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ABSTRACT 

It is shown that when the dimension of gauge group exceeds a critical 

value NC, the only types of asymptotic-freedom-allowed representations for ._ 

fermions are vector and second rank tensors. A possible connection between 

this observation and quark-lepton spectrum is discussed. 
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A basic idea in dynamical symmetry breaking mechanisms for gauge 

theories,l either the usual ones or the ones with global supersymmetry, -. 

is that the effective gauge coupling grows while descending down the 

mass scale of renormalization. This behavior of gauge coupling, termed 

asymptotic freedom (or infrared slavery),2 is unique to non-Abelian 

gauge theories. It has served as a major justification for the 

enterprises of quantum chromodynamics3 and grand unification4 of strong 

interactions with electroweak interactions. Equally essential for the 

generation of spontaneous dynamical symmetry breakdowns is the presence 

of matter fields -- fermions in the case of usual gauge theories, 

fermions plus scalar fields in the case of supersymmetric gauge 

theories. The matter fields, however, have negative effects on the 

asymptotic freedom.2 

In this article I will show that, when the dimension of gauge 

group t say the N of SU(N), exceeds a critical value NC, the only types 

of asymptotic-freedom-allowed irreducible representations for the matter 

fields are vector and second rank tensors. 'I'he.further requirement of 

triangle-anomaly cancellation 5 has the effect of reducing the value NC 

significantly. The following arguments and illustrations will be 

presented in terms of SU(N) gauge groups; we expect, however, the same 

constraint also holds for SO(N) and Sp(2N) but with different values of 

First we consider SU(N) gauge theories with two-component fermions 

in representation r. The S-function determining the evolution of the 

gauge coupling (g) is 
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B(g) = -83 [+$ T(r)] 
16n* 

with 

T(T) E 
C2( r)d( I’> 

N2 - 1 

(1) 

(2) 

where C2(r) is the value of quadratic Casimir operator in the 

representation r, and d(r) is the dimension of the representation r. 

If we label the representation r by the numbers of boxes in each 

row of the correspondent Young tableau, i.e., I' = (f 
R 

) = 

(fl,f2,...,fN), then6 

C2(fa> = fyZQ R 
f2 

- 2 1 Rf2 + f(Wl) -r] . (3) 

where f G r f . 
!i R 

Let (fk) be a representation obtainable from (fR) by moving a box 

from the &yh- row of the tableau to the R th 
2 

-row. The change in the value 

of the Casimir operator due to this relocation is given by 

AC 
2 = c219 - C2(fal 

= Af 
R 

-A!?++1 (4) 

where Af zf -f 
R %2 % 

and AR G R - II 
2 1' 

By the nature of Young tableau, 

we have AfQ < 0 for AR > 0 and vice versa. Therefore 
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AC 
2< O 

for 
&2 > El , 

AC2 > 0 for R2 < % 
. (5) 

Let us call the transformation: (fQ) + (f;l) with R2 > R 
1 

, operation-A, 

and that with R2 < R1, operation-S. It is then easily perceived that 

given any representation one can always link it to one of the N totally 

antisymmetric tensors by a chain of operation-A. Thus we have proved 

the following theorem: 

Theorem 1: Let (fR) be any given representation of SU(N), then 

C2(fa) a C2({Pf'N)}) (6) 

where R(f/N) denotes the remainder of f divided by N, and IlkI denotes 

totally antisymmetric tensor of rank k. The equality holds when (fR) is 

a totally antisymmetric tensor. 

We may now divide the collection of all irreducible 

representations7 of SU(N) into l+[N/2] subsets ([N/2] = n, for N = 2n or 

2n+l). The first one consists of the singlet representation and those 

linked to it by chains of operation-A. The second, the third, etc., are 

characterized respectively by totally antisymmetric tensors (modulo 

complex conjugation) of rank one, two, etc. 

It follows from Eq. (3) and the formula d({lk}) = CL that 

T({lk}) = ; CE; . (7) 
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Therefore the number of {lk} all owed by asymptotic freedom is 

Specifically 

nl < 11N 

11N 
n2 < N-2 

n3 < 
22N 

(N-2) (N-3) 

"k < llN/CE; . 

22 for N= 4 . l 

. l 

= 

1; 21 
11+ N ) 25 

: 

11 for N= 6 
. . . . 

= 2: . 1; ,..*,15 
1+ 16 ,...,26 
o+ N ) 27 

(8) 

4+ for N = 8 

n4 < 
66N 2+ 9 

(N-2) (N-3) (N-4) = 1+ 10,11,12 
o-t N a 13 

n5 < 
264N for N = 10 

(N-2)(N-3)(N-4)(N-5) = N a 11 

and nk = 0 for k > 6 and N > 2k. Thus amongst the collection of totally 

antisymmetric tensors, those of rank greater than two are suppressed as 

N -f a. 
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On the other hand, one can show readily that vector and second rank 

tensors (which consists of second rank antisymmetric tensor, second rank 

symmetric tensor, and adjoint representation) are the only SU(N) 

representations with dimensions less than that of {13}. They belong to 

the first three subsets of our categorization of representations. The 

remaining subsets of representations have dimensions greater than that 

of {13}. Furthermore, taking into account also Theorem 1 and Eq. (7), 

we conclude immediately that these later subsets of representations are 

suppressed by the requirement of asymptotic freedom at a rate faster 

than of the case of {13}. 

