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ABSTRACT . 

We extend the canonical commutation relations (CCR) in quantum mechanics 

to the case where appropriate dynamical variables are angular momenta and 

angles. It is found that projection operators of the resultant Weyl algebra 

provide us with a new and powerful way of characterizing minimum uncertainty 

states, including those obtained by Carruthers and Nieto. The uniqueness 

theorem of Schrodinger representation remains valid for extended CCR in a 

simple case. Finally, a wide range of applicability of our method is 

suggested. 
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1. Introduction 

The problem of quantizing a dynamical system, which is primarily 

described by angular momenta and angles, occurs in a number of cases in 

modern particle theories. The angular momenta mentioned here need not be 

taken literally, but may be understood in a much wider sense. They include 

dynamical variables corresponding to internal symmetries, whether they are 

represented by continuous groups or discrete ones, as far as some restric- 

tions are satisfied. It is well known that the Pauli's exclusion principle 

on certain types of fields (fermions) led Jordan and Wigner to propose anti- 

commutation relations for these fields, without seeking any deeper reasons 

for such algebraic re1ations.l It worked extremely well, as we know today 

from the partial success of quantum electrodynamics. Likewise, it is quite 

conceivable that some basic contraints from the internal symmetry and selec- 

tion rules can be dynamically described by simply-extending the conventional 

(anti-) commutation relations to appropriate ones. Our attempt to extend 

canonical commutation relations (CCR) to angular momentum-angle variables 

is motivated by this reason. It seems to be natural in view of the recent 

trend in particle physics where isospin groups or non-abelian gauge groups 

play a fundamental role.2 Indications for such an attempt are already im- 

plicit in the literature.3 It is important here to propose a reasonable CCR 

for non-Cartesian dynamical variables. This requires an extra insight into 

CCR, because the conventional CCR, [q, p] = i, applies only to a Cartesian 

coordinate q and conjugate momentum p, but not to general dynamical variables." 

This subject has been studied by a number of authors in connection with mini- 

mum uncertainty states, which minimize the uncertainty product of mutually 

conjugate variables.4 These states are particularly useful in clarifying 

physical meanings of CCR. They are as classical as possible. 
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The minimum uncertainty states or coherent states have been extensively 

applied to infrared problems in quantum electrodynamics.5 One also may be 

interested in finding a non-abelian analogue of coherent states by applying 

the method presented in this work. Indeed, there is an attemp to apply the 

similar technique to infrared problems of non-abelian gauge theories.6 

With these motivations in mind, we try to extend CCR to angular momentum- 

angle variables in Weyl form. This is the main theme of the present paper. 

Then we will present a novel method of characterizing minimum uncertainty 

states, which will be helpful in understanding the physical picture of ex- 

tended CCR. It is accomplished by finding suitable projection operators of 

Weyl algebra and was motivated by an earlier work of von Neumann.7 It seems 

to have a wide range of applicability. For the conventional CCR, the minimum 

uncertainty states are characterized as coherent states, i.e., eigenstates 

of the annihilation operator.B-12 However, the minimum uncertainty states 

for an extended CCR discussed in this paper are not to be confused with spin 

coherent states13 or generalized coherent states.14 These are not directly 

relevant to minimum uncertainty states considered here. We notice that 

they had been introduced earlier also by Mackey as the system of imprimi-' 

tivity for a given group representation. I5 Similar comments will apply to 

related works16 too, although most of them mentioned here are undoubtedly 

useful for our purpose. We restrict ourselves to systems with rotational 

degrees of freedom only. The application to more realistic cases has to be 

done subsequently. In Sec. 2, CCR for angular momenta and angles is set up 

in Weyl form for both abelian rotation group and SU(2). In Sec. 3, the 

Weyl algebra and some projection operators of conventional CCR are constructed 

at first. Then a corresponding analysis is done for an abelian rotation 

group. Unfortunately, a more interesting case of SU(2) will be left unsolved. 
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In Sec. 4, we study minimum uncertainty states for an extended CCR. In 

Sec. 5, we mention the uniqueness theorem of Schrodinger representation 

for extended CCR. Section 6 contains concluding remarks. 

