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ABSTRACT 

A conjecture, motivated by plausible physical arguments, is presented, 

from which is derived a scattering theory for QED based entirely on gauge 

invariant local fields. The conjecture is shown to be a natural extrapola- 

tion of results of Araki and Haag, and models are considered which indicate 

that the resulting scattering theory is free of the infrared problems 

usually associated with QED scattering theory. The unsolved problems of 

proving the conjecture and of obtaining a practical calculation scheme are 

discussed. 
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1. Introduction 

A field theory has more predictive power than an S-matrix theory. 

QED, for example, can be applied at finite temperatures or, to some extent, 

at the level of classical correspondence, yielding in either case predic- 

tions outside of scattering theory. Thus, scattering theory is just one 

of field theory's many interesting consequences. 

The above viewpoint is blemished if the field theory of interest is 

less than satisfactory. Such is the case for QED as typically formulated, 

which lacks some of the following desirable properties: gauge invariance, 

Lorentz invariance, locality, and positive-definite metric. These desirable 

properties may be retained if we restrict our attention to the local gauge- 

invariant fields, which presumably yield a perfectly acceptable Wightman 

field theory. This rescues the above viewpoint, but leaves us with the 

problem of constructing scattering theory without the fields I/J and Au at 

our disposal. To solve this problem we present a conjecture from which 

follows a derivation of scattering theory from the theory of local observ- 

ables associated with QED. Our results have both advantages and disadvan- 

tages compared to the usual (.LSZ) approach of constructing scattering 

states from asymptotic limits of unobservable fields. The advantages are: 

1. Conceptual superiority: scattering probabilities are obtained 

from a dynamical theory of observables rather than from gauge non- 

invariants in a conceptually unjustified manner. Gauge invariance is 

manifest from the outset and does not require subsequent verification. 

2. Simplicity: The various constructs presently used to deal with 

the infrared problem -- e.g., infrared cutoffs, Coulomb phase factors, 

soft photon radiation damping factors, and non-Fock phase space 
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summations -- are entirely avoided. Furthermore, it is not necessary to 

consider different gauges, nonlocal fields, indefinite metrics, or the 

difficult to construct and Lorentz noninvariant15y8 charged sectors. 

The disadvantages are: 

1. Although we argue that the conjecture is plausible, we do not 

prove it. 

2. Although our results are in principle as widely applicable as 

the LSZ approach, they are in practice cumbersome to a degree which depends 

mainly on the initial state. To make our results competitive in a prac- 

tical sense requires the solution of a deep problem which is discussed in 

Section IV. However, the benefits of solving this problem could extend 

far beyond scattering theory.16 

We proceed as follows. In Section II we present the conjecture and 

-show how it may be used to obtain scattering probabilities. In Section III 

we argue that the conjecture is plausible. [This will mostly involve the 

consideration of the various infrared difficulties which arise in the LSZ 

approach.] In Section IV we consider the disadvantages of our approach 

and discuss how they might be overcome. 

Notation: Our metric is -+i-t. Covariant normalizations are used. 

In particular, instead of d; we use dp: d$/(2a)32p0, where p" = 

m being the mass of whatever particle is relevant. Given a function f 

of momentum and a region n in momentum space, f(D) z s dp f(p). Finally, 
R 

if Aj is a collection of commuting self-adjoint operators and X. is 
J 

a collection of real numbers, E(A. 
J 

= Xj) denotes the projection operator 

onto the space of states $ satisfying Aj $ = Xj$. 



-4- 

2. The Conjecture and QED Scattering Theory 

[As will soon be clear, I have in what follows frequently chosen to 

sacrifice correctness for brevity. In particular, distributions are some- 

times smeared with inappropriate functions and the domains of unbounded 

operators are never considered. I do not feel that these defects are 

crucial.] 

Our conjecture consists of two parts. The first is that there exist 

number operators which we think of as counting outgoing leptons (electrons 

and positrons). Specifically, we assume the existence of operators 

nyut(p), i = 1,...,4, satisfying 

(a) npUt ' = nqUt 

(b) nytlO) = 0 

(c) for any region fi in momentum space, the spectrum of ni Out (s-22) 

is the nonnegative integers 

(d) [nyt(p), nyut(q)l = 0 

(4 a regularity condition (described below). 

