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I. INTRODUCTION 

Multivariate analysis can be thought of as a methodology 
. 

for detection, description and validation of structure in p- 

dimensional (p> 1) point clouds. Classical multivariate analy- 

sis relies on the assumption that the observations forming the 

point cloud(s) have a Gaussian distribution. All information 

about structure is then contained in the means and covariance 

matrices, and the well-known apparatus for estimation and in- 

ference in parametric families can be brought to bear. The un- 

comfortable ingredient in this approach is the Gaussianity as- 

sumption. The data may be Gaussian with occasional outliers 

or even the bulk of the data simply might not conform to a 

Gaussian distribution. The first case is the subject of robust 

statistics and is not treated here. We discuss methods that 

do not involve any distributional assumptions. In this case, 
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structure cannot be perceived by looking at a set of estimated 

parameters. An obvious remedy is to look at the data them- 

selves, at the p-dimensional point cloud(s), and to base the 

description of structure on those views. As perception in 

more than three dimensions is difficult, the dimensionality of 

the data first has to be reduced, most simply by projection. 

Projection of the data generally implies loss of information. 

As a consequence, multivariate structure does not usually show 

up in all projections, and no single projection might contain 

all the information. These points are further illustrated in 

Chapter 2. It is therefore important to judiciously choose 

the set of projections on which the model of the structure is 

to be based. This is the goal of projection pursuit proce- 

dures. A paradigm for multivariate analysis based on these 

ideas is presented in Chapter 3. . . 

By design, projection pursuit methods are ideally suited 

for implementation or interactive computer graphics systems. 

The potential of interaction between user and algorithm was 

convincingly demonstrated in the PRIM-9 system for detection 

of hypersurfaces and clustering (see Fisherkeller et al [1974]); 

this system is discussed in Chapter 4. Procedures for multiple 

regression and multivariate density estimation based on pro- 

jection pursuit are outlined in Chapters 5 and 6. Common pro- 

perties of all projection pursuit procedures are discus-sed in 

Chapter 7. 

2. DETECTION AND DESCRIPTION OF 

STRUCTURE WITH PROJECTIONS 

Our goal is to detect and describe multivariate structure 

using projections of the data. However, structure, if present, 
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Fig. 1 Structured point cloud in two dimensions 

may not be apparent in all projections. This is illustrated 

by the following examples. Figure 1 shows -a point--sample 

drawn from a bivariate distribution. The apparent structure 

of the point cloud (separation into two clusters) would be re- 

vealed by projection onto the subspace spanned by the vector 
. 

(1, -11, whereas no structure would be apparent i.n a projec- 

tion on the subspace spanned by the vector (1, 1). 

The data for Figure 2 are generated from the regression 

modelY=X +X2+Ewith(X1, 1 X2) uniformly distributed in 

[-I,11 x [-l,l] and E-N(O,O.Ol). Figure 2a shows a projec- 

tion on the two-dimensional subspace spanned by Y and' the 

linear combination Z = Xl + X . 
2 

This projection clearly 

shows the association between the predictors X 1 and X 2 and 

the response Y. A similar plot with Z = Xl - X2, Figure 2b, 

is clearly less structured. 
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Fig. 2. (a) Projection of data from model Y=Xl+X2+E on 
plane spanned by i and Z=Xl+X2. (Y is plotted on the vertical 
axis). (b) Projection of data from model Y=X1+X2+E on plane 

spanned by Y and Z=X1-X2. 
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These examples show that it is important to search for 

structured projections. This process is called projection 

pursuit. 

It is easy to envision situations where not all the infor- 

mation about the structure is contained in a single projection 

Consider the regression example above but with Y = Xl. X2 + 6. 

