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Introduction 

We want to find the wake force1 due to a perturbed charge distribution 

moving parallel to the axis of a circular periodic waveguide. We will 

assume that the perturbed charge and current density may be written as 

P 
= eNc 6(t - z/v)d(r - a) cos m$ 

7ra2v '+&mo , 

and 

eNc 6(t - z/v)6(r - a) jz = - na2 
cos m$ = VP 

'+&rno , 

(1.1) 

(1.2) 

where z is the longitudinal coordinate along the axis of the waveguide, t is 

the time, r and @ are the radial and azimuthal coordinates of the guide, 

6(x) is a Dirac delta function, v is the longitudinal velocity of the charge 

and 6m o = 1 for m = 0 and is zero otherwise. 

This distribution corresponds to a perturbation to a cylindrical disk of 

charge as shown in fig. 1, for m = 2. The total number of electrons in the 

unperturbed disk of charge is N. We have assumed that cc< a and that the 

disk is infinitesimally thin. It is interesting to note that for a point 
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Unperturbed charge distribution 

4153Al ‘ 

Perturbed charge distribution m=2 

Fig. 1 

.charge of N electrons displaced horizontally by an amount 5 the charge 

distribution is 

P = $ 6(t - z/v)6(r - 5)6(Q) , 

which may be written as 

P= . 

(1.3) 

(1.4) 

The wake force for the mth harmonic of a displaced point charge may be 

obtained from the wake force derived in this paper by substituting a = 5. 

We will ignore any effects of the fields produced by the charge upon its own 

motion and assume that the velocity v in the z direction is constant. This 

assumption will be valid for the case where both the transverse velocity and 

the change in the longitudinal velocity in one period are small compared to 

the longitudinal velocity. 
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11 assume the waveguide has a period L and a radius b(z We wi 

by 

b(z) = b. I l+ 5 
pPz 

Cpe L 

I 
3 

P Z-C.0 

) described 

(1.5) 

with the average radius taken to be b, so that to = 0. The 

reality of b(z) requires that-C" 
-P 

= $. This configuration is shown in 

Fig. 2. 

I . 
\ --- -- - - 

T 
-- ---- ---- 

1 

-,-L-i- - -2 
Fig. 2 

We will solve for the wake force using a perturbation technique in powers 

of the parameter c" 
P' 

This is the same technique used by M. Chatard-Moulin 

and A. Papiernik in calculating the energy loss of an electron bunt-h moving 

along the axis.2 We not only will follow their technique closely but also 

utilize a similar notation in order to facilitate comparisons with their 

results for m=O. 

We will mainly be interested in calculating the transverse wake forces, 

which are present only for the case m#O, nevertheless the following equations 

will be valid for the case of a charge eN moving along the axis by setting m=O, 
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dropping the term (l+&m ,), and setting 5 = a/Z. The longitudinal wake 

force for the m=O case 7s treated in Appendix 1. Krinsky3 has also applied 

the technique of Chatard-Moulin and Papiernik to evaluate the transverse 

-impedance of the periodic waveguide experienced by a coasting beam with a 

coherent vertical oscillation. Krinsky's result [Eq. (7)] agrees with our 

result for the transformed forces [Eqs. (6.14) and (6.15)] with m=l if one 

replaces Z, in his expressions (the impedance of free space) by 4n/c, 

substitutes for 1,A the value eNg2n and uses b. as the average pipe 

radius. 

Equations for field components 

It will be useful to use Fourier transformations in solving for the 

electromagnetic fields. .The convention we use is that a tilde above a 

quantity designates the transform as defined by 

CD ;2nPZ 
f(r,+,z,t) = 1 dw ejU' 5 e ' 

-05 P =-OD 

where 'I= t- z/v. Note that (z) = jtif and 

(Gz) = jkpr where kp = (ZT/L - w/v). The charge and current 

density are proportional to cos m$; the field components E,, E,, and 

Bo are proportional to cos m@, while the field components E$, B,, 

and B, are proportional to sin m+. 

The transforms of p and jz which correspond to Eqs. (1.1) and (1.2) 

are given by 

1.6) 

hw,p) = eNS 
2n2a2v 

0 - aNo p , , 
(1.7) 



and -. 

jZ(r,~,p) = G7-4P) l (1.8) 

We see that only the p = 0 space harmonic for the various field components 

is synchronous with the charge and current. 