The second part of our conjecture gives meaning to the number oper- 

ators by relating them to local observables. Let Tu" , Jv, and Miv denote 

respectively the energy-momentum tensor, the electric current, and the 

angular-momentum current. Let h: IR3 -+ IR1 denote an arbitrary smooth 

function with support inside the unit ball. Then we conjecture that 

lim fis h $ Tu'(t,z) 
t-too 0 

= Jz h(f--) pi-l [nTut(p) + niut(p) + n;ut(p) + niut(p)l Cl.4 
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,jlg j-k h (;) J'(t,;) 

= Jz h(-f-) e [nyt(p) + niut(p) - niut(p) - niut(p)] (lab) 

= Jq h ($--i [nyut(p) - nTut(p) + nyt(p) - nyt(p)] (1.~) 

(We assume that the limits hold weakly on some suitable domain. Also, 

TV0 , Jo, and M io need to be smeared in time; we suppress the necessary 

modifications.) 

We think of the ni Out(p), i = 1 ,...,4, as respectively counting 

helicity +'$ electrons, helicity -& electrons, helicity +% positrons, and 

helicity -Q positrons of momentum p. Equation (1) is then easily 

motivated: Consider first Eq. (1.b) sandwiched between a state whose 

leptonic content consists of a single outgoing electron of nearly well- 

defined momentum p'. Then for large t, (J'(t,G)) is localized near 
+ 
x = ($'/p'O)t modulo wave-packet spreading and other, less important, 

effects. Consequently, h(g/t), which varies slowly with z for large t, 

may be replaced with h($'/p") in the left-hand side of the equation. 

The left-hand side then reduces to h($'/p")e, which clearly equals the 

right-hand side. Suitable modifications extend this argument to the case 

of several outgoing leptons. 

Analogous arguments apply to Eq. (1.a) except that (TV0 (t,;)) 

receives contributions from both the outgoing electron and whatever 

outgoing photons are present. However, the photon contributions at 

large times are localized "near" /z//t = 1 where, by definition, h(z/t) 
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vanishes. Thus, only the electron contributes to the limit and the 

argument proceeds as before. And the same argument applies to Eq. (1.~) 

once it is noticed that "x//z\ = (z/t)/(l%/tl) may be replaced with 

($'/p'")/(/;'/P'ol) = ~Vl31. 

Equation (1) is closely related to -- and was, in fact, originally 

motivated by -- results of Araki and Haag (described in Section III). 

Consequently, we refer to our results as Araki-Haag scattering theory 

applied to QED. 

We now proceed to obtain QED scattering theory from the theory of 

local observables, using our conjecture. The first step is to construct 

the number operators in terms of local observables. To do this we shall 

need the regularity condition (e) of the conjecture which we now motivate. 

Consider a region 52 of momentum space divided into a large number of 

exceedingly tiny bins fi k' For a given state, it is highly unlikely that 

any two outgoing leptons will be found in a single bin. Therefore, except 

for a small error, to find n put(n), it suffices to count how many bins 

contain precisely one lepton of type i and no other leptons. The oper- 

ator that counts this is 1 E(nyut(fik) = 6ij). (See notation.) There- 
k 

fore we assume 

(e> npUt (0) = lim C E(ngut(nk) = 'ij), 
k 

where, in the limit, the size of the bins is taken to zero. 

We now construct the number operators in terms of local observables. 

Define 

out n Zn yUt + n2 Out + n ;Ut + out n 
4 

out out out out 
9 E n yut + n2 - n3 - n4 
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k out out out E n 
1 -n yt+n3 out - n4 . 

As a consequence of the spectral properties of ni Out (L?) assumed in the 

conjecture, it follows that 

E(nout (Q) = 1, q Out(n) = +l, Lout(g) = Itl) = E(ngut(9) = 6ij) , 

where the values of f,k assumed are (+,+), (+,-), (-,+), and (-,-) respec- 

tively for i = 1,...,4. Using (e) above we obtain 

n put(n) = lim C E(nout(nk) = 1, qout(Gk) = +I, dioUt(Qk) = +l>, (2) 
k 

where the meaning of lim and the dependence of t,t on i are the same as 

above. Equation (2) is the desired construction of the lepton number 

operators in terms of local observables, since n 
out out , q , and A out are 

expressed in terms of the local observables T PO , Jo, and M io in Eq. (1). 