Figures 3a and 3b show two projections with Za = Xl - X2 and 

Zb * x1 + x2. To understand the pictures, note that the sim- 

ple coordinate transformation Za = Xl + X2, Zb = Xl - X2 

allows one to express the response as Y = .25 (Z 2 
a - Zi). It 

is also interesting to notice that the quadratic dependence 

on Z a is washed out due to variability caused by the depend- 

ence on Z b' and vice versa. This suggests that once a struc- 

tured projection has been found, the structure should be re- 

moved so that one obtains a clearer view of- what has not yet 

been uncovered. 
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Fig. 3. (a) Projection of data from model Y=Xl . X2+E on 

plane spanned by Y and Z,=Xl+X*. (b) Projection of data 
from model Y=Xl . X2+E on plane spanned by Y and Z,,=Xl-X2. 
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3. A PROJECTION PURSUIT PARADIGM 

The discussion in the previous section motivates the fol- 

lowing schema for a class of procedures modeling structure in 

multivariate data: 

(i) Choose an initial model. 

Repeat 

(ii) Find a projection that shows deviation of the 

data from the current model, indicating pre- 

viously undetected structure (Projection Pursuit). 

(iii) Change the model to incorporate the structure 

found in (ii) (Model Update). 

Until the current model agrees with the data in all pro- 

jections. 

-Such projection pursuit procedures can be implemented in 

batch mode. In this case, a figure of merit must be defined, 

which measures the amount of deviation between model and data 

revealed in a projection. This figure of merit usually is 

optimized by numerical search, although in some simple cases 

optimization can be done analytically. If the optimum figure 

of merit is less than a threshold, data and model are said to 

agree. Batch implementations of projection pursuit regression 

and density'estimation are described in Sections 5 and 6. 

By construction, projection pursuit procedures are ideally 

suited for implementation on interactive computer graphics 

systems. Interaction between program and user can help in 

- search for interesting projections 

- specification of model update 

- termination 

- interpretation of structure. 
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Although projection pursuit procedures are useful in batch 

mode, their full power comes to bear in an interactive envi- 

ronment. 

4. THE PRIM-9 SYSTEM 

PRIM-9 (Fisherkeller et al, [1974]) is a system for vis- 

ual inspection of up to nine-dimensional data, mainly intended 

for detecting clusters and hypersurfaces. It was implemented 

on an interactive computer graphics system which allows the 

modification of pictures in real time and thus makes it pos- 

sible to generate movie-like effects. Its basic set of oper- 

ations consists of 

Projection: The observations can be projected on a sub- 

space spanned by any pair of the coordinates; the pro- 

jection is shown on a CRT screen. 

Rotation: A subspace spanned by any two of the‘coordin- 

ates can be rotated. If the projection subspace and the 

rotation subspace share a common coordinate, the rota- 

tional motion causes the user to perceive a spatial pic- 

ture of the data as projected on the three-dimensional 

subspace defined by the coordinates involved. When the 

user terminates rotation in a particular plane, the old 

coordinates in that plane are replaced by the current (ro- 

tated) coordinates. This makes it possible to look at 

completely arbitrary projections of the data, not neces- 

sarily tied to the original coordinates. 

Masking: Subregions of the p-dimensional observation 

space can be specified, and only points inside the sub- 

region are displayed. Under rotation, points will enter 

and leave the masked region. 
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Isolation : points that are masked out (l.c., not visible) 

can be removed, thus splitting the data into two subsets. 
'_ 
The first two operations, projection and rotation, allow 

the user to perform what one might call "manual projection 

pursuit". Isolation, the splitting of the data set into sub- 

sets, provides a rudimentary form of structure removal. When 

clustering is detected, the clusters can be separated and 

each of them examined individually. This process can be 

iterated. 

Although several have been implemented (Stuetzle & Thoma 

[19781. Donoho et al [1981]), systems like PRIM-9 have not 

yet found widespread use. The main reason has been the price 

of the necessary computing equipment. The processing power 

needed to compute rotations at a reasonable update rate is 

quite high (on the order of 60000 multiplications per second 

for 1000 observations and 10 updates of the picture per 

second). Another major cost has been the graphics device, 

which must have a sufficiently high bandwidth (typically a 

megabaud). The situation, however, is rapidly changing. New 

lb-bit microprocessors provide a speed close to that required 

for an interactive use of projection pursuit procedures. The 

price of graphics systems, especially raster scan devices, is 

falling dramatically. The graphics system at SLAC used for 

the implementation of PRIM-9 cost $175,000 in 1967. ToPay 

the price of a comparable system is $15,000. 

