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Introduction

We want to find the wake force! due to a perturbed charge distribution
moving parallel to the axis of a circular periodic waveguide. We will
assume that the perturbed charge and current density may be written as

_ eNe 8(t - z/v)é(r - a) cos mo (1.1)
-
Ta‘v 1+ ém,o
and
i, = eNg 6(t - z/v)8(r - a) .o mo = Vo (1.2)
ma? 1+68

where z is the longitudinal coordinate along the axis of the waveguide, t is
the time, r and ¢ are the radial and azimuthal coordinates of the guide,
&(x) is a Dirac delta function, v is the longitudinal velocity of the charge
and 6m,o = 1 form =0 and is zero otherwise.

This distribution corresponds to a perturbation to a cylindrical disk of
charge as shown in Fig. 1, for m = 2. The total number of electrons in the
unperturbed disk of charge is N. We have assumed that g<< a and that the
disk is infinitesimally thin. It is interesting to note that for a point
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Fig. 1

‘charge of N electrons displaced horizontally by an amount £ the charge

distribution is

which may be written as

@

_ eNs(t ;gi/V)é(r - £) % + ;Ea cos mp | . (1.4)

th harmonic of a displaced point charge may be

obtained from the wake force derived in this paper by substituting a = &.

We will ignore any effects of the fields produced by the charge upon its own
motion and assume that the velocity v in the z direction is constant. This
assumption will be valid for the case where both the transverse velocity and
the change in the longitudinal velocity in one period are small compared to
the longitudinal velocity.

The wake force for the m



We will assume the waveguide has a period L and a radius b(z) described
by

.ZEpZ
e

with the average radius taken to be b0 so that 50 = 0. The

reality of b(z) requires that_E_p = C:. This configuration is shown in
Fig. 2.

Fig. 2

We will solve for the wake force using a perturbation technique in powers

of the parameter fp. This is the same technique used by M. Chatard-Moulin
and A. Papiernik in calculating the energy loss of an electron bunch moving
along the axis.? We not only will follow their technique closely but also
utilize a similar notation in order to facilitate comparisons with their
results for m=0. )

We will mainly be interested in calculating the transverse wake forces,
which are present only for the case m#0, nevertheless the following equations
will be valid for the case of a charge eN moving along the axis by setting m=0,



dropping the term (]+6m,o)’ and setting £ = a/2. The longitudinal wake
force for the m=0 case is treated in Appendix 1. Krinsky3 has also applied
the technique of Chatard-Moulin and Papiernik to evaluate the transverse
_impedance of the periodic waveguide experienced by a coasting beam with a
coherent vertical oscillation. Krinsky's result [Eq. (7)] agrees with our
result for the transformed forces [Egs. (6.14) and (6.15)] with m=1 if one
replaces ZO in his expressions (the impedance of free space) by 4n/c,

substitutes for IOA the value eNE&/2m and uses b0 as the average pipe
radius.

Equations for field components

It will be useful to use Fourier transformations in solving for the
electromagnetic fields. .The convention we use is that a tilde above a
quantity designates the transform as defined by

.2 Tp
® . o 2 ~ cos m¢

f(rydz,t) = | dwedT X et f(r,w,D)‘ o \ (1.6)

- p=-c sin m¢

P .
where T=1t - z/v. Note that (5f/st) = jwf and
g’ -
(af/3z) = jkpf where kp = (2mp/L - w/v). The charge and current
density are proportional to cos m¢; the field components Ez’ Er’ and
B¢ are proportional to cos m¢, while the field components E¢, Bz,
and Br are proportional to sin m¢. )
The transforms of p and jZ which correspond to Egs. (1.1) and (1.2)

are given by
o(ru,p) = —Ne_ §(r - a)6 , (1.7)

2n%dy 0,P



and

i (rsw,p) = vp(r,w,p) . (1.8)

We see that only the p = 0 space harmonic for the various field components
is synchronous with the charge and current.