2. Extended CCR in Weyl Form 

According to Weyl, the conventional CCR for one-dimensional quantum 

system is cast into the form:17 

S(a,B) 5 U(a) V(B) exp (-*a@)= exp(iai3) V(B) U(u) , (1) 

where U(a) Z exp(iap) and V(B) f exp(iBq) are one-parameter families of 

unitary operators and depend on real parameters c1 and B ranging from -a to 

+oo. We are interested in a system which has only a rotational degree of 

freedom around a fixed axis. Equation (1) suggests a straightforward 

generalization of CCR to this case in the form: 

S(a,R) E U(a) V(E) exp(-+a!.) = exp (*ai) V(R) U(a) , (2) 

where U(a) E (icrLz) and V(1) E [exp(i@)lR are families of unitary operators 

in a Hilbert space H. Here, Lz is an infinitesimal generator of rotations 

around a fixed (z-) axis. Equation (2) contains only exp(i$), but not 4 

itself, as a quantum angle variable and therefore does not cause difficulties 

related to periodicity. Parameters c1 and R are restricted to 0 < cx 5 2~, 

and R = 0, +l, +2, . . . , respectively. Equation (2) can be cast into a more 

familiar form by defining cos$ = [exp(i$) + exp(-i$)]/Z, etc.:18 

[Lz’ cos$] = i sin@ , 

(3) 
[LZ, sin.41 = -i co+ . 

The physical implications of Eq. (3) have been studied previously and no 

controversies were found.' So we shall assume it in the following. 

Equations (1) and (2) have a simple interpretation: the coordinates 
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exp(iBq)'and [exp(i$)]" are transformed under a finite unitary trans- 

formation U(u) into exp[iB(q+a)] and [exp(i@) exp(ia)]'l, respectively. 

By the same reasoning, one can expect to find the analogue of Eq. (2) when 

U(a) is replaced by a unitary rotation of SU(2). However, a naive replace- 

ment of V(L) in Eq. (2) by [exp(i@)]' [exp(iO)lm [exp(i$)ln, where 9, 0, 

and $ are quantum Euler angles, does not lead to any simple CCR for SU(2), 

if U(a) is one of SU(2) rotations. A very natural extension of Eq. (2) is 

obtained by observing that {V(R)jL = 0, +l, 22, . ..] constitutes a complete 

set of irreducible representations of the group {U(cl)lO 5 c1 2 27~). Thus, 

for the group SU(2), we make the following substitutions: 

U(u) + exp(iZ 4) z exp(iyJZ) exp(iBJy) exp(iaJZ) , 

V(E) + Dj(+W) mm' ' 

(4) 

and arrive at an extended CCR for SU(2) in a remarkably concise form: 

exp(iz l ?) Dj($B$) exp(-iz 03) Dj($e$)-l = &,,> , (5) 

where j = 0, l/2, 1, 312, . . . . The matrix DJ($O$) is expressed as a set of 

products of exp(i$/2), exp(i0/2), and exp(i$/2), which are quantum Euler 

angles. Specifically, Dj($0$) in Eq. (5) takes the form for j = l/2: 

exp[+(Q+$)l i 

( 
cos - exp[+($ -+>I sin- i 

D1/2 (OW) = l (5:) 

-ew[*(-$+$)I i sin- exp[-$ (4 ++>I 9 cos - .2 ) 
The right-hand side of Eq. (5) is no longer a simple phase factor, but 

. 
is expressed as DJ(af3y) in terms of c-number parameters ~1, B, and y. It 

is not difficult to see by expanding the left-hand side of Eq. (5) into 

power series that it is satisfied for j = l/2 by the Schrgdinger representa- 

tion for angle variables,lg i.e., 
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J ' 
Y = -IL 

sin4 a 
sin+ cot0 a + cos$ & + - - 1 , w sin8 a$ 

(6) . . 
Jz = a 

-% * 

Notice the close similarity of Eq. (5) with conventional CCR in Weyl form, 

Eq. (1). The extension of S(a,@) or S(a,a) can be defined as follows: 

s bd E Dj(af3~) (: 
-l/2 

mm' exp(iz l 3) Dj($O$)]mm, 

(7) 