5. PROJECTION PURSUIT REGRESSION (PPR) 

The goal of regression analysis is to find and describe 

the association between a response variable Y and predictor 

variables X 1 . ..X 
P' 

using a sample C(y,,~,)~~=,. PPR attempts 
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to construct a model for this association (or, in more classi- 

cal terms, to estimate E(Ylr)) f rom the information contained 

in projections of the data on two-dimensional subspaces span- 

ned by Y and a linear combination Z = cr. X. - - The algorithm 

exactly follows our projection pursuit paradigm: 

(I) Choose an initial model, for example m,(s) = const. 

Repeat 

(ii) Find a projection that shows deviation of the data 

from the model, i.e., find a direction such that 

the current residuals, r i=Yi-dXi), show a depend- 

ence on Z=iy . X - - 

(iii) Describe this dependence by a smooth function s(Z). 

Update the model: 

m(x) + m(x) f s(a . X> - 

IJntil data and model agree in all projections. . 

The model after M iterations has the form 

M 
m(x) = m,(x) + 2 

m-l 
Sm(Em * g. (1) 

PPR allows the modeling of smooth but otherwise completely 

general regression surfaces. So far, a batch version has 

been implemented. Such an implementation requires the speci- 

fication 0f.a figure of merit for projections and a method 

for summarizing a smooth dependence ("smoother"). Smoothing 

is generally accomplished by local averaging; the value of 

the smooth s at a particular point z is obtained by averaging 

the current residuals r i for those observations with values 

of z i close to z. The size of the neighborhoods within which 

averaging takes place is called the bandwidth of the smoother. 

A smoother suitable for use with PPR and guidelines for choos- 

ing the bandwidth are described and discussed in Friedman and 

Stuetzle (1981). 
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A choice for the figure of merit is suggested by figures 

2a and 2b. The (inverse) figure of merit is taken to be the 

residual sum of squares around the smooth of the current re- 

siduals versus CY. X. - - It is small in Figure 2a, where the 

smooth could closely follow the observations, and large in 

Figure 2b, where the smooth would be roughly constant. This 

definition of the figure of merit implies that in each iter- 

ation the model is updated along the direction for which the 

update yields the biggest reduction in residual sum of squa-es. 

As with any stepwise procedure, one needs a criterion for 

stopping the iteration. Stopping too soon can increase the 

bias of the estimate, while not stopping soon enough can un- 

duly increase its variance. "Optimal" termination of step- 

wise procedures has been studies (see Stone, [1981]); these 

methods can be applied here. In practice, -the iteration is 

usually terminated subjectively, based on differences between 

successive values of the residual sum of squares. In additin, 

graphical inspection of s (o . m --m X> can be used to judge whether 

the corresponding term should be included in the model. If 

the graph of s m shows a noisy pattern with no systematic ten- 

dency, then its inclusion can only increase the variability 

of the estimate. On the other hand, a definite dependence in 

dicates that sm deals with an inadequacy of the present model. 

The following example illustrates the operation of PPR. A 

sample of 200 observations was generated according to the 

model 

Y = 10 sin(nXlX2) + 20(X3-0.5)L + tOX4+5X5+OX6+E 

with (Xl,..., X6) uniformly distributed in [-1,116 and E-N(O,l). 

Figure 4a shows Y plotted against the best single predictor, 
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x4' and the corresponding smooth. (The response Y is plotted 

on the vertical axis, X 4 on the horizontal axis. The "+" 
. . 

symbols represent data points, numbers indicated more than 1 

data point. The smooth is represented by the u*" symbols.) 