From Maxwell's Equations it follows that the transverse transformed field
components may be obtained from a knowledge of the longitudinal transformed
field components by

~ - ot ~

ot B (rsw,p) = {kpar (r,w,p) - ',f—“é—)Bz(r,w,p)] , (1.9)
2 ¢ - m, c w 38

O'p Eq)(rsw,p) J i' r kaz(rswap) + _—BFZ (rswsp)} s (]-]O)
2 B (r,up) = j{- E (r,w,p) + k agz (r ) (1.1)
up r »y W, P J C "2z s Wy P p 'gr_ s Wy P ’ .
28 (ryu,p) = j -Eﬂi(r )+ Dk B.(r,wp) (1.12)
Gb ¢ ] 3p J c ar ,U),p r p 2z sw’p ’ °

since jr = 5¢ = o0 where ¢ is the velocity of light,

kp=%£-§ , (1.13)



a2 = w? K2 = - w? ; 4mpw _ 4n? p? ,
P2 P yiv? vl L?

(1.14)
y= (1-ver)y e

and Gaussian units are used throughout the paper. For later work it will be
desirable to have the transverse forces on a test particle of charge e:

F =e(E_ -v/cB and F_=¢ (E

r r ¢ ¢ ot Ve B

The synchronous space harmonic, i.e., p = 0, is the only space
harmonic which does not vanish upon integration over one period in z.
From Eqs. (1.9-1.14) we obtain for the synchronous deflection forces

~ v BEz(r,w,O)

Fr(r,w,O) = Jae_~_a'r_‘—_ ’ (].]5)
- _ wm.T

F¢(r,w,0) = -3 7 eEZ(r,w,O) . (1.16)

The longitudinal tranformed field components are obtained from the
transformed wave equations

8E4 2 -~ ~ -~
P () ()i o0 o



8.\ 2\~ '
109 p 2 _ M7\ L
1 (E). o s

“along with the proper boundary conditions which are discussed in the next
Section. Using the expressions for o and fz from Egs. (1.7) and {1.8) we

obtain the following equation for Ez:

BE 2\ ~
1 9 z 2 0 m . 2weNE
28 24 o =) = -y SEENS -als . 1.16
r r68r> <ap Y‘2> z J nazvzyz 8(r -a) 0,p ( )

Boundary conditions

The proper boundary conditions for a perfectly conducting wall are that
- both the parallel component of the electric field, E , and the normal
component of the magnetic field, Bn’ equal zero at the wall. The technique
used in this paper, which is the same as that of Chatard-Moulin and
Papiernik,2 is to replace these boundary conditions at r = b(z) by
appropriate boundary conditions on the values of EZ and aBz/ar at r = bo. A
perturbation technique is used in which we expand the field components in

orders of the quantity fp given in Eq. (1.5). Thus we first solve for E,
and BZ for the case of a perfectly conducting round cylindrical wave guide

of radius bo with the boundary conditions E = 0 and alear
r=b
0

then using these results obtain new boundary conditions at r = b0 to first

-, =0
r—bo

order in fp and solve for the fields which obey these new boundary

conditions. This process is repeated to second order in Ep for the
synchronous value of Ez from which we can obtain the synchronous transverse
deflecting force by Eqs. (1.15) and (1.16).



From Fig;'3 we see that at r = b{z)

cos a+ E sin o . 12.1)

b(z)

b(z)

Applying the boundary condition E” = 0 we obtain the following relation
between EZ and Er'

db )
E = -E tana=-—E (2.2)
2lb(z)  "lo(z) 92 T h(q)
- b(z)
r=bo
781 Fig. 3 415343
We can expand the components in terms of a Taylor series such as
3E, 3252 (b - b0)2 (2.3)
£ = E + == (b-b) + —_— .3
z 2z ar 0 2
b(z) b, b, ar? o, 2

By combining Eqs. (2.2) and (2.3) we obtain for the boundary condition at r = bO

3% (b-b)? '
(b-b)-—= of _g| g I - ) . (28
" ar2|p. 2 b r 0°4az

0 0 0 0

BEZ

E Z e e

zly ar b
0

The above expressions may be written in terms of the transformed field

components by using the convolution condition (see Appendix 2)
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[f.g] w,p) = Idw z f w - (L)',D‘CI) [}

which for the special case where g(w,p) = g(0,p)8(w) [such as occurs in

~ " ~
(b - bg) = bOde(w) and (db/dz) =(jb02np/L)Cp6(m)] reduces to

—hl

(0) (2.5)