Next we need number operators which count hard photons. Hard 

particles are particles with enough energy to be detected. (Electrons, 

we assume, are always hard.) Photons with too little energy to be 

detected are called soft. The meaning of "hard" and "soft" depends of 

course on the efficiency of one's detectors, but the set of hard photon 

momenta k always excludes a neighborhood of k = 0. 

It is tempting to try to get a handle on the photon number operators 

by reconsidering Eq. (1) without the restriction that the support of h 

lie inside the unit ball. For example, if we consider a state consisting 

entirely of outgoing photons and let n ;;'&I count the total number of 

photons, we expect to find 

lim 
J 0 

d;: h $ Tp"(t z) 
t-t.= t , = jx h($)k' niEt(k) . 

However, it is not possible by varying h to extract n ;;'(k) f rom the right 

hand side, because the mapping d + g/k0 is many to one. At best, we can 
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to3 

extract / dh X2noEt(hk), which is insufficient for our purposes. We 
0 

must therefore take a different approach. 

Fqrtunately, the work of constructing hard photon number operators 

has already been done: the photon annihilation operator aX Out(k) has been 

constructed3 from the electromagnetic field Fu' and it has been shown that 

nlut(k) E ayut(k)*aTut(k) makes sense away from k = 0.8 Setting 

out _ out out out 
n5 = y=l and n 6 z np-1' we have number operators n ~'('4, 

i = l,..., 6, for all hard particles. 

Finally, we shall express the scattering probabilities of interest 

in terms of the number operators. For a given state >, let Pm(kl,...,km) 

denote the probability density for finding precisely m outgoing hard 

particles of momenta kl,..., m k accompanied by an arbitrary collection of 

soft photons. (For simplicity we suppress the indices that label particle 

type. 1 Let Ri denote m regions of hard phase space and define 

Then clearly, 

(nout(Rl) . . . nout(Qm)) 

co 

c 
l-- = 

n! J- dR1. . . . dRn P,($ 
n= 0 hard 

- 
where the dR integrations run over hard phase space. A little work then 

yields, for ki # k., 

(nout(kl) . . . noUt(km)) 

co 
c 1 -- = 

n! J 
hard 

dRl . . . dRn P,+,(k,,...,k,' ill,...,%,) . (3) 
n=o 

If we extend the left-hand side of Eq. (3) by continuity to coinciding 
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values of k., then Eq. 1 
(3) should hold for all values of ki. Labeling 

the extension with a prime, it is easy to check that Eq. (3) is equivalent 

to 
m 

P,$, . . . . km’ = c ___ 
- - dR1 . . . dR n n=o 

(4) 

(n Out(kl) . . . nout(km) noUt(Rl) . . . noUt(Qn))' . 

Equation (4) completes our derivation of QED scattering theory from 

local observables. All quantities of experimental interest may be 

expressed in terms of the P m' Equation (4) expresses Pm in terms of 

asymptotic number operators which are themselves defined in terms of 

local observables by Eqs. (1) and (2) and in Refs. 3 and 8. We shall 

consider the practical applicability of Eq. (4) in Section IV. 

3. Plausibility of the Conjecture 

Our argument for the plausibility of the conjecture runs as follows: 

As shall be shown below, our conjecture is a natural extrapolation to QED 

of the results of Araki and Haag. Now, Araki-Haag scattering theory1 

and LSZ scattering theoryll have both been justified for Wightman field 

theories with a mass gap. It is therefore reasonable to expect these 

scattering theories to apply to QED provided that the various (infrared) 

phenomena associated with the absence of a mass gap do not cause trouble. 

These phenomena include long range (Coulomb) interactions, emission and 

absorption of infinite numbers of soft photons, and the infraparticle 

nature of the electron. The crucial result of this paper is that while 

each of these three phenomena presents a serious difficulty for the LSZ 

approach, none of them seems to present a problem for the Araki-Haag 
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approach: To show this we shall consider three models, each displaying 

one of the three phenomena. In each case it will be seen that the usual '. 

scattering theory breaks down while the Araki-Haag approach applies with- 

out modification. 

That's the argument. It remains for us to fill in the gaps: we 

first obtain our conjecture as a natural extrapolation of the Araki-Haag 

scattering theory, and then consider the three models which display infra- 

red phenomena. 