= [ Dj(uf3~)~'~ Dj(+e$) exp(G l ;)I mm, 

in a matrix notation. From this, it is evident that the Weyl algebra, which 

is defined as a set consisting of all possible linear combinations of 

S(a,B), or S(cr,E>, etc., can be defined for a wide class of groups. How- 

ever, our analysis in the following sections is mainly devoted to a simpler 

case of abelian rotation group, Eq. (2). 

Before concluding this section, we remark that the explicit form of 

CCR for SU(2) is given here for the first time, although a group theoretical 

generalization of CCR has been attempted by Mackey in a fairly general 

context.15 

3. Projection Operators of Weyl Algebra 

Let us assume that the physical quantities are represented by self- 

adjoint operators of the algebra defined in a previous section. 17,20 

The equation of motion for observables can be set up by giving a Hamiltonian 

of the system as an element of the algebra. Our analysis in the following 

is, however, independent of an explicit form of Hamiltonian. As we shall 

see, the true physical merit of this approach becomes clear when minimum 

uncertainty states for Eqs. (1) and (2) are considered. The central idea is 

not new, but little known. So we first discuss the conventional CCR and its 



-7- 

minimum uncertainty states in the new light. Let us recall that, for 

E4,Pl = i, minimum uncertainty states which satisfy Aq l Ap = l/2 are 

represented by Gaussian wave functions and may be characterized in several 

different ways. Indeed, they have been extensively studied as coherent 

states. Yet there is an alternative way of characterizing them. To see 

this, following von Neumann, let us define a Hermitian operator:7 

co 

1 
Eo=!G - /I da dB 50(a,8) ,S(a,B) , 

-co 

where Fo(a,B) = exp[-(a2 + B2)/4]. By using a composition rule for 

S(~,B), which follows from Eq. (1): 

S(a,B) S(a',B') = exp 
[' 
-$(a@'-a'B) 1 s(a+a',B+B') , 

it is possible to show that 

E; = E. , + 
Eo=Eo: ._ 

(8) 

(9) 

(10) 

So, E. is a projection operator of Weyl algebra for (1). If the Schrodinger 

representation (p = -id/dq) is assumed in S(a,B), then for any function 

f(q) of q, we have 

S(a,B) f(q) = exp[iB(q + 9>] f(q+d - (11) 

Now, let us suppose that f(q) is an eigenfunction of Eo. Its eigenvalue 

must be equal to one, because E. is a projection operator. The equation 

Eof(q) = f(q) means, after normalization, 

f(q) = IT-~/~ exp(-q2/2) . (12) 

It represents, therefore, one of minimum uncertainty states. This observa- 

tion due to von Neumann is quite remarkable and prompts us to see whether 

similar projection operators to minimum uncertainty states can be found for 

Weyl algebra of extended CCR like Eq. (2) or Eq. (5). Before answering 
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this question, let us study the case of conventional CCR a little further. 

Our observations are summarized as follows: 

(I) By explicit calculation, it is relatively easy to show that the weight 

function: 

<(a,B) = exp[-$(nu'+ $)+ i(-av + Ru)] 

gives a projection operator for arbitrary real values of u, v, and 11 (TJ Z 0). 

The corresponding eigenfunction in Schrgdinger representation is written as 

f ,,,(q) = S(u,v) f. o(4) , , 
(14) 

where fO,O(q) = (?-~/a)"~ exp(-nq2/2) represents a minimum uncertainty 

state. Equation (14) is nothing but a well-known expression for coherent 

state wave functions, which are characterized by a pair of real variables 

u and v (n is assumed to be fixed). So, all coherent states are reproduced 

by choosing simple weight functions as (13). 
. 