[fg} Z
q )9%-q

where the subscript refers to the spatial harmonic number. Dropping the
notation b which is to be understood when quantities are evaluated at

r = bo’ and using the subscript notation for the spatial harmonic number, we
can obtain the boundary condition of the transformed field components at

r = b0
~ BEZ ~— ~ :;6
() =-2Zi{5) (b- b,) -2 (E)) i
P q q P-q q q p-q
(2.6)
z g,n\ ar? q 0’p-g-n o’'n qon ar q o'p-q- n dz )
The field components are next expanded in orders of fp such that
() (4 D7 B (2.7)
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where ﬁio) is the solution for a constant radius waveguide of radius

b,- The term fil) is proportional to C_; the term €§2) is

p
proportional to 5;, etc. The relationship between transformed field
component Er and the longitudinal transformed field components 52 and EZ
is given by Eq. (1.9) along with Eq. (2.7) to separate Eq. (2.6) into the
following equations. To zero order

To first order

, (0) .
- . 5£0) (b ,,0)
(1) . 2mpyy? z_ o0
EZ (boawap) bOCp oL -1 ar s (2-9)

where we have used the results obtained later [Eq. (3.2) to Eq. (3.4)]
which show that

ALK
N —

~ 9
Bﬁo)(r,w,p) =0 and

(ryw,p) = — (2.10)

(%)
1

We will be interested only in the synchronous value of Ez and will stop
at second order in Cp to obtain
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2, 27q aE('l)
~(2) ~ [%q T T Kq 2
£ (b ,w,0) = - TbC (b_,w,a)
Z 0 q 0 -q az ar 0
g
(2.11)
. 3 - 52£(0)
Pl 2y g+ 52 EEE (T - J) 2 (b ,0.0)
” q aéLZ Oq g -9 wl ar?

From Fig. 4 we see that at r = b(z)
B = B cosa - B sina = 0 R
Mlb(z)  "{btz) Z\b(z)
applying the boundary condition Bn = 0 we obtain the following relation
between Br and Bz.
B = B (2.12)
rlb(z) Z1b(z)

b(z)

7 — 81 4153 a4

Fig. 4
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We use a Taylor series expansion, similar to that used for the electric field,

to obtain for the boundary condition at r = b0 through first order in fp

3B

B = -
r‘b " b
0 0

db
(b - by) + Bz|b o (2.13)
0

We again drop the notation Ib use £q. (1.11) to write By in terms of
0

£. and §z, and expand the field components in orders of Cp to obtain the

Z .
boundary condition for the transformed longitudinal field components. To zero
order
30 3280

Z— (bg,w,p) =0, and —5— (b ,u,p) =0 (2.18)

ar

where we have used the result from Eq. (2.8) that Eéo)(bo,w,p) = 0.

To first order

a(1) £(0)
38! ~ afmw .~ o
—Z_ o e () - P z
ar (bo,wap) b k ¢ EZ (bosw9p) - 2 Cp ar (boswso) . (2-]5)
op abkpc :

We substitute the expression for fﬁ])(bo,w,p) from Eq. (2.9) into
Eq. (2.15) to obtain the following expression for 3§£1)/ar,
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a51) 5£(0)

Z_ (b up)=-LRMC 2y ou0) . (2.16)
or 0 agL C Par ©

Zero order solution

The zero order solutions for f; and §Z are obtained from solutions to
the wave equations Egs. (1.18) and (1.19) along with the zero order boundary
conditions given by Eqs. (2.8) and (2.14). The solutions of Egs. (1.18) and
(1.19) may be written in terms of the Bessel functions® Jm(apr) and

m P
giscontinuous at r = a such that

N (ar). FromEqg. (1.19) we see that the radial derivative of Ez is

and the requirement that Eg and §2 be finite at r = 0 yields the
following zero order solutions:
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O r ey - g6 meNg[Nm(aoa)Jm(aobo)-Nm(aobo)Jm(aoa)] e
T 0,p 2.2 m' o
avy Jm(aobo)
For ac<r g_bo R
O an) - 58 e[ (o r) 3 (aobo )N (acb 13 agr) J3 a,2)
2 s Wy 0,p 7 2
av<y Jm(abbo)