In obtaining our conjecture, we shall focus our attention on 

Theorem 4 of Ref. 1 which we present in slightly altered form. Given a 

Wightman field theory with mass gap, one can define scattering states 

(which we henceforward assume to be dense) and annihilation operators 

byt(p). Let C(x) be a Geiger-counter field, defined by C(x) = 

-ix-P Ce ix-P ._ 
e , where 

i> C is a bounded, self-adjoint operator 

ii) C is quasilocal (the meaning of 

iii) C IO) = 0 

which is not important to us) 

iv) (pi 1 c / p'j) is differentiable in $ and if' 

(lpi) E bput(p)'lO) .) 

Set Tij(p) = (2~')~~ (pilclpj) . Then Theorem 4 states that 

lim Jdz h($) C(t,z) = CJz h(z) (5) 
t-tm i,j PO 

rij (p> by'(p) + o"'(P> , bj 

where the limit is weak and runs over all pairs i,j of particle types 
i,j 

with m i = m.. 
J 

The one-particle states lpi) are crucial to the statement of the 

theorem. As will be clear from the models considered below, there is in 
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QED no sensible way to define a state lpi) consisting of a single electron 

and no other particles. Consequently, Theorem 4 has no immediate exten- 

sion to QED. Nevertheless, by massaging Eq. (5) a bit as follows, we 

can arrive at Eq. (1). 

First, we loosen the technical requirement that C(x) be a bounded- 

operator-valued function and allow it to be an unbounded-operator-valued 

distribution, i.e., a field. This is a natural assumption since practical 

LSZ calculations are inevitably done with fields and no difficulties are 

known to arise from this. 

Second, the requirement ~10) = 0 seems to be used in the proof of 

Theorem 4 only to conclude that ~10) is orthogonal to both the vacuum and 

to the single-"lepton" states. The latter requirement is automatic in 

QED since there are no local observables which create charged states 

from the vacuum. 

Our loosened requirements on C are satisfied if we take C(x) to be 

the zero component of a conserved current j'(x) whose associated "charge" 

/dz j'(x) defines quantum numbers pi(p) which label the various particles. 

In this case it is easy to check that Eq. (5) reduces to 

lirnsdz he) j'(t,z) = cJ% h(&) Ti (p) brt(p)+byt(p) l (6) 
t-tm i P 

Equation (6) geneializes naturally to QED and yields Eq. (1) for the 

special cases j v = TV" , jv = Jv, and, with a little extra finagling, 

.v * 
J = Ml-'). This completes our argument that our conjecture is a natural 

extrapolation to QED of the results of Araki and Haag. 

We now turn to the arguments central to this paper -- those indicat- 

ing that Araki-Haag scattering theory is untroubled by infrared phenomena 

which present significant difficulties for the LSZ approach. Specifically 
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we present three models, each manifesting some infrared phenomenon, for 

which the usual scattering theory breaks down but to which Araki-Haag 

scattering theory applied in a straightforward manner. 

A. Couloumb Scattering 

Our first model is the nonrelativistic quantum theory of a particle 

moving in a Coulomb potential. The Hamiltonian is H = - 
$2 5 + -& = Ho + V. 

If V were short range, we could proceed in the usual manner -- that is, 

by defining Rout = s-lim e 
iHt -iHot e and 1; out) = no,,\;), with similar 

t-too 
definitions for in-states. The S-matrix would then be Ss, =($ outI;' in). 

For the Coulomb potential, the above limit defining Rout does not converge. 

Instead, one defines6 

s-2 out 
= s-lim eiHt e-iHot e-ilun(-$2)-' log(-2t$2/m) , 

t.+-a 
which solves the problem. This solution has two drawbacks. First the 

extra factor (known as the Coulomb phase factor) needed to obtain con- 

vergence is unsightly and becomes more so when generalized to QED. 

Second and more important, the factor contains an arbitrariness: as 

noted in Ref. 6, the factor may be multiplied by an arbitrary unitary 

function of -i$ without affecting any significant results. Thus, 

1; out) has a G dependent phase arbitrariness. 

To better understand this arbitrariness, we reconsider nonrelativistic 

potential scattering from a more field theoretical viewpoint. Let 

+ 
X(t) and ?(t) be the Heisenberg picture position and momentum operators. 

For suitable potentials V, the usual scattering theory holds and implies 

the existence of the limits 

w-lim T(t) = 3oUt(o) 
t+- 

w-22 
[ 

ht> Z(t) - ----p-t 1 = 3i:out(0) . 

