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ABSTRACT 

Using the most general, gauge invariant and renormalizable Higgs 

potential which avoids domain walls, we study the possible phases that 

can appear at high temperatures in the minimal SU(5) grand unified 

theory. We emphasize the important role of the fundamental 

representation of Higgs fields for the phase structure at temperatures 

of 1014 GeV. 
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Grand unified theories of strong, weak and electromagnetic 

interactions are based on a simple gauge group G. At very high 

energies, G is unbroken but at lower energies G undergoes a hierachy of 

symmetry breakings. A typical energy scale at which G is first broken 

is of the order 1014 GeV [l]. In the standard big-bang model of 

cosmology, at very early times, the universe was at a temperature 

exceeding this scale and the gauge symmetry was unbroken. Therefore, as 

the universe expanded and cooled, it must have undergone several phase 

transitions before reaching the present state of broken gauge symmetry. 

A necessary consequence of the broken gauge symmetry, in grand 

unified theories, is the existence of superheavy magnetic monopoles 

[21 l These monopoles would have been produced prolifically in the early 

universe soon after the big-bang. They first appear when the initial 

symmetry G is broken down to a subgroup in which U(1) appears 

explicitly, i.e., G + H x U(1). Several authors [3] have studied the 

initial monopole production and have concluded that the number of 

monopoles initially produced was at least fourteen orders of magnitude 

larger than a bound set from present astrophysical data. Therefore, 

suppression of the initial monopole production in the early universe is 

a severe constraint on grand unified theories. 

Monopole production depends crucially on the history of the phase 

transitions in the early universe. In a spontaneous broken gauge theory 

the phase structure is determined by the Higgs sector of the theory. 

However, the phase sructure at finite temperature need not follow the 

symmetry breaking pattern at zero temperature [4]. A complicated Higgs 

sector can make the phase structure at finite temperature very different 
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from the symmetry breaking pattern at zero temperature. In this note, 

we restrict ourselves to the minimal SU(5) theory [5] which has one 

adjoint (24-dimensional) and one fundamental (5-dimensional) 

representation of Higgs fields. First, we present a Higgs potential 

which avoids the existence of domain walls [6], a desirable feature 

which is explained below. The exclusion of theories with domain walls 

is another example of the restrictions on elementary particle models 

derived from our understanding of cosmology. Then, we study the 

possible phase structure of the early universe and emphasize the 

important role of the fundamental Higgs fields for phases at a 

temperature scale near 1Ol4 GeV. We also discuss the implication of 

these results for magnetic monopole production. 

The most general, gauge invariant and renormalizable Higgs 

potential for the minimal SU(5) theory, with @ the adjoint Higgs field 

and H the fundamental Higgs field, has, at zero temperature, the form 

12 
V(@,H) = -z !-I TrQ2 +f (Tr@2)2 +t Tra4 + ' 7 TrQ3 12t --f v H H +; (H+H)~ 

+; (H+H)Tr@' + + H+D2H + 5 H+@H . (1) 

Usually, a discrete symmetry @ + -@ is imposed for simplicity which 

eliminates the cTrQ3 and yH t (PH terms. However, this discrete symmetry 

is not part of the gauge symmetry and should not be imposed since it 

leads to the following cosmologically unacceptable consequence. 

When the hot universe expands and cools through the transition 

temperature, there are large fluctuations in the Higgs fields. Below 



-4- 

this temperature, the Higgs fields have a non-zero vacuum expectation 

value corresponding to some point in the manifold of degenerate vacua. 

If this manifold is disconnected, a domain structure in the universe 

will be created. During the cooling process, at causally disjoint 

points of the universe, the vacuum expection values will appear in a 

random fashion within this manifold. The walls between parts of the 

universe with vacuum expectation values coming from different sectors of 

this manifold can never terminate and must either form closed surfaces 

or extend to 'infinity.' For small values ( < 1 ) of the Higgs quartic 

couplings, these domain walls are so heavy that their existence would 

lead to a radical change in the cosmological evolution of the 

universe. The degree of inhomogeneity domain walls was calculated by 

Zel'dovich, Kobzarev and Okun [6]. They found that it is unacceptably 

-large. 