For -0 <r g_bo

59 (roup) = 0
For future use we also need to have the values of

.0 2% (0)
(b,,w,0)  and
ar

2 (bo,w,O)

(3.2)
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We use the following property of Bessel functions

=z
—
>
~——
[}
—
>
~——
)
=
—
>
~—
()
—
>
~——
n
N

and

N'(x)J(x) - N(x)d"(x) = =%
X

N

to obtain

and
a%ﬁo) 26eNE J_(a a)
— (bgsw,0) = +j — m_9
or mayd by Jm(aobo)

We note that Egs. (3.8) and (3.9) yield the

simple relationship between the

first and second derivatives of the synchronous harmonic of €§0) at the

boundary,

azE(O)( _ .0
b ,w,Q) = -« —

ar 2 0 bo ar

(3.10)

which may also be obtained from the wave equation (1.17).
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First order solutions

The first order solutions for Eiw) and §i]) which satisfy the

boundary conditions at b0 are

- - J (ar)

e (rwp) = £ (b, w,p) TR (6.1)
5(1)

- 3B J (a_r)

801 (ry0,0) = 2 (b ,0,p) ap—'}ngp—by : (4.2)

where the values of €£])(bo,w,p) and §B£)%b0,w,p)/8r are given by
the first order boundary conditions Eqs. (2.9) and (2.16).

The results for fél), éij) and été‘)/ar may be written as

~(0) '
- - oF 2 J (ar)
(n - z 2maqvy m g
E (r,w,Q) - C b (b sUJ,O) - ] ) (4 3)
Z go or 0 wl Jmiaqboi
- ~ BE( 2.2 4d (ar)
(1) - z m2ngviy® “m'Tg
B (rswaQ) - C (b 2 90) T s (4'4)
z g aor 0 wlc anm(aqbo)
and
=(n =(0) \
BE( -~ o 2 a d'(a.r)
2
() - By g () [0 ) e 45
mogo
5 (0)

where the value of —5%—-(bo,w,0) is given by Eqg. (3.8). Note that since

Eo = 0 there are no synchronous first order fields.
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Second order  solutions

In order to obtain the expressions for the transverse deflecting force on
a test charge following a constant distance vt behind the charge exciting
the fields it is necessary only to evaluate the synchronous space harmonic of
the transformed longitudinal electric field Ez (cf. Egqs. (1.15) and
(1.16)). The second order solution for the synchronous space harmonic of the

transformed field E(Z)

2 is given by

The value of Eiz)(bo,w,O) may be obtained from Egs. (4.4), (4.5), and (3.10)
inserted into Eq. (2.71).

The result for Eéz)(r,w,O) may be written

3 J (ar) of° ..
(2) _n2.mo z 1
EZ (I",(JJ,O) bO jm‘(aoboj ar (bosw90) Z C_ch 2b0

2 1
. <] ) anw2><aq + (2nq/L)kq> Jm(aqbo) +<4nzsz2q2m2> J,P(aqbo) (5.2)
ul | a Um(aqbo) o3p2c?L 2 m O‘qbo)

q 970

5 (0)
with ai (bo,w,O) given by Eq. (3.8).

Inverse Fourier Transform

In this section we show that the transverse forces due to the zero order
fields fall off with distance behind the charge at least as fast as
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exp (-YVT/bO). The forces arising from the second-order fields moving
with the charge distribution fall off more slowly, and for high energy
electrons these longer-range forces are the ones of interest for us.