(7.4 

(7.b) 
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+ 
P outCO> 'and %outCO) comprise an irreducible set of operators and may be 

used to define a representation. In particular, 1; out) may be uniquely 

defined (modulo an irrelevant $-independent phase) in a natural way.5 

In the case of Coulomb scattering, Eq. (7.a) holds (this follows from 

results in Ref. 6), but Eq. (7.b) does not. Consequently, one can make 

sense out of expressions like f(sout) = "Id; f(G)]; out)(,$~out;",.but 

I$ out) standing by itself has a phase arbitrariness which cannot be 

fixed in a natural way. 

How does Araki-Haag scattering theory fit in? In the nonrelativistic 

analog of Eq. (6) we choose for jv the probability current density,12 

whose zero component is just j'(t,z) = e iHtjZ)(Zle-iHt. Since 

Id; j'(t,$ = 1, I'($) = 1. Also, the nonrelativistic analog of 

b oUt(p)tboUt(p) is I$ out){; out/. Thus, Araki-Haag scattering theory 

applied to our model predicts 

lim sd;: h(5) eiHt IZ>(Z'le-iHt = J3; h(i) 1; out)<; out/ . 
t+m 

(8) 

And, using the results of Ref. 6, Eq. (8) is easily verified. (The 

Coulomb phase factor which arises in the course of the proof cancels 

against its complex conjugate.) 

Extrapolating to QED, we expect attempts to define lepton creation 

operators b Put(P)' t o require a Coulomb phase factor with a p-dependent 

phase arbitrariness, while attempts to define lepton number operators 

n yt(p) should encounter no such difficulties. 

B. Soft Photon Emission 

As has long been understood,2'4 collision processes in QED involving 

leptons are typically accompanied by the emission and absorption of 
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infinite numbers of soft photons. We now consider a model in which the 

same phenomenon arises from a classical current. Our discussion is 

partly based on a discussion appearing in Ref. 14. 

We consider Maxwell's equations auFPv = Jv and E 
KXUV 

ahFpv = 0 with 

FuV quantized and Jv an external c-number field satisfying aPJ'-l = 0. A 

solution is easily found: Let * denote the Fourier transform and define 

uakv - g 
i:::(k) = i g 

va lJ k 

k2 - iek' 
, (9) 

where E is "infinitesimally small." Then, if we let Fiz denote the free 

electromagnetic field in the Fock representation, 

F1"" = Fpv + Auva * J 

in ret a (10) 

solves I%axwell's equations. (Other solutions may be obtained by choosing 

non-Fock representations for PV F in' We do not consider these, but, with 

slight modification, the following discussion applies to the choice of 

any reasonable generalized coherent state representation.) 

The subscript "in" used above is not misleading. Because of the 

is prescription in Eq. (9), FPv converges in an appropriate sense to 

FVV in as t -f --m. Similarly, we have 

Fpv = F1-l’ + Apva 
out adv 

:r, J 
a , (11) 

where Atit is defined like APva ret but with the opposite is prescription. 

Subtracting Eq. (10) from Eq. (11) yields Fglt - Fy'?$ = (At:: L 81::) 9~ Jo 

which in turn implies 

a;ut(k) - a:(k) = fh(k) , (1.2) 

where fX(k) = -is:(k) l S(k). The CA(k) are the usual free field polari- 

zation vectors. 
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By'assumption, atn(k) acts in the Fock representation, and Eq. (12) 

solves the problem of constructing aA Out(k). It remains for us to develop 

scattering theory. The usual procedure is to note that Eq. (12) has the 

solution a out = S -1 in 
h a A S, where 

Out+(f) - aout = e 
-%~Jaf,(k) I2 

S Z ea A a 
out+(f) 

-a Out (f? 
(13.a) 

e e 

[a Out'(f) 2 I{ dk fA(k) aTut(k etc.]. It follows that 
A 

S 
aB 

= (a 0utlSlB out) , (13.b) 

where S 
a6 

5 (~1 out/B in) and c1 and S label points in the phase spaces of 

the out- and in-representations. 