From Maxwell's Equations it follows that the transverse transformed field 

components may be obtained from a knowledge of the longitudinal transformed 

field. components by 

aE" 
a2pErhw,p) kpg (wad - F Bzo^,d 

I 
, 

$ Eq(r,w,p) = j I - F kpEZ(v.o) + f$z hd , I 

I as 
$ @w,p) = j - E ~Zhw) + kp J$ hw,p> 

I 
9 

h-4p> + m r kp ~zhw.p) 9 
I 

since jr = j 
# 

= o where c is the velocity of light, 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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$ = ti _ kp’ = _ -!!i? + .m _ 4n;2P2 
C2 y2v2 VL 

, 

(1.14) 

Y= (1 - vZ/c2) -l/2 
, 

and Gaussian units are used throughout the paper. For later work it will be 

desirable to have the transverse forces on a test particle of charge e: 

'r = e ( Er - v/C iTo) and - 
F+ 

= e (E, + v/c ii,) , 

The synchronous space harmonic, i.e., p = 0, is the only space 

harmonic which does not vanish upon integration over one period in z. 

From Eqs. (1.9-1.14) we obtain for the synchronous deflection forces 

(.(r,w,O) = 6 e 
~EZhw’O) 

ar , 

Fo(r,w,O) = -j+F eEZ(r,w,O) . 

The longitudinal tranformed field components are obtained from the 

transformed wave equations 

(1.15) 

(1.16) 

(1.17) 
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(1.18) 

. along with the proper boundary conditions which are discussed in the next 

Section. Using the expressions for i and Tz from Eqs. (1.7) and (1.8) we 

obtain the following equation for Fz: 

(1.19) 

Boundary conditions 

The proper boundary conditions for a perfectly conducting wall are that 

both the parallel component of the electric field, E , and the-normal 

component of the magnetic field, B,, equal zero at the wall. The technique 

used in this paper, which is the same as that of Chatard-Moulin and 

Papiernik,2 is to replace these boundary conditions at r = b(z) by 

appropriate boundary conditions on the values of E, and aB,/ar at r = b,. A 

perturbation technique is used in which we expand the field components in 

orders of the quantity cp given in Eq. (1.5). Thus we first solve for E, 

and B, for the case of a perfectly conducting round cylindrical wave guide 

of radius b. with the boundary conditions EZ 
I 

= 0 , 
r=b 

= 0 and aB,/ar r=b 
I 0 

0 

then using these results obtain new boundary conditions at r = bo to first 

order in cp and solve for the fields which obey these new boundary 

conditions. This process is repeated to second order in cp for the 

synchronous value of E, from which we can obtain the synchronous transverse 

deflecting force by Eqs. (1.15) and (1.16). 



Irom Fig.“3 we see that at r = b(z) 

Elib(f) = EzIb(li 'OS ' + Er/b!L) sin o l 

Applying the boundary condition E,, = 0 we obtain the following relation 

between EZ and E,. 

Ez 
bid 

= -Er 
b(z) 

tana= --$Er 
I b(z) ' 

b(z) 

Fig. 3 

We can expand the components in terms of a Taylor series such as 

EZ = EZ 
aEZ 

b(z) bO 

QF- (b - bo) + 
a2EZ 

I 

(b - boJ2 
- 

bO 
ar2 b. 2 

12.1) 

(2.2) 

(2.3) 

BY combining Eqs. (2.2) and (2.3) we obtain for the boundary condition at r = bo 

aEZ E, =-ar I aZEz b - bo)' 
bo)g . (2.4) 

bO bO 

(b - bo) - - 
ar2 b, 2 

The above expressions may be written in terms of the transformed field 

components by using the convolution condition (see Appendix 2) 
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C%(W,P) = Jdw'C f"(w',q);(w - w',p-q) , 
9 

which for the special case where i(w,p) = g"(O,p)b(w) [such as occurs in 

iq$ = bocp6(w) and (G =(jbo2np/L)C"pB(w)] reduces to 

[f*glp(w) = F $(4~p-q(o) , (2.5) 

where the subscript refers to the spatial harmonic number. Dropping the 

notation 
I 
b which is to be understood when quantities are evaluated at 

0 

r = b,, and using the subscript notation for the spatial harmonic number, we 

can obtain the boundary condition of the transformed field components at 

r=b 
0 

(E,) 
a[, 

= - c - 
P 0 9 ar q 

(=ol p q -c (E,) 5 
0 q 9 P-9 

(2.6) 