Figure 4b shows Y plotted against the linear combination Es X 

found in the first iteration with cyl = (0.41, 0.51, -0.04, 

0.69, 0.31, 0.0). The association is seen to be approximaa?ly 

linear. The model after the first iteration thus is a plane 

which, in this case, closely coincides with the least squares 

plane'through the data. Figure 4c shows the residuals from 

this model plotted against the second linear combination s2.X 

found by the algorithm, with Cy2 = (-0.14, 0.0, 0.99, 0.04, 

0.0, -0.03). This iteration is seen to incorporate the quad- 

ratk dependence of the response on X3 into the model. Fig- 

ure 4d shows the residuals after two iterations plotted 

against the third linear combination with cy -3 = (.0.70, 0.72, 

0.01, 0.03, 0.02, 0.00). Figure 4e shows the residuals after 

three iterations plotted against the fourth linear combin- 

ation, with CY -4 = (0.80, -0.59, -0.10, 0.04, 0.01, 0.0). 

The last two iterations are seen to model the interaction 

term sin(nX1X2). A further iteration failed to substantial 

ly improve the model. 

For a more complete discussion of PPR and additional ex- 

amples, see Friedman and Stuetzle [1981]. 
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Fig. 4. (a)Scatterplot of Y vs. X 4' (b) Scatterplot of Y vs. 

(Y,*X. (c) Scatterplot of Y - sl(cyl.X) vs. cY,.X. (d) Scatter- 

plot of Y - sl(cxl.~> - s2(CY2.~> vs. cy3.x. (e) Scatterplot of 

y - sl(cyl.g - s2b2.g - sp3.g vs. ‘y4.&. 
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6. PROJECTION PURSUIT DENSITY ESTIMATION (PPDE) 
. 

The goal of density estimation is to estimate the multi- 

variate distribution of a random vector X on the basis of an - 

i.i.d. sample x -l"'li,* Our procedure again follows the pro- 

jection pursuit paradigm: 

(I) Choose an initial model for the density, for example, 

m. = multivariate normal with sample mean and covariance mat- 

rix. 

Repeat 

(ii) Find a project ion that shows dev iation of the data 

from the model; i.e., find a direction such that 

mCcu . &>, - the model marginal along K, differs from 

P(cy - 21, the (estimated) data marginal along g. 

(iii) Define an "augmenting function" f(cr .X) as the - 

quotient of data and model marginals 
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f(cu . X) - P((Y. Xl 

ZgqT 

. . Update the model so that it and the data agree in 

the marginal along u: 

m(Z) + m(Z) - f(cy . X) * 

Until data and model agree in all projections. 

The model after M steps of the iteration is of the form 

M 
m(&) = m,(x) -,fl f (cu . 5). 

m --m (2) 

In step (iii) of the algorithm, the marginal of the data 

along Cy must be estimated and the marginal of the current 

model must be computed. The data marginal presents no prob- 

lem. It can be estimated by projecting the data onto z and 

using a one-dimensional kernel or near neighbor estimate. 

The analytic computation of the model marginal can be very 

difficult because it requires a (p-1)-dimensional integration 

We perform the integration by Monte Carlo, generating a sample 

from the model and proceeding as in the estimation of the 

data marginal. 

As in the case of PPR, only a batch version of PPDE has 

so far been implemented. At each iteration, the direction y 

is chosen such that the update of the current model yields 

the largest improvement in goodness-of-fit as measured by the 

likelihood of the sample. Termination rules are analogous to 

those used in PPR. 

The following example illustrates the operation of PPDE. 

The data for the example are the concentration levels of four 

hormones in blood measurements of 256 children. The purpose 

of applying PPDE to these data is to determine if a Gaussian 

distribution represents a reasonable approximation to the 
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data density. Figures 5a-Sd compare the experimental data to 

a Monte Carlo sample drawn from a Gaussian density with the 
'. 

sample mean and covariance, as projected onto each of the mea- 

surement coordinates. The histogram of the experimental data 

is drawn with solid lines; the histogram of the Monte Carlo 

data is indicated by u*" symbols. Inspection of these projec- 

tions indicates that although there are possibly some discrep- 

ancies, a Gaussian density might be a reasonable approximation 

to the data. 

Figures 6a-6e show results for three iterations of PPDE. 