However, Eq. (13) makes sense only if l/ xlf,(k)12 < m. This is not 

the case if Jv represents a nontrivial collision process, in which case 

f(k) goes like l//g] near x = 0. 
14 

If in fact.CI ;ii;lf,(k)12 = m, which we 
x 

henceforward assume, we have several alternative procedures: 

(a) Use Eq. (13) but first introduce an infrared cutoff of some 

sort. The S-matrix elements will then be cutoff dependent, but scattering 

probabilities inclusive over soft photon emission will be finite as the 

cutoff is released. This is the procedure presently used in almost all 

practical QED calculations. It is unjustified, but it works. 

(b) Note that the failure of Eq. (13) arises from the fact that 

FVV out acts in a non-Fock representation.7 In fact, since -' \ 

ahout( in> = fh(k)10 in), FElt acts in a generalized coherent state 

representation which would be unitarily equivalent to the Fock representa- 

tion if i' dk/fA(k)12 < a. Thus, the c1 appearing in (c out16 in> should 

label points in a non-Fock phase space. (a outIS in) will then be well 

defined, and scattering probabilities inclusive over soft photon emission 
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can in principle be computed by means of a non-Fock phase space integra- 

tion. This must yield the correct answer. However, I don't know how 

to practically parametrize points in a non-Fock phase space. 

(c) Use the Araki-Haag approach as developed in Section II. Recall 

that photon number operators were defined to be a1 Out(k)'aTut(k) for 

k # 0. Consequently, using Eq. (12), 

nyut(k) = (ax'" (k)+ + f,(k)*)(aF(k) + fAW) . 

One can then apply Eq. (4). As an example, let ) be a coherent state 

lg id, which is defined by aX in(k)/g in) = gA(k) lg in), where 

(14) 

l/dklgX(k)12 < m, 
x 

Using Eq. (14), we see immediately that 

(nyIt(kl) .*. nyt(km))' = zllfh (ki) + gAi(kl)12 - 
m i 

(The prime is crucial!) Inserting this result into Eq. (4) yields 

Pm(klJl; 0.. ; kmJm) 

-c $ ElfA + gA04/2 
X hard = e ~ I fh (ki) + gx (ki) I 2 (15) 

i=l i i 

Equation (15) is the correct result. It is obtained simply, with- 
. 

out infrared cutoffs or non-Fock soft-photon phase space summations, 

using the scattering theory developed in Section II. 

C. Infraparticles 

A single particle state is defined to be an eigenstate of the mass 

operator. However, loosely speaking, electrons are always accompanied 

by a cloud of soft photons, and this prevents the occurrence of mass 

eigenstates at the electron "mass." Consequently, electrons are not 
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particles and are more properly known as infraparticles. This is trouble- 

some for the LSZ approach but does not, apparently, present difficulties 
. . 

for the Araki-Haag approach. To see this, we consider a simple model in 

which "electrons" are always accompanied by a soft photon cloud. 

We first construct the 

clouds. For simplicity, we 

Aph(x) =s;ii; 

Hilbert space containing the soft photon 

take the "photon" field 

[I a(k) e 
ik*x + a(k)fe-ik*x 1 

to be a free massless real scalar field. Let f(k) = 12l-1 e 
-k- . Given 

an integer n, we define a generalized coherent state 1.n) by 

a(k)]n) = nf(k)ln), and we let zph n denote the Hilbert space generated 
, 

by applying creation operators to In). On each Xph n we can also define 
, 

VV as usual the energy-momentum tensor T 
ph 

and the momentum P' 
ph' 

On 

%ph ’ n&m %ph n we define the unitary 0perator.U by -. ._ , 
U-'a(k)U = a(k) + f(k) and Uln) = In+l). The crucial consequence of 

/dkjf(k)]* = m which we shall need below is that, for x # 0, 

w-lim U(Xx> = 0 , (16) 
X+m 

where U(x) 3 e 
-ix=P u .ix*P . Equation (16) holds between states from a 

dense domain which we presume to be large enough to justify the applica- 

tions below. We do not here present the proof of Eq. (16), but merely 

note that it hinges on the result 

lim e 
-2 /Xlf(k)l* sin"(F) 

= 0 . 
x-to3 

This result is easily verified. Furthermore, one can check that the 

result fails if f(k) is replaced with the less singular and square 

integrable (with respect to dk) function I%]-'+" e 
-“k* 

, E > 0. 
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We next consider the "leptons". For simplicity we consider a free 

massive complex scalar field . . 

q,,(x) =J& p,(p) eipox + b,(p)+ e-ip'x] 

defined on the Hilbert space Xel. Xel n denotes the charge n sector 

of xel. 
4 The energy-momentum tensor Tel, the momentum PEl, and the 

electron current 5' el are defined as usual. 