The field components are next expanded in orders of cp such that 

E, = p + p + y’ etc. , (2.7) 
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where ri") ; is the solution for a constant radius waveguide of radius 

bO= 
The term ii') is proportional to c" ; 

P 
the term E, -f2) is 

proportional to t2, etc. The relationship between transformed field 
P 

component fr and the longitudinal transformed field components rz and Ez 

is given by Eq. (1.9) along with Eq. (2.7) to separate Eq. (2.6) into the 

following equations. To zero order 

$')(b,,w,p) = 0 . 

To first order 

where we have used the results obtained later [Eq. (3.2) to Eq. (3.4)] 

which show that 

&O) 
a;(O) 

z b,w,p) = 0 and -$- 

$(O) . 

(2.9) 

hw) = -+- hw,Wo p . , 

(2.8) 

(2.10) 

We will be interested only in the synchronous value of E, and will stop 

at second order in Cp to obtain 
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[;2)(bo,w,0) = - C boCDq 
9 

o,w,q) + bo' cc" c" 
q q -q 

From Fig. 4 we see that at r = b(z) 

Bn 
I I 

= Br cos Q - 
b(z) b(z) 

Bz 

I b(z) 
sin CL = 0 , 

applying the boundary condition B, = 0 we obtain the following relation 

between Br and Bz. 

B = 

I I 
BZ 

tan cc 
r b(z) b(z) 

db 
= zBz I b(z) ’ 

b(z) 

_--- _---- --- -- r=b, 

(2.12) 

7 - 81 4153A4 

Fig. 4 
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We use a Taylor series expansion, similar to that used for the electric field, 

to obtain for the boundary condition at r = b, through first order in fp 

Br I aBr 

bO 

=-ar, I 
(b - bo) + BZ 

0 
I 

0 

(2.13) 

We again drop the notation 1, use Eq. (1.11) to write B"r in terms of 
0 

fz and gz , and expand the field components in orders of c p to obtain the 

boundary condition for the transformed longitudinal field components. To zero 

order 

as(O) 
+ (b,,w) = 0. , and 

a2iiZo 
~ b. 

ar* 
,hP) = 0 

where we have used the result from Eq. (2.8) that Ez -(')(b,,w,p) = 0. 

To first order 

ait l 
) 

Z 
a;(O) 

ar (bo,w,p) - -,$+ ;il)(bo,w,p) ='g cp -+ (bo,wJJ) . (2.15) 

oP 

(2.14) 

We substitute the expression for E, -(')(bo ,w,p) from Eq. (2.9) into 

Eq. (2.15) to obtain the following expression for aB, '(')/ar, 



'14 

-( 
aBZ 

1) a;(O) 
ar (bo,w,p) = - - - 

2npmwt z 
- 

"O'L c p ar 
(bo,w,O) . (2.16) 

Zero order solution 

The zero order solutions for fz and gz are obtained from solutions to 

the wave equations Eqs. (1.18) and (1.19) along with the zero order boundary 

conditions given by Eqs. (2.8) and (2.14). The solutions of Eqs. (1.18) and 

(1.19) may be written in terms of the Bessel functions3 Jm(crpr) and 

Nmbpr). From Eq. (1.19) we see that the radial derivative of EZ is 

discontinuous at r = a such that 

aCz aiz 
-j ‘wN5 6 

. 

-- = 

ar at ar a- na2v2y2 o,p * 

This condition along with the boundary conditions 

E!')(b,,w,p) = 0 , 

ai 
+ (bo,w,d = 0 3 

(3.1) 

I 

and the requirement that E"i and gfo be finite at r = 0 yields the 

following zero order solutions: 



=t
 

N
- 

-n
 

0 3 

-fl
 

0 -5
 

0 V 
- -5

 
3 IA

 cl
l 

.’ 