(II) It is also possible to find out an alternative family of projection 

operators. Let us choose SO(a,B) = exp(-p), Sl(a,O) = (1 - 2p) exp(-p), 

E2b'B) = (1 - 4p + 2p2) exp(-p), . . . , where p - (a2 + S2)/4. These weight 

functions give through Eq. (8) a series of mutually orthogonal projection 

operators Eo, El, E2, . . . . Eigenfunctions of these operators are identical 

to harmonic oscillator wave functions (up to multiplicative constants) 

exp(-q2/2) H,(q) with n = 0, 1, 2, . . . , where H,(q) E exp(q2)(-d/dq)n.exp(-q2) 

Although we are not yet successful in obtaining all Si(u,8) .for Ei in a 

closed form, there is no doubt that an infinite series Eo, El, E2, . . . , 

exists and their eigenfunctions span the entire Hilbert space. 

Thus it is evident that, corresponding to a choice of complete system 

of bases in Hilbert space, there exists a freedom in choosing the set of 
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projection operators. It is known that for those bases discussed in (I), 

no two of which are mutually orthogonal, whereas bases in (II) are mutually 

orthogonal. In case (II), the minimum uncertainty state is reproduced only 

for Eo. Therefore, as a means of characterizing all possible minimum un- 

certainty states of conventional CCR, the expression (13) is superior to 

those given in (II). 

Following the same way, we are led to find an analogue of Eq. (13) for 

angular momentum-angle commutation relations. If it exists, then it may 

correspond to a state which is as classical as possible. So, let us turn 

our attention to the algebra generated by S(a,a) of Eq. (2). We denote the 

projection'operator of this algebra by E and write it as follows: 

E 
1 O" 21T 

=----- 
2TT CJ da S(a,t) S(a,a> - 

g.=-m .O 
(15) 

Then, conditions E+ = E, E2 = E, imply 

E*(%Q = SC-a,41 , 

<(cl k 2lT,R) = (-l)% S(a,R) , (16) 

S(a,R) = $y 2 / 
2Tr 

k=srn ' 
dB exppt(ak - @L)] <(a-B,R-k) S(B,k) . 

In deriving the second equation of (16), a periodicity condition with 

respect to a was applied to the integrand of Eq. (15). One solution of 

Eq. (16) can be expressed in terms of modified Bessel functions as follows: 

C(a,R) = 
IR[2c cos(u/2) - 2ic' sin(cr/2)] 

IO (2c) 
__ .-ima + iJ?,+ 

, (17) 

where c and c' are arbitrary real constants, m = 0, tl, k2, . . . , and 

-IT 5 $J L Tr. This is most easily verified by employing an integral repre- 

sentation for IR(x), i.e.,21 
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2n 

qp = & J de e i&e + x c0se . 
0 

(18) 

Projection operators for a more interesting case of SU(2), Eq. (7), are 

as yet unavailable. In the next section, we study properties of the 

solution (17). 

4. Minimum Uncertainty States 

Let us assume the Schrsdinger representation for angle variable (i.e., 

Lz = -i d/d+) in S(a,a). Then the eigenfunction of projection operator 

with the weight function (17) is written as 

f+,m ($1 = S($,m> f. ,(@I , , (19) 

where 

fo,o($) = [2T Io(2c)]-1'2 exp(c cos$ + ic' sin$) , (20) 
. 

including a normalization factor. Equation (19) should be compared with 

Eq. (14) of conventional CCR. Furthermore, we notice that the expression 

(19) with c' = 0, and $ = 0 or +~r/2,.represents an exactly same state that 

was obtained by Carruthers and Nieto as the minimum uncertainty state of 

Eq. (3). Indeed, by defining as usual (ALz)2 = (Li) - (Lzj2, etc., it is 

easily confirmed for f * ,,w cc ' = 0) that 

(ALz) 2 (A cos@)2/+in$)2 = -$ (* = 0) , 

(21) 
(ALz12(A sin$)2/(c0s$j2 = $ (I+;). 