On -Ye,,@ 2 
ph 

we define 

IJW = lJ,,(x> 0 u(x) 

A= l@A 
ph 

PV = PEIO 1 + 10 PV 
ph 

TPV = T",;@ 1 + 10 T;; 

-Jv = Jil@ 1. 

Note that these operators all map 26 f ,g: eLJ@ el n@ Xph n into 
, , 

itself. ($ maps X'el,nO Xph,n into Xel,n+10 Xph,n+l while the rest 

map xel n 0 GV , ph,n 
into itself.) These operators acting on2?constitute 

our model. Modulo technical difficulties, our model satisfies all the 

Wightman axioms except Lorentz invariance and locality. (In particular, 

the vacuum is cyclic; that is, the domain D consisting of all linear 

combinations of arbitrary products of $ and A fields applied to the vacuum 

is dense in %'.) 

The point of all this is that when Jo acts on the vacuum, +,, creates a 

lepton while U creates an accompanying cloud of soft photons. Thus, our 

leptons are infraparticles. We now consider the LSZ and Araki-Haag 

approaches applied to this situation. [Warning: in what follows, the 

electron vacuum, the photon vacuum, and their tensor product are all 

denoted by IO).] 
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We'first consider LSZ scattering theory. From the LSZ approach, 

we would, expect for example to have 

. 

w-lim J dz elP'XJl(x) = 1 -b 
X0+-= *PO 

out(P)t . (17) 

[Eq. (17) is somewhat unconventional, but entirely appropriate, and its 

use simplifies (but is not crucial for) our discussion.] In our model, 

the left-hand side of Eq. (17) vanishes. To show this, we first consider 

the special case of the left-hand side of Eq. (17) sandwiched between 

(Olljlk(y) and IO). 

lim (oj$*(y)Sd;: eipox $(x)10) 
X0+= 

= lim (~j$z~(y)fig eipDx $el(x)j~) (0 
X0-J 

Iu(Y)-+Jw 10) 

= (oj$%l(Y) 1 b2(p)+ IO> 1 
*PO 

im (O/U(y)-%(x)/O) ._ 
X0-- 

= 0 , 

where we have used both the analog of Eq. (17) for the field JI,, acting 

on C@ el and Eq. (16). This argument may be easily generalized to show 

that the left-hand side of Eq. (17) vanishes between any pair of states 

in D. Thus, the LSZ approach cannot find the electron inside its soft 

photon cloud. 

We now consider Araki-Haag scattering theory. out We expect that ni 

will turn out to be bibi@ 1. The analogs of Eq. (1.a) and (1.b) are 

therefore 

w-lim&z h(t) T“"(t,g) =JG h(-$) p'[biIbl + b:b2] @ 1 
t-tao 

w-1imSd;: he) J'(t,-)x> =Js h(j$b:,, - bib*] @ 1 
t- 

(18.a) 

(18.b) 
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We first' verify Eq. (18.b) sandwiched between the states (o[$J*(~) and 

~<z>jO>. The left-hand side then equals . . 

lim (Oj$El(y)JdZ h(s) JEl(t,G) +,l(z)IO) (OIU(Y)-‘U(Z)IO) 
t- 

= (ol~el(Y)J~ h($J& - bib,] $,,(z)lO) (Olu(Y)-+-'(z)l") 3 

where we have used the analog of Eq. (18.b) for the field $el acting 

on X el' And the result clearly equals the right-hand side of Eq. (18.b) 

sandwiched between (01$*(y) and $(z)\O). This completes the verifica- 

tion. The arguments used may be easily generalized to verify Eq. (18.b) 

between any pair of states in D. 

The verification of Eq. (18.a) between 

like the above except for the appearance of 

(O~IJJ*(Y) and $(z)lO) proceeds 

the unwanted term 

-+ 
(ol$~l(Y)iel(z) 10) 1 im (O/U(y)-l&z h(T) Tii(t,z) y(z)IO) . 

t- 

Fortunately, this term vanishes due to the support properties of h, as 

can be shown using a stationary phase argument. In fact, we expect that 

w-lim Id; h(s) $E(t,"x, = 0 hold s in general for h supported inside the 
t- 

unit ball, but we do not prove it. If so, the above argument may be 

generalized to verify Eq. (18.a) between any pair of states in D. 