For reference purposes we include the second order longitudinal force
" acting on a test particle (charge e) following a distance vt behind a
centered (m=0) delta function charge with total charge Ne. From Appendix
this longitudinal force, averaged over a spatial period is

1

This expression diverges as a result of the infinite frequencies generated by

the delta-function distribution. When integrated over a reasonable charge

distribution this force is a well-behaved function of 1. Such-an

integration over a Gaussian bunch is performed at the end of this section.
In order to calculate the average transverse deflecting forces, the

expressions for fz(r,w,O) may be substituted into Egs. (1.15) and (1.16)
and the inverse transform taken. That is

1]

r %‘ £ Fo(z,t = T+ 2/v)dz = [ dw ed¥T ?r(r,w,O) cos mo

F.>= [ dw eij F¢(r,w,0) sin mo

(6.1)
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The transformed synchronous deflecting forces may be written as

F(rw0) = F 000 + F (00 | (6.3)
F(re0) = £ (r,0) + FF w0 (6.4)

where we have used the fact that the first order solution for the forces do
not contain a synchronous space harmonic since we have picked the average
radius bO such that Cp equals zero for p = 0. The zero order transformed
synchronous deflecting forces are for r < a given by

2 1
~(0) e NEa, Jm(aor)
o) = —— [, (0523, (agb) - Nm(aob)Jm(aoa)]W , (6.5)
and
~ -me*Ng J (o r)
F((bo>(r,w,o) = = [Nm(aoa)Jm(aob) - Nm(aob)Jm(aoa):]%j:TEzE;y . (6.6)

We see fron these equations that the poles of Fio) and FO are for

¢

values of w such that

(0) . 4i Woms (6.7)

where Xme 3TE the roots of the equation Jm(xms) =0
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The inverse transform integral gives the following result for the zero
order synchronous deflecting forces

Vg -
1 - T
462N J (x__a/b ) d'(x_r/b) b
4'_,.>='¥] Ezg -2 ? i TS S e ° cos mp (6.8)
s=1 ab_y [35(x,c)]
LARTS |
o 4me®NE b J (x__a/b ) J b -—p_ '
F >=+3 ° m( ms 0) m(xms il 0) e ° sin m (6.9)
v s=1 ab? y x__r [3'(x__)]2 v ‘
0 ms m* *ms

The forces depend only upon absolute value of 1 due to the fact that for
T > 0 we must close the contour integral in the top half of the complex w
plane while for T < 0 we must close the contour in the lower half plane.

We note that the zero order forces fall off exponentially in a distance
VT bO/Y; this is the well known result that a charge moving in a
perfectly smooth conducting vacuum chamber will excite fields that fall off
longitudinally from the charge of the order in a distance of the cross section
dimension divided by Y.

For high energy electrons we will be interested in the wake fields that
fall off more slowly in distance behind the charge. We consider the second
order terms in the synchronous deflecting forces. The second order transform
of the synchronous deflecting force may be written as _



Mo
(2%

. 2e2Nga b J'(a r) Jd (aa)

~(2) _ m' o N 1
F 9,0 - cC DI
r (w0 may J%(a b ) %q'q \(2 )

moo

(6.10)

+ (1 - 2ﬂqVY2><hé * (Zﬂq/L)k€> In (aqbo) . <%n2vzyzq2mz> Jm(aqbo)}

ol o 32,2 2 '
q Jm(aqbo) qboc L Jm(aqbo)
and
201 -
~(2) i -2me NgbOJm(aOr) Jm(aoa) . 1
F\(r,w,0) = 3 55
¢ maryy J*(ab,) g 3 9\

(6.17)

. (1 i 2ﬂquz)<q (ZTICI/L)kq\ J! (thbo) . <4n2v2ﬁq2m2> J (aqbo)}

3,22 2
q J (aqbo) qboc L J! (uqbo)

We see that these transformed forces not only have poles at values of
w= +jvyx /b but also poles at values of w such that aqbo = x__ and

ms
aqbo x&s where J ( = 0 and J%(x The first set of poles

ms) ﬁs)= 0
will contribute to forces that fall off in a distance ¢t ~ b/y and are not
of interest to us. The rest of the poles will contribute to the wake fields
that have a much slower decay and these are the interesting ones for us to
consider. Since we are interested only in the long range wake fields we will
approximate the expression for Er and F,_ by allowing y + = With these