9,
 

IA
 1 IA
 o-
 

0 
Y 

Y 
-0

 

a,
 

< -F
 N

 
3=

 

O
Q

 w
 

0 

. 

O
Q

 W
 

. N
 

- 

-w
 

. w
 



I 

16 

We use the following property of Bessel functions 

N ‘h)Jb) - N(x)J’(x) = 4 

and 

N”(x)J(x) - N(x)J”(x) = -2 
nx 2 

to obtain 

a;(o) 
-+- bo, w,O) = -j 

2@NS J,,,bo4 

aa-rs2bo Jn,bobo) ’ 

and 

&w 

’ - (bo, w,O) = +j 
2aN5 J,bo4 

ar 2 nay%2bi J,(aobo) l 

We note that Eqs 

first and second der 

boundary, 

. (3.8) and (3.9) yield the simple relationship between the 

-(O) ivatives of the synchronous harmonic of E, at the 

(3.5) 

(3.6) 

(3.8) 

(3.9 

a’p) at(O) 
' (bo,W,O) = - ~~ . 

ar 2 0 ar 
(3.10) 

which may also be obtained from the wave equation (1.17). 
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First order -solutions 

I 

The first order solut 

boundary conditions at b. 

ions for FL') and 8:') which sat 

are 

isfy the 

. El(l) J b 4 
z (w-u4 = EZ -(‘)bo,w) --$+ , 

B( 1) 
ail l) 

z hw) = + (bo,wd +j-ij$$ 9 

\gher-e the values of t?j')(bo,w,p) and ~8~')(bo,w,p)/ar are given by 

the first order boundary conditions Eqs. (2.9) and (2.16). 

The results for i?:'), <') and $El')/ar may be written as 

p) 
a;(O) 

z hw) =;b q 0 -+- tbo' 

B(l) 
a:(O) 

z ( v-49) =c” q -+ (bo,w,O) 

and 

I m7nqv2y2 Jm(a r, 

LLC 

---A 
aq IA aqbo 

9 

a:( l) a:(O) 

a: b-,w) = Cqbo + (bo,",O) l(2'zy2 - ') s] 

where the value of --&-Jbo,w,O 1 is9 

cO 
= 0 there are no synchronous first 

ven by Eq. (3.8). Note that since 

order fields. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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Second order. solutions 

In order to obtain the expressions for the transverse deflecting force on 

a test charge following a constant distance v'c behind the charge exciting 

the fields it is necessary only to evaluate the synchronous space harmonic of 

. the transformed longitudinal electric field fz (cf. Eqs. (1.15) and 

(1.16)). The second order solution for the synchronous space harmonic of the 

transformed field fj2) is given by 

;w bw,W = EZ -(2)(bo,u,0) (5.1) 

The value of FL2)(b h,~,O) may be obtained from Eqs. (4.4), (4.5), and (3.10) 

inserted into ;q. (i.11). 

T~he result for fi2) (r,w,O) may be written 

E”(2) 
t ( 

r,w,O) = b2 
Jm( aor) 3;; 

0 'q-qgar (bo,w,O) c ~-s~q 

(5.2) 

ai 
with -$-(bo, 0,0) given by Eq. (3.8). 

Inverse Fourier Transform 

In this section we show that the transverse forces due to the zero order 

fields fall off with distance behind the charge at least as fast as 
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exp (-vdbos). The forces arising from the second-order fields moving 

with the charge distribution fall off more slowly, and for high energy 

electrons these longer-range forces are the ones of interest for us. 

For reference purposes we include the second order longitudinal force 

_ acting on a test particle (charge e) following a distance VII behind a 

centered (m=O) delta function charge with total charge Ne. From Appendix 1 

this longitudinal force, averaged over a spatial period is 

Qz(r,t)> = -4c;e2N 5 qFqFsq ,z tioseJUosr . 
q=-cc 

This expression diverges as a result of the infinite frequencies generated by 

the delta-function distribution. When integrated over a reasonable charge 

distribution this force is a well-behaved function of -T. Such-an 

integration over a Gaussian bunch is performed at the end of this section. 