The solution direction ~1 associated with the first iteration 

is mainly a combination of the second and third coordinate mea- 

surements. The data distribution (Figure 6a) is seen to be 

somewhat skew and more peaked than the corresponding Gaussian. 

The discrepancy between the data and the Gaussian mo&el is 

much more pronounced in this projection than on any of the 

original coordinate measurements. Figure 6b plots the augment- 

ing function fl(sl . X). -_ 

The second linear combination ~~ mainly involves the third 

and fourth coordinates. The principal difference between the 

current model p (X) and the data is seen l- to be a substantial 

skewness to the left (Figure 6~). Figure 6d shows the corres- 

ponding augmenting function f2. The linear combination associ- 

ated with the third projection mostly involves the first. and 

second coordinates. Although this iteration is trying to 

account for an apparent additional skewness of the data (Figure 

be), the effect is seen to be relatively small and perhaps not 

significant. 
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Fig. 5. (a) Hormone data: Histogram of variable 1 with 
Gaussian Monte Carlo superimposed. (b) Hormone data: Histogram 
of variable 2 with Gaussian Monte Carlo superimposed. 
mone data: 

(c) Hor- 
Histogram of variable 3 with Gaussian Monte Carlo 

superimposed. (d) Hormone data: Histogram of variable 4 with 
Gaussian Monte Carlo superimposed. 
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(bT Augmenting function along 1st solution linear 

solution line r a 
(0.02,0.80,-0.59,0.14). (c) Histogram of 2nd so- 
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second linear combination u -( 0.09,0.18,-0.45,-0.87). 
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DATA AND CURRENT M0DEL PRBJtmCTI0NS 

Fig. 6e. 

Application of PPDE to these data reveals that a.'Gaussian 

model provides a considerably less adequate description than 

indicated by the coordinate projections alone. The associated 

graphics gives some insight into the nature of the nonnormality 

of the data. 

7. DISCUSSION 

A1.1 projection pursuit procedures share some common advan- 

tages: 

- Since all estimation is carried out in a univariate setting, 

the large bias of kernel or near neighbor estimates in high 

dimensions can often be avoided. 

- PP procedures do not require specification of a metric in 

the observation space. 

-- Bias is encountered with stepwise procedures when many terms 

are required to provide a good representation of the model 
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underlying the data, but only a few can be estimated due to 

insufficient sample size. In these cases, it is important 

that the first few terms be able to approximate a wide 

variety of functions so that the most salient features of 

the data can be modeled. In the limit M -, co, any regres- 

sion function can be represented by (l), and any density 

can be represented by (2) (independent of the initial modelA 

but even for moderate M, functions of those types constitute 

rich classes. In addition, the choice of the initial model 

permits the user to introduce any knowledge (s)he may have 

concerning the data, thereby allowing a further reduction 

in bias. 

- As a data-analytic tool, projection pursuit procedures pro- 

vide a set of directions Q -1"'SM for exploring the differ- 

ences between the initial model and the data. The fact that 

at each stage the direction is chosen, for which the currert 

model least adequately describes the data, :nakes them good 

candidates for that purpose. A graphical comparison of the 

projections of model and data, along with knowledge of the 

initial model, can yield considerable insight into the mul- 

tivariate data distribution. Pictorial representations of 

each of the augmenting functions sm, respectively fm, along 

with the particular directions over which they vary, can 

also be quite informative since it is these functions that 

actually comprise the model. 

There are situations in which projection pursuit proced- 

ures can be expected not to perform well. Examples of regres- 

sion functions requiring a large number of terms in equation 

!I> are those with multiple peaks. Examples of unfavorable 

density functions are those with highly concave isoplctl's or 



with sperically nested isopleths of the same de: sity value. 

In addition to regression and density estimation, the pro- 

jection pursuit paradigm can be applied to the problems of 

classification and robust estimation of covariance matrices. 

All projection pursuit procedures use the same set of basic 

operations, projection pursuit and model update. This should 

allow the design of an interactive system for analysis of mul- 

tivariate data that covers a wide range of probl.ems and yet is 

easy to learn and simple to operate. 
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