¢
approximations we obtain for m # O

2
; Bme 2N gm r ! am'] T q E ~ m Jm(aqbo) _ Jm(“qbo) (6.12)
r m- | q 3
cL (b )2 q l qb0 Jm s o) aqbodm(oqbo)
and F¢ = -F,. (6.13)
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From Eqs. (6.12) and (6.13) we see that F.and F
real axis of the w plane.

s have poles along the

For each special harmonic q we find the roots for w are at

w [ Lx?
N 6.1
| 4TTqu
and
[ [ ' 2
w_ “ms _|mg L(Xms)
il e (6.15)
4mgb?
| 0

Since the wake field in front of the charge (i.e., T < 0) must be zero,
we must close the contour in the lower part of the w plane for this case;
the integration along the real axis must go below the poles as shown in
Fig. 5.

It then follows that for T > 0 the average value of F

~ Ju. T
§>= 215 ¥ Residues of (F) e | (6.16)

where w_ are the roots defined by Egs. (6.14) and (6.15). For T >0 the

results for <Fr> and <F¢> can be written as
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( . .
2y 5o m=1 ~ - 2 Jupe T Jup T
8re “N&gma rnx] TqCl T m o ms " _ e ms sin mo
Lp 2" g 4795 {m? - (x')?
0 ms

<F¢(T,¢,T)> = 'j

where « o and w'ms are defined by Egs. (6.14) and (6.15). We note that

. ~ ok
W and w s gre odd functions of g,and C_q = Cq so that we can
write Eqs. (6.17) and (6.18) in terms of real variables

. 2 m-1.m-1 - 2
<F (r’q.),_[)>= _“4178 Ngma r z qlzc ‘22 ____m_____ sin o' T
r | L bgm g=1 g S m? - (x! )2 ms
ms
- sin W, Th €OS mé (6.19)
and
4ne2N€mam']rm'] = 2 m? .
<F (ry¢,1)>= gl2C_154% sin w' T
¢ L b2 q=1 @05 m? - (x!,)? ms
0 ms
- sin e T sin m¢ (6.20)

where 12 6q'bo is the amplitude of the qth harmonic of the waveguide
corrugation. )

Equations (6.19) and (6.20) represent the synchronous deflection forces
that would be exerted on a test particle with charge e following a distance
c T behind the delta function charge distribution given by Eq. (1.1). As is
typical of calculations involving singular distributions, the convergence
properties of these expressions are at best poor, and nonexistent without
invoking some sort of cutoff frequency. If, however, we use these expressions
as Green's functions to treat a reasonable distribution of charge in the
longitudinal dimension, then we will obtain well-defined expressions for the
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transverse deflecting force as a function of position within the distribution
as well as behind it. We will perform such a calculation for the case of a

Gaussian bunch for which the charge density is

-(t-z/c)?c?

2
eng 1 e 20 &(r - a) cos mp . (6.21)

We must integrate Egs. (6.19) and (6.20) over the distribution in z. For a
test particle of charge e located a distance ct after the bunch center (T

may be negative), we obtain

2 m-1_m=-1
F (ryo,1)> = dre ‘NEma cos mé
r 2m
L b
0
-C2T2
~ 2 2 w' .
x Yqiet 12 ¥ m Im %e 20 w< ms_-——-———JCT)]
q s |m? - x&é vv2 V2o
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and
_ 2 m-1 m-1
F (r,o,1)> = AmeHEma T qin g
¢ L p2"
- 0
_c21?
= z ] 202 Yns jcT
x Y qleC 1* Y i Im |5 e -
q g s m? - x&sz vvy2 VZa
-c?1?
w_ o
- Im % e 20% w( ms . JST , (6.23)
vvye VYo
where we have used the relationship
-t2¢? -c212
T 52 2 .
[ sinw(t-1t)e 20 dt = \/%ﬁg Im|e 20 w(—ggr - igl— (6.24)
- v vv2 V2o

where w(z) is the complex error function."

A similar calculation for the average longitudinal force resulting from a
centered (m = 0) charge yields the result

SomeN  — p ad 1 202 “ns® . ¢t
F_(r,1)> = 222 Y qieC 12 X w, Refs e w( - . (6.25)
2 cL a 55 tes |2 Zv /2o
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Observations and A Numerical Example
In intearating the results 6.19 and 6.70 over a charge distribution, one
is led to calculate

T :
.f sin w(t-1")plt')dt' = ImlerT~[

- -0

T .
e T 51 )dr!