In order to calculate the average transverse deflecting forces, the 

expressions for f,(r,w,O) may be substituted into Eqs. (1.15) and (1.16) 

and the inverse transform taken. That is 

d r (T)> =; iL F,W = T + z/v)dz = 1 dw eJoT Fr(r,&G) cos m@ , 
0 

(6.1) 

Q$>= j dwe jWT i,(r,u,O) sin rn+ . (6.2) 
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The transformed synchronous deflecting forces may be written as 

-(O) Fr(r,w,O) = Fr (r,o,O) + F~2)(r,u,0) 

-w F.Jr,ti,O) = $O)(r,w,O) + F9 (r,w,O 

, (6.3) 

f (6.4) 

where we have used the fact that the first order solution for the forces do 

not contain a synchronous space harmonic since we have picked the average 

radius b. such that cp equals zero for p = 0. The zero order transformed 

synchronous deflecting forces are for r < a given by 

,“iO) r b-4-d) = 
e2N(ao 

avy2 
Nmboa)Jmbob) - Nmbob)Jmboa) m , 

3 

JAbor 1 

m “obo 
(6.5) 

and 

p) 
-me2N6 

a ( 
r,w,O) = 

, Jmbod 
- Nmbob) Jmboa,3 r J . O-5.6) 

avy2 m 00 

(0) 
We see frcm these equations that the poles of Fr and F" are for 

@ 
values of w such that 

(6.7) 

where x ms are the roots of the equation Jm(xms) = 0 . 
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The inverse transform integral gives the following result for the zero 

order synchronous deflecting forces 

03 4e2Nc J,(xmsa/bo) J$,(xmsr/bo) yvXms ITl -w 
Qr>= -c - e bO 

s=l abiy [J;(x,,)~~ 
cos m$ , (6.8) 

Vxms 
m 4me'NC b. 

Q+>= +c 
Jm(xmsa/bo) Jmbms r/b01 - T 

e 
s=l abi y x ms r [J~(x,,H’ 

I-rl 

sin m$ . (6.9) 

The f~orces depend only upon absolute value of T due to the fact that for 

T > 0 we must close the contour integral in the top half of the complex w 

plane while for T < 0 we must close the contour in the lower half plane. 

We note that the zero order forces fall off exponentially in a distance 

VT z b,/y; this is the well known result that a charge moving in a 

perfectly smooth conducting vacuum chamber will excite fields that fall off 

longitudinally from the charge of the order in a distance of the cross section 

dimension divided by y. 

For high energy electrons we will be interested in the wake fields that 

fall off more slowly in distance behind the charge. We consider the second 

order terms in the synchronous deflecting forces. The second order transform 

of the synchronous deflecting force may be written as 



and 

92 
Q )( r,o,O) = 

+ 1-2yy ( 2 

)i 

c.$ + (25rq/L)k 

aq 

-2me2NQOJm( aor) Jm( uoa) 

Tar-y% J,‘( oobo) 
1 I(-) q 2bo 

I 

(6.10) 

(6.11) 

( 1 - 2yy 
2 

+ 
c$z + 

‘( 

We see that these transformed forces not only have poles at values of 

w = kjvyxms/bo but also poles at values of w such that aqbo = xms and 

ab 
90 

= xCs where Jm(xms) = 0 and Jl;l(x,.&j= 0, The first set of poles 

will contribute to forces that fall off in a distance C'I z b/y and are not 

of interest to us. The 
that have a much slower 

consider. Since we are 

approximate the express 

rest of the poles will contribute to the wake fields 

decay and these are the interesting ones for us to 

interested only in the long range wake fields we will 

on for F, and FG by allowing y + co, With these 

approximations we obtain for m # 0 

F; = 8ne2NQn rm-' am-' cq2 C F 
I 

m2Jm( aqbo) J$ aqbo) 

cL2(b;-')2 9 -q q 
I 

a:bi Jl;l(aqbo) aqboJm( aqbo) I 

and F,= -F;- 

(6.12) 

(6.13) 
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From Eqs. (6.12) and (6.13) we see that Fr and F+ have poles along the 

real axis of the o plane. 

