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ABSTRACT 

Large momentum transfer exclusive processes and the short dis- 
tance structure of hadronic wave functions can be systematically 
analyzed within the context of perturbative QCD. We review predic- 
tions for meson form factors, two-photon processes yy+MM, hadronic 
decays of heavy quark systems, and a number of other related QCD 
phenomena. 

I. INTRODUCTION . 

One reason why detailed, quantitative tests of quantum chromo- 
dynamics1 are so difficult is that measurements of basic quark and 
gluon subprocesses must be done within the confines of hadrons. 
Fortunately, it is often possible to isolate the largely unknown bound 
state hadron dynamics in terms of process-independent probability 
distributions and amplitudes. The predictions for both inclusive' 
and exclusive2'5 reactions which involve large momentum transfer can 
then be factorized into hard-scattering quark and gluon subprocess 
amplitudes, TH, representing the short distance physics, convoluted 
with evolved distribution functions or amplitudes containing the long 
distance dynamics. 

As we shall discuss in this talk, large momentum transfer