 

-i(Ol$ 
-tBf' cri lpflp+) = (opf' yoyjyk QBflP+) (AII.19) 

where i,j,k are cyclic in (1,2,3). The operator 

p Y 0 YjYk vJBf 

is even under parity whereas p + is of odd parity. Thus, by parity con- 

servation, the RJJS of (AII.19) is zero. It follows that .Mn = -ioi does 

not contribute to (31) in our approximations. 

For &' = y5yo, we have to consider 

( 1 0 lpf ’ Jtlq lpf 1 p’) = (opf ‘Y5Y0. ,liBf I P’>. 

= - 0 ipf y5 JIBf IP+) (1 . (AII.20) 

-Bf’ + 
But, the pseudo-scalar operator I/J cannot annihilate the spin 1 p 

and conserve angular momentum. Thus, the RHS of (AII.20) vanishes. It 

not contribute to (31) in our computation follows that J61n = y5yo does 

scheme. 
. 

Considering ,/ctn = y5y1, 

( 0 

we need 

‘IQ -fBf’ Jp gflp+) = (0 I$‘flf’ y5yi lpf 1 p’) 

= 0 pf’ yoy5yi lpf Ipf) * ( 1 
The matrix element 

( 1 0 SBf’ YoY5Yi jlBf IP+) 

(AII.21) 

(AII.22) 
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is the same as 

( 1 0 p-1 P($Sf' YoY5Yi lff) P-l Pip')= (OI$Bf' YOYOYSYiYO J,Sf PIP’) 

= 
(AII.23) 

--it vanishes due to the parity symmetry difference between p 
+ 

and 

iBfl i Bf 
YoY5Y $ , the former has P = -1, the latter has P = +l. Thus, 

CA? n = y5y1 will not contribute to (31) here. 

Finally, we consider ,,&n = 
Y5' We need 

= 0 Pf ’ YoY5 iBf IP’) ( 1 

0 
41 = - 0 lpf' yoy5 lpflp+) 
mP 

( I 

ia 
= --K (op 

mP 
YVY5 PflP+) 

. (AII.24) 

The RHS of (AII.24) is easily seen to vanish by conservation of angular 

momentum and G-parity. It follows that An = y5 does not contribute to 

(31) in our approximations. 

This completes the discussion of the various matrix elements involved 

in evaluating (31) in our calculational scheme. We have found that, in 

this scheme, only Jtt rl- - yR and Jltn = ai will make contributions to (31) 

within the framework of our approximations. For all other choices of Jtln, 

the matrix element 0 $tBf' dn eBflo+) ( 1 in the respective contribution to 
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the expr'ession in (31) is 0. Further, the contribution of Jtl' = yR to 

(31) has been argued to be negligible. -. 

Our findings here are consistent with what is stated in the text. 
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TABLE I 

The au-commutation signs s,(p) and squares'.s,ignsC sgnQ@l) of the 16 
-. 

Dirac matrices&' as defined in (27) and (33) in the text. Here, E ijk 

is the totally antisymmetric tensor in three dimensions, with E 123 = l; 

and 6 ij is the Kronecker delta function. 

Dirac MatrixAn sp sgn (iv> 

1 1 1 

Y0 -1 1 

yR -1 

c3j 
3 = 

-ia 

zLg jk 
2 Rjk' 

Y5Y0 

Y5YL 

l-6. 
(-1) J1-I 1 

l-6 
(-1) R1.l 

-1 

(-l+ 

y5 1 1 



1. 
+ 

The.decay p + 7~ + To . 

-4o- 

Figure Captions 

2. The PCAC soft pion equation for f, on a lattice. The factor of 3 in 

Eq. (45) represents the sum over color for the quark loop. 

3. + The decay 'c + p+G= in the tree approximation in the standard 

SU2 x Ul model. 
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