Finally we examine the first three subsets of representations. We 

find that the ones other than vector and second rank tensors have values 

of quadratic Casimir operator greater than that of {l'}. Consequently 

they are rapidly suppressed too. The numbers of vectors and second rank 

antisymmetric tensors allowed by asymptotic freedom are given before. 

The allowed numbers of adjoint representations and second rank symmetric 

tensors are respectively 

n adj 
<GE= 

2N 5+ for any N> 2 

5+ for N= 2 
. . n2s <LA!= . . 

N+2 1; 2; 
lot- N 2 21 
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Thus we arrive at 

Theorem 2: For SU(N) gauge theories, asymptotic freedom alone requires 

that there exist a critical value for N, namely NC = 26, beyond which 

the only types of nontrivial representations allowed to fermions are 

vector and second rank tensors. 

Gauge theories with fermions, however, must be subjected to a 

fundamental constraint, namely triangle-anomaly cancellation, in order 

to remain renormalizable. We see that n3 can at most equal to one for 

16 < N < 26, the anomaly cancellation thus requires that fermions in 

other representations be added to cancel the anomaly of {13}. The 

addition of anomaly-cancellating fermions, however, may destroy the 

asymptotic freedom. Indeed actual enumeration shows that this 

incompatibility cannot be evaded as long as N > 17. Thus our 

conclusion: 

Theorem 3: For SU(N) gauge theories, asymptotic freedom and triangle- 

anomaly cancellation together demands that there exists a critical value 

for N, namely NC = 17, beyond which the only types of nontrivial 

representations allowed to fermions are vector and second rank tensors. 

For supersymmetric gauge theories 8 the gauge fields are necessarily 

accompanied by an adjoint representation of Majorana fermions. The 

matter fields, in the simplest cases, come as chiral multiplet (of gauge 

group representation I') containing both fermion fields and scalar 

fields. The @function for the gauge coupling g is:g 

B(g) = - e-i??- [3N 
16n2 

- T(r)] l (9) 
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Following the identical procedure as before, we obtain 

Theorem 4: For supersymmetric SU(N) gauge theories, asymptotic freedom 

and triangle-anomaly cancellation together requires that there exists a 

critical value for N, namely NC = 12, beyond which the only types of 

nontrivial representations allowed to the matter fields (in chiral 

multiplets) are vector and second rank tensors. 

Have the above theorems anything to do with reality? It is 

encouraging that the known quarks and leptons seem to fit into the 5 and - 

lO* representations of SU(5) grand unifying gauge group,4 which are - 

respectively the vector and conjugate of second rank anti-symmetric 

tensor representation. Imagine a SU(N) gauge theory with N > N . The 
C 

fermions can only belong to the following types of representations: 

vector (l,O,O ,...,O), second rank antisymmetric tensor (l,l,O,...,O), 

second rank symmetric tensor (2,0,0,...,0), their conjugates, and the 

adjoint representation (2,1,1,...,1,0). By invoking the concept of 

naturalness,l* we neglect the fermions in adjoint representations and 

any representation of fermions that has a conjugate counter part present 

to match it. So define 

ml 
= [number of (l,O,O,...,O) - number of (l,O,O,...,O)*] 

m2 
= [number of (l,l,O,...,O) - number of (l,l,O,...,O)*] 

and 

m2s 
= [number of (2,0,0,...,0) - number of (2,0,0,...,0)*] . 
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The triangle-anomaly cancellation requires 

ml + (N-4)m2 + (IW4)m2s = 0 . (10) 

Furthermore, by decomposing the representations according to the 

branching SU(N) 1 SU(5) @ SU( N-5) @ U( 1) [we shall ignore the 

SU(N-5) @U(l) labelling], we obtain the SU(5) content of the fermions 

ml(LW, l --,0) G3 m2(1,1,0,...,0) 8m2s(2,0,0,...,0) 

= [ml + (m2 + m2s)(N-5)] 5 @m, 10 CD m2s 15 CB SU(5) singlets . (11) - - - 

In order to reproduce equal numbers of 5 and lo*, as - - 

in the SU(5) grand unified theory, we need 

ml + (m2 + m2s)(N-5) = - m2 = h 

where h denotes the number of quark-lepton families, 

and (12) simultaneously, we obtain 

ml = (N-4)h 

and 

m2s = 0 . 

commonly expected 

(12) 

Solving Eqs. (10) 

(13) 

(14) 

In this type of model, u-like quarks, left-handed d-like quarks, and 

right-handed leptons do not participate in any non-Abelian interactions 

(such as horizontal gauge interactions) other than the SU(5) gauge 
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interactions. This is because fermions here carry at most two SU(N) 

gauge group indices. -. 

The repetition of the family structure of quarks and leptons is not 

a very surprising phenomenon according to our theorems -- there just is 

not much room for variation if N > N . 
- c 

Of course quarks and leptons may well turn out to be composite 

objects, and the theorems may be applied on the preon level.ll 
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