So, Eq. (18) is essentially verified, and we see that Araki-Haag 

scattering theory is perfectly capable of finding infraparticles. 

4. Disadvantages 

As noted, the disadvantages of Araki-Haag scattering theory applied 

to QED are that our conjecture remains unproven and that we have no 

practical computation scheme. We now briefly discuss these difficulties, 

considering the latter first. 
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The difficulties involved in practically applying our scattering 

theory are threefold. 

A. Spin 

For obvious reasons, the direct application of Eq. (2) would be 

very impractical. However, most scattering probabilities computed 

include a sum over final spins. In that case, only the combinations 

out 
nl Out + n2 and n + n out 

4 are of interest, and these may be obtained 

directly from Eqs. (1.a) and (1.b). Thus, the observation of spins in 

the final state represents a considerable complication, and we shall 

henceforward consider only spin summed scattering probabilities. 

B. Representations 

Let $ denote a generic local observable. If the expectation values 

hl l -* 4,) are at our disposal, then spin summed scattering probabilities 

may be computed using only Eqs. (1) and (4). The problem arises, however, 

as to how to represent the state >. 

We have taken our theory of the universe to be the Wightman field 

theory associated with the local gauge-invariant fields of QED. Every 

state in our theory may be approximated arbitrarily well by linear 

combinations of products of observable fields applied to the vacuum. We 

shall call this the Wightman representation. (Note that our theory 

includes only states of total charge zero. This is no handicap, although 

"behind the moon" arguments will be necessary to describe many scattering 

processes of interest.g) 

The problem with the Wightman representation is that it is not 

known in practice how to use it. Given an experimentally well defined 
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state (e.g. colliding beams in an accelerator), it is not known how to 

represent that state in either the Wightman representation or, for that 

matter, in any other. The most elementary notion of quantum mechanics -- 

I.e., the representation of physical states as vectors in a Hilbert 

space -- has yet to be practically implemented in QED, except in special 

cases. This is the deep problem alluded to in the introduction, and 

it merits attention. For now, though, we focus our attention on those 

situations for which we do know how to represent the state. 

For field theories with mass gap and a complete set of scattering 

states there is in fact no problem: scattering theory itself then 

provides both the in- and the out-representations, and the in- 

representation may be used to specify the state. In the case of QED we 
. 

are not so fortunate. We of course have the operators ny (defined like 
._ 

the n out 
i 

except with t-+-m. ) But, just as $out(0) did not comprise an 

irreducible set of operators for nonrelativistic Coulomb scattering, 
. 

neither will the n 2" be irreducible for QED. Consequently, we have no 

in-representation.16 

All is not lost, however. In addition to the n?, we have the 
, 

photon creation operators a?(k)' at our disposal. These may be applied 

to the vacuum to construct states consisting entirely of a finite number 

of incoming photons. For such states, and for those states whose 

Wightman representations are somehow known, our scattering theory may 

be practically applied. 
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C. Perturbation theory 

In those situations to which our scattering theory is practically . . 

applicable, it is necessary to manipulate expressions of the form 

(014, l *a 4,\0), where some of the $I'S are used to construct the initial 

state and the rest are used to construct the n out 
i' These vacuum 

expectation values may be obtained from perturbation theory by analytically 

continuing the Euclidean Green's functions in coordinate space. I3 It 

would be very convenient to have a set of "Feynman rules" for the result 

of this analytic continuation, and, indeed, I know of one such prescrip- 

ti0n.l' However, when applied to QED, this prescription generates 

spurious infrared divergences which then cancel when the graphs are 

summed. Thus, I know of no graphical expansion of (nontime-ordered) 

vacuum expectation values which is infrared finite graph by graph. That 

is why this paper contains no worked out examples of Araki-Haag scatter- 

ing theory applied to QED. 

Regarding the second disadvantage -- that our conjecture r-emains 

unproven -- we have little to say. A rigorous proof is at present 

impossible since QED is not yet known to exist. Axiomatic considerations, 

which would attempt to establish similar results in more general field 

theories, might or might not be interesting. And attempts to prove the 

conjecture at the level of perturbation theory are at present hampered 

by the lack of a reasonable graphical expansion for the nontime-ordered 

vacuum expectation values. 

Nevertheless, the conjecture is quite likely to be true. 
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