For the adjoint Higgs fields in SU(5), imposing the symmetry 

@ + -@ causes the manifold of degenerate vacua to be disconnected and 

thus allows the existence of unacceptable domain walls. Therefore, the 

potential we consider is eq. (1) with c and y non-zero. 

The symmetry breaking patterns given by the Higgs potential of 

eq. (1) have been analyzed by many authors [7] and their results are 

summarized in table I. Before we discuss the phases at high 

temperature, we first constrain the values of the parameters in the 

potential such that at zero temperature we have the following hierarchy 

of symmetry breakings 

SU(5) + SU(3) x SU(2) x U(1) + SU(3) x u(1) . (2) 
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In order to have SU(5) + SU(3) x SU(2) x U(l), b must be chosen to be 

positive. Also, we must arrange the parameters such that V(@,H) is 

bounded from below. Sufficient conditions for this, given b > 0, are 

7b > 0 a +-i-5 
x > 0 

and 

( a +& b)X > [min(a +$ B,cz,o)]~ . 

The vacuum expectation value of 0 has the form 

(3) 

<@> = v diag (2,2,2,-3-E,-3+&) (4) 
J30 . 

where v is given by 

J30 c+[ c2 v =- 
4 ( 

+ 8p2(15a + 7b)]"21 
15a + 7b FJ 1014 GeV . (5) 

The vacuum expectation value of H is 

with 

(6) 

P2 =2 ,2 - $2 
x [ 

3 B 
-10 v2 + dm yv + o(Ev~)] = (lo2 GeV)2 . (7) 

Since E is of O(p2/v2) and E vanishes as a, f3 and y go to zero, E will 
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be neglected in our discussion. The parameters in the potential must be 

chosen so that, a/b and u2b/c 2 are to the right of line I in fig. 1 so 

that the SU( 3) x SU(2) x U(1) minimum is lower than any possible 

SU( 4) x U(1) minimum. Finally, we arbitrarily choose c to be positive. 

Equation (7) is the well-known 'hierarchy condition' which requires 
n 

a 'miraculous cancellation' between the terms of o(vL), if we choose 

v2 a l/2 Ap2 as in the Weinberg-Salam model. Then, eq. (7) implies 

6 r:= J10/3 (a+$ B) . (8) 

The colored component, H3, of the fundamental representation of 

Higgs has a mass given by 

2 
m% 

= 5 (5a + fl)v2 + O(p2) . (9) 

H3 mediates proton decay and therefore should have a mass comparable to 

the mass of X boson, within a few orders of magnitude. This constraint 

gives 

B > -5a . (10) 

There are further constraints on the parameters so that SU(3) x U(1) 

with a weakly broken SU(2) x U(1) is the global minimum of the 

potential. However, the constraints eqs. (8) and (10) are sufficient 

for our purpose. 
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The finite temperature phases may be studied with the help of the 

temperature dependent effective potential [8]. The high temperature 

approximation to this potential can be obtained by replacing 

u2 + u2(T) = p2 -+ oT2 

v2 + v2(T) = v2 - + .1T2 

in eq. (l), where o and T are positive functions of the gauge coupling 

constant and the quartic couplings of the Higgs fields. Using this 

effective potential, one concludes that the universe was in a SU(5) 

phase for temperatures higher than the critical temperature Tc, which is 

approximately u/fi and thus of order 10 l4 GeV. As the universe expands 

and cools below T 
C’ 

it passes into a SU(4) x U(1) phase and in the 

absence of fundamental Higgs fields finally settles into 

a SU(3) x SU(2) x U(1) phase. Although, this phase structure has been 

studied by many authors, they have ignored the presence of a fundamental 

representation of Higgs fields by assuming that they always develop 

small vacuum expectation values and therefore do not contribute to the 

phase structure at temperatures much greater than lo2 GeV. However, we 

show that for most of the values of the parameters in the potential this 

is not the case. 

To demonstrate this, we concentrate on the stability of 

SU(4) x U(1) phase in the presence of the fundamental Higgs fields. 