For each special harmonic q'we find the roots for w are at 

W w ms Lx& -z-z ?!I+- 
C C L 4nqb; 

(6.14) 

and 

W’ w ms -z-c 
C C (6.15) 

Since the wake field in front of the charge (i.e.., 'I < 0). must be zero, 

we must close the contour in the lower part of the w plane for this case; 

the integration along the real axis must go below the poles as shown in 

Fig. 5. 

It then follows that for 't > 0 the average value of F 

Q> = 2nj C Residues of (/) e 
jy.T 

(6.16) 

where wr are the roots defined by Eqs. (6.14) and (6.15). For i > 0 the 

results for Qr> and Q 
@ 

> can be written as 

m-l 
m 

Q,(r,$,T)> = j 8neTba rm-'C 
Lbom 9 z-m 

2 jw' 'I 

-‘(X;J’ 

e ms 
jw 'I 

- e ms 

I 

cos m$ 

(6.17) 
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-. * I 

< F+(r,$,r)> = -j 
8rre2NQnam-'rm-l eJWmsT _ eJWmsT 

Lbim 

2q Cq;Bqc' m2 

I 
s m2 - bg* . 1 

sin m$ 

(6.16) 

where c~fn~ and IJI'~~ are defined by Eqs. (6.14) and (6.15). We note that 

YTIS 
and wlms are odd functions of q,and f-9 = fi so that we can 

write Eqs. (6.17) and (6.18) in terms of real variables 

< Fr(r,@,r)> ='-8. 4Tie2NQ-na m-lrm-1 

L birn 
5 q12Cq12~ m2 

q=l 
i 

sin W&T 

' m2 - b;nJ2 

and 

- sin ss? 

1 

cos rnt 

< F&-Ad> = 
4sre2N@na m-lrm-1 

L birn 
sin wms-c 

where I2 cqibo is the amplitude 

corrugation. 

Equations (6.19) and (6.20) 

that,would be exerted on a test 

- sin ss~ 

I 

sin m$ (6.20) 

of the qth harmonic of the waveguide 

represent the synchronous deflection forces 

particle with charge e following a distance 

CT behind the delta function charge distribution given by Eq. (1.1). As is 

typical of calculations involving singular distributions, the convergence 

properties of these expressions are at best poor, and nonexistent without 

invoking some sort of cutoff frequency. If, however, we use these expressions 

as Green's functions to treat a reasonable distribution of charge in the 

longitudinal dimension, then we will obtain well-defined expressions for the 
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transverse deflecting force as a function of position within the distribution 

as well as behind it. We will perform such a calculation for the case of a 

Gaussian bunch for which the charge density is 

-(t-z/c) 2c2 

P =s 1 e 2cJ2 8(r - a)cosm$ . 
51a2 av27 

(6.21) 

We must integrate Eqs. (6.19) and (6.20) over the distribution in z. For a 

test particle of charge e located a distance CT after the bunch center (T 

may be negative), we obtain. 

Q&r,& TP = 
4ne2NQna m-lrm-1 

L him 
cos m@ 

x ~q12Cq12 1 m2 

1 

Im 
9 s m'-xm: 

- Im-[; e $ wtz - $$]I , (6.22) 



26 

and 
-. 

<F@Wb = 
-4ne21\1<ma m-lrm-1 

L him 
sin m@ 

-C2T2 
x c q12cqi2 C " 2 Im 

1 

-1 [ 
2a2 wAlS 

u 
jCT 

171' - x' Te W 

( ! 

--- 

q S va flu 
ms 

- In [i e%w(s- El/ , (6.23) 

where we have used the relationship 

sin W(T - t) e %,,, +; Im [e2w(;;T ;;)-I (6.24) 
-00 

Where PJ(Z) is the complex error function.4 

A similar calculation for the average longitudinal force resulting from a 

centered (m = 0) charge yields the result 

. (6.25) 



27 

-. 

Observations and A Numerical Example 

In inteprating the results 6.19 and 6.70 over a charge distribution, one 

is led to calculate 

I 

‘I 
sin w(~-~')p 

-m 
!T')dT' = Im ejwr 

I J 

‘I * 
eWJWT'p(T')dT' 

-43 

If cf represents a distance within the bunch, this last integral represents 

the Fourier transform of a distribution trtincated at the point of 

observation. This transform of a discontinuous (because of the truncation) 

function will have an amplitude \:hich falls off as W-I. On the other hand, 

if CT falls-outside (and behind) the bunch, this integral is the Fourier 

transform of the total bunch shape, which for a continuous density 

distribution falls off in amplitude at least as rapidly as w-', and for a 

Gaussian falls off as exp(-aw2). 