Figure 1 shows the weight function c(a,R) and the corresponding eigen- 

function fo,O ($I) for the choice c' = 0, c = 1, which has an expansion 

around + = 0: 
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(22) 

For comparison's sake, we also show S,(a,B) and the eigenfunction of 

EO' whose expansion around q = 0 is given by 

f(q) = lT-1'4 
( 

l-<+$- . . . 
) 

. (23) 

The similarity of these two cases is rather impressive. This is also true for 

the formal aspect of Eq. (17) with c' = 0 as compared with Eq. (13). Equation 

(19) with c' = 0 clearly exhausts all possible minimum uncertainty states 

for Eq. (2). By recalling the argument of the previous section, we find 

that there is a family of simple projection operators of Weyl algebra which 

reproduces all possible minimum uncertainty states. However, it is not yet 

clear whether this situation persists in the SU(2) case. In some cases, 

the Weyl algebra contains only a finite number of independent unitary 

operator bases. This happens when the group {U(o)) is actually a finite 

group. Beautiful examples of prime order groups have been studied by 

Schwinger in a series of papers.22 Even in these cases, our algebraic 

method will be useful in decomposing the Weyl algebra into its irreducible 

constituents, which replace minimum uncertainty states. Apparently, it may 

not be possible to characterize them as states which are as classical as 

possible. 

5. Uniqueness of Schradinger Representation 

In deriving Eqs. (19) to (22), we assumed the Schrudinger representa- 

tion of extended CCR(2) for angle variable, i.e., Lz = -id/d@. According 

to a well-known theorem of Stone and von Neumann, the Schrodinger repre-! 

sentation of CCR(l) is both unique and irreducible.23 It is interesting 
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to know whether a similar theorem is valid in our case. By following a 

parallel way with the original proof, it is not difficult to see that this 

is actually the case.24 The only difference in the present case is that 

possible values of parameters c1 and R are restricted to 0 < c1 I 2~r and 

R = 0, tl, ?2, . . . , respectively, in contrast to c1 and B of Eq. (1) 

which can take all real values from -a to +J. Consequently, the projection 

operator (15) with the weight function (17) (c' = 0) is different from (8). 

However, the key point is that eigenfunctions of both projection operators 

are one-dimensional in Schrtidinger representation, as are indicated in 

Eqs. (12) and (20). Namely, they admit only one linearly-independent 

function as eigenfunction. This implies that the SchrSdinger representation 

is irreducible for (2) too. In contrast, if eigenfunctions of projection 

operator (15) span a multi-dimensional space, it is shown that the repre- 

sentation is then a direct sum of finite or countably infinite number of 

irreducible representations, each one of which is equivalent to the Schradinger 

representation. We emphasize that these arguments were made possible only 

by an explicit use of the projection operator (15), which replaces Eq. (8) in 

our case. The advantage of this way of proving the above-mentioned theorem 

lies in the fact that it is related to the minimum uncertainty states for 

angular momentum-angle commutation relations, and therefore the parallelism 

with the conventional way is easier to understand. We remark that (I) the 

uniqueness theorem discussed here is related to a more general theorem due 

to Mackey, (II) we proved it in Ref. 24 only for a special case. 

6. Concluding Remarks 

In previous sections, we learned that CCR can be extended to very 

general cases in Weyl form. Furthermore, the resultant Weyl algebra is 
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found to,give a novel way of characterizing minimum uncertainty states, not 

only for the conventional CCR, but also for angular momentum-angle CCR cor- 

responding to an abelian rotation group. These properties were confirmed 

by explicit constructions. If the method described here is applied to 

systems with many (or infinite) degrees of freedom, it will be particularly 

suitable in studying semiclassical aspects of field theories which have 

global internal symmetries. 
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FIGURE CAPTION 

Fig. 1. The weight function c(cx,!L) of the projection operator (15) is 

shown in (a) as a function of c1 and R, with the choice c = 1, 

C '=m=$= 0, R= 0, 1, 2, 3 (solid lines). Dotted curves show 

S,(cr,B) with B = 0, 1, 2, 3 (from above to below in this order) 

for comparison's sake. The corresponding eigenfunction (20) 

[(12)] of the projection operator is shown in (b) by a solid 

(dotted) curve. The abscissa in (b) refers to 4 (or q). 
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