The vacuum expectation value of the adjoint Higgs fields in the 

SU(4) x U(1) phase has, at temperature T, the form 
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3Js c+ Lc2+3 
w(T) = 2 ( 

8 u2(T)(10a + 13b)]1'2 

10a + 13b 1 l 

In this phase, we write 

(11) 

(12) 

H = H4 [ 1 15 

where H4 is the 4-dimensional representation of SU(4) and Hl is the 

SU(4) singlet. After expanding the finite temperature effective 

potential about this vacuum expectation value, one finds that the H4 and 

Hl masses are given by 

-v2(T) + (a + & S)w2(T) +1 F(T) 
J20 

and 

4, = -v2(T> + (a +; 6)W2(T) - m W(T) 

(13d 

If either of these terms is negative then the SU(4) x U(1) phase is 

unstable under small perturbations in this direction. In eqs. (13) 

(13b) 

-v2(T) = -v2 + 2 1 rT2 = 1 rT2 > 0 
2 (14) 
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for T >> lo2 GeV. However, the hierarchy condition we have imposed for 

W(3) x SU(2) x U(1) in eq. (7) or (8) does not forbid < and/or m2 
4 H1 

from becoming negative. If we rewrite eqs. (13) using this hierarchy 

condition, they come 

4 
4 

= -v2(T) + [(& +ar(T))a + (’ + 2 r(T))S]w2(T) 

and 

2 

mH1 

= +QTj + [(a -"" r(T) )a + (4 - ; r(T) )B]w2(T) 

where r(T) 5 v/w(T). Thus, if a and f3 satisfy either 

(1 + G r(T))6 < - 20 (a + r(T))u 
JiT 

.. (16a) 

(15a> 

or 

(4 - t% r(T))B < -? (J8 r(T) - fi )a (16b) 
43 

then either 

well below T 

can be negative, respectively. For temperatures 

c, say T < 0.3Tc, w(T) N w(O) and we may replace r(T) by 

rO = r(0). The contours for r. for various ranges of a/b and u2b/c2 

are shown in fig. 1. For r = 1.1, which is a typical value, the regions 

given by the constraints eqs. (lo), (15a) and (15b) are shown in fig. 2. 

Region I violates constraint (10) and therefore is forbidden. 

Region II satisfies constraint (16a) and thus can be negative if the 



-lO- 

temperature satisfies 

T < (Ifll/T)1’2w(T) (17a) 

where f 1 = [(G + r(T))/J6] a + [(l + Jb r(T))/20]B while in the 

W(4) x U(1) phase. This negative mass term would cause the 

SU(4) x U(1) phase to unstable and indicates that the universe undergoes 

a phase transition to a SU(3) x U(1) phase -- not color and 

electromagnetism. 

In region III the constraint (16b) is satisfied and thus mL can 
H1 

become negative if the temperature satisfies 

T < (lf21/T)1'2w(T) (17b) 

where f 2 = [(n - J8 r(T))/n]a + [(4 - Ji; r(T))/516 while in the 

SU(4) x U(1) phase. This indicates that the universe has undergone a 

phase transition and is now a SU(4) phase. Region III has the largest 

opening angle, approximately 150", in the allowed part of the (a,fi) 

plane. Also note that if the parameters are chosen such that r. is 

larger (smaller) than 1.1, region III becomes larger (smaller). However 

r. must be larger than 1.0 or the SU(3)' x U(l)EM phase cannot be the 

global minimum. 

In region IV none of m2 H3' 4, and $1 
are negative at temperatures 

many orders of magnitude below Tc. So that in this region it is 

possible to have the Guth and Tye [9] phase transitions 
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SU(!) + SU(4) x U(1) + SU(3) x SU(2) x U(1) + SU(3) x U(1) . 

In the regions II, III and IV, for a given magnitude of a and p, X 

must be chosen such that the SU(3) x SU(2) x U(1) minimum is the global 

.minimum for temperatures much smaller than Tc but larger than 102 GeV. 