These qualitative observations can be seen in Fig. 5, which is a 

three-dimensional plot of lexp(-y2)w(x+jy)l, the function resulting from 

integrating over a Gaussian distribution [cf. Eq. (6,24)-J. In the summation 

over s, the frequencies wms and wlms correspond to distances along the 

x axis, while the length CT (=0 in the center of the bunch, and positive 

behind the bunch) corresponds to a distance along the y axis. Thus it is 

clear that within the bunch many frequencies will contribute to the wake 

force, while outside the bunch the wake force will be determined principally 

by those frequencies for which the Fourier transform of the bunch distribution 

has appreciable amplitude. 

As an example of the previous remarks, Figs. 6a through 6d show wake force 

calculations for m=l with only Cl+0 and taking L=b=5 cm, with varying values 

of cl. Clearly, as one proceeds from small u to large u the number of 

significant frequency components in the wake force diminishes. In fact, for 

C-C > 2a the wake force is well represented by including, in the sums 

occuring in Eqs. (6.22) and (6.23), only terms for which WCJ/~ < 1.5. 

Further studies of the implications of Eqs. (6.22), (6.23), and (6.25) for 

beam dynamics are planned. 
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I e-yzw(x+iy)l 

Fig. 5. Three-dimensional plot of the function exp(-y2)lw(x+jy)i. 
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Fig. 6. Plots of the wake force for L=5 cm, b=5 cm, and varying values of 
u. In Fig. 6a, 0=(0.5/JlO) cm; in Fig. 6b 0=0.5 cm; in Fig. 6c 
0=(0.5 410) cm; in Fig. 6d a=5 cm. The force is indicated in the 
same arbitrary units for each plot; but the scales differ. The 
abscissa in each plot is VT/O, ranging from -2 to 46. 
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APPENDIX 1 

The synchronous longitudinal wake field, as y + a, for a charge equal to 

eN-traveling down the center of the periodic wave guide may be obtained from 

the transformed longitudinal electric field component given by Eq. (5.2) and 

(3.8) if we set m=O and replace 5 by a/2. For y + "Eq. (5.2) becomes 

$2) 
4neNdi w J’(a b ) 

z (v40) = j 
c 2L 2 

’ q2cqcmq a b"J Ta"b ) 
q=-co qoo 40 

Expanding Jo(oqbo) about the poles at aqbo = xos we have near 

the pole 

2nqb; 
aqbo Jobqbo) = c~ J;(xos)b - was, 

where xos are the roots of Jo(xos) = 0 

and Oos LX;S -= 23, 
C L 4nqb; 

-w The inverse transform of E, (r,w,O) will give the synchronous 

component of Ez(r,t): 

Ei2)(r,T) = 



I 
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-. APPENDIX 2 

We consider the product of the functions f(r,z,t) and g(r,z,t) each of 

which may be written in the following manner. 

f(r,z,t) = Imdw ejw' 
ZWZ.” 

f aL fhw,P) 9 
..W p=-cn 

with T = (t - t, . 

(A.1) 

(A-2) 

Clearly the product is given by . 

f*g = jwdw' jrn dw" 5 5 f"(r,w',p)i(r,wll,pt) e 
j(w'+w")T jk(p+p’ )Z 

e L (A-3) 
-CD -03 p p’=-w =-W 

If we define w = w' + w" and q = p + p' we obtain 

fag = Jm dw ejwt c e 
j?z 

Jm dw' Iii %-dJ ,p)!W,*w ,q-p) (A-4) 
,a, q z-03 ,w P=-* 
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Using‘.the definition of 

03 

[fglhz,t) = J dw e 
jwt ~0 

C e 
j+, 

[fd(w,s) 
,W 9 Z-W 

we obta in the fo Sllowing expression 

w 

[z](r,w,p) = J dw' e Q(r,w',s)~(r,w-w',p-s) 
-co q Z-03 

(A-5) 

(A-6) 