If ct represents a distance within the bunch, this last integrel represents
the Fourier transform of a distribution truncated at the point of
observation. This transform of a discontinuous (because of the truncation)
function will have an amplitude which falls off as w™!. On the other hanc,
if ct falls ocutside (and behind) the bunch, this integral is the Fourier
transform of the total bunch shape, which for a continuous density
distribution falls off in amplitude at least as rapidiy as w-?, and for a
Gaussian falls off as exp(-aw?).

These qualitative observations can be seen in Fig. 5, which is a
three-dimensional plot of lexp(-y?)w(x+jy)!, the function resulting from
integrating over a Gaussian distribution [cf. Eq. (6.24)]. In the summation
over s, the frequencies Wre and w'ms correspond to distances along the
x axis, while the length ct (=0 in the center of the bunch, and positive
behind the bunch) corresponds to a distance along the y axis. Thus it is
clear that within the bunch many frequencies will contribute to the wake
force, while outside the bunch the wake force will be determined principally
by those frequencies for which the Fourier transform of the bunch distribution
has appreciable amplitude.

As an example of the previous remarks, Figs. 6a through 6d show wake force
calculations for m=1 with only E]fO and taking L=b=5 cm, with varying values
of o. Clearly, as one proceeds from small o to large o the number of
significant frequency components in the wake force diminishes. In fact, for
ct > 20 the wake force is well represented by including, in the sums
occuring in Egs. (6.22) and (6.23), only terms for which wo/vV2c < 1.5.

Further studies of the implications of Egs. (6.22), (6.23), and (6.25) for
beam dynamics are planned.
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e 2w (x+iy)]

Fig. 5. Three-dimensional plot of the function exp(-y2?)iw(x+jy)i.
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o. In Fig. 6a, 0=(0.5//10) cm; in Fig. 6b 0=0.5 cm; in Fig. 6¢

0=(0.5 V10) cm; in Fig. 6d o=5 cm.
same arbitrary units for each plot; but the scales differ.

The force is indicated in the
The

abscissa in each plot is vrt/o, ranging from -2 to 46.
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APPENDIX 1

The synchronous longitudinal wake field, as y > =, for a charge equal to
eN traveling down the center of the periodic wave guide may be obtained from
the transformed longitudinal electric field component given by Eg. (5.2) and
(3.8) if we set m=0 and replace § by a/2. For y + = Eq. (5.2) becomes

o 2 ¢
~(2) . 4neNubo > o o Jo(aqbo)
By (row0) = I 1Ce-q 5B Tlay)
cL Q=- goo qo

Expanding Jo(aqbo) about the poles at quo = X We have near

the pole

quo Jo(dqbo) ~ L 0'"0s

where x . are the roots of J (x__) =0

s 0'"0s
w Lx?
and 22 = %3 + 02
¢ 4nqbg

The inverse transform of fiz)(r,w,O) will give the synchronous
component of Ez(r,t):
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APPENDIX 2

We consider the product of the functions f(r,z,t) and g(r,z,t) each of
which may be written in the following manner.

fryzot) = | dwedT ¥ e b fFlr,wp) (A.1)

- OO p:-oo
with 7= (t - éﬁ . (A.2)
Clearly the product is given by

. ' -2TT ]

© © @© o - - J(w'+w')'r JT(p+p )Z

feg= [ dw [ du X > f(r,w',p)g(r,wt,p') e e
-0 - O p=- p':-oo

If we define w= w' + " and g = p + p' we obtain

¥ dut 2 = >z
fig= [ dwed T e [ dw ¥ fr,e',p)d(r.e-w',q-p) (A.4)



Using the

[fgl(r,z,t) =

we obtain the

P~

[fgl(r,w,p) =
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definition of

® Jut o JZ_-EE'Z ~~
[ dwe I e [fg)(r,w,q)
- 0 q:—m

[ do' ¥ Flr,w',q)d(r,w-w',p-q)

(A.6)