If X is chosen to be too small then this is not the case. In regions II 

and III an order of magnitude estimate for the smallest possible A is 

G[(]a12 + ]S]2)/(]a] + lb])] . Whereas in region IV, numerical 

calculations indicate that X in this region can be smaller than in the 

other regions before the SU(3) x SU(2) x U(1) minimum is no longer the 

global minimum above lo2 GeV. Of course, X must be larger than the 

fourth power of the gauge coupling otherwise gauge loop effects must be 

included. 
. 

Therefore, for a wide range of parameters in the potential, 

eq. (l), the SU(4) x U(1) phase goes into a SU(4) phase. In order to 

suppress monopole production one may further arrange parameters such 

that there is sufficient supercooling in the SU(4) phase. Then the 

phase structure of the early universe is 

SU(5) + SU(4) x u(1) + SU(4) + SU(3) x SU(2) x U(1) 

where the transition from SU(4) to SU(3) x SU(2) x U(1) is strongly 

first order. The major difference between this structure and the one 

proposed by Guth and Tye is that the supercooling takes place in SU(4) 

phase instead of the SU(4) x U(1) phase. The fundamental Higgs field 
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has a large (= 10 14 GeV) vacuum expectation value in this phase. This 

is allowed because the gauge hierarchy condition imposed for the 

SU(3) x SU(2) x U(1) phase is not the same as a similar gauge hierarchy 

condition for the SU(4) x U(1) phase. Therefore, it should be no 

surprise that the SU(4) x U(1) phase can be broken by the fundamental 

Higgs fields at a large temperature. 

As soon as the universe enters the SU(3) x SU(2) x U(1) phase the 

fundamental Higgs fields loose their non-zero vacuum expectation value 

until a temperature of IO2 GeV. Below this temperature the 

SU(3) x SU(2) x U(1) phase is weakly broken to SU(3)' x ~(1)~~ . 

Our scenario for the phase structure of the early universe affects 

monopole production in a major way. The SU(4) phase unlike the 

SU(4) x U(1) phase has no monopole-like solitons. Thus, any solitons 

that existed in the SU(4) x U(1) phase disappeared when the universe 

passed into the SU(4) phase. Since, there were no solitons available to 

seed the first order phase transition in the SU(4) phase, as Steinhardt 

[lo] has suggested for the SU(4) x U(1) solitons in the Guth and Tye 

scenario, there can be sufficient supercooling in the SU(4) phase. 

Guth and Weinberg [ll] have found that for the phase transition 

STJ(4) x u(1) + SU(3) x SU(2) x U(l), if there is enough supercooling so 

that the monopole production rate is strongly suppressed, the universe 

never percolates completely into the SU(3) x SU(2) x U(1) phase. 

Although a detailed calculation has not been performed for the bubble 

production rate which converts the SU(4) phase to the 

SU(3) x SU(2) x U(1) phase, we expect the same results as found by Guth 

and Weinberg. A similar phase tumbling phenomena in one of the 
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alternate grand unified models could possibly provide a solution to this 

problem. 

While this manuscript was being typed, we received a preprint by 

Kuzmin, Shaposhnikov and Tkachev [12] who also find an unusual symmetry 

structure in the SU(5) theory at high temperature. Their phase 

structure is different from ours because they impose the reflection 

symmetry @ + -@ in the Higgs potential and allow v to be of order 

1014 GeV. 
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TABLE I 

Possible symmetry breakings for Su(5) using an adjoint, 

@, and a fundamental, H, of Higgs fields. 

<@> = 0 <a> # 0 

<ID = 0 su( 5) SU(4) x U(1) 

SU(3) x SU(2) x U(1) 

. 
<ID # 0 SU(4) SN4) 

SU(3) x U(1) 

SU(2) x SU(2) x u(1) 
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FIGURE CAPTIONS 

Fig. 1. Minima of the potential for the adjoint Riggs system. The 

SU(4) x U(1) minimum and SU(3) x SU(2) x U(1) minimum are 

degenerate along the solid line I. To the right of solid line 

II there is no SU(4) x U(1) minimum. The dashed lines are 

contours of r 0' 

Fig. 2. Regions I through IV of parameter space for the coupling 

between the adjoint and fundamental Higgs using r = v/w = 1.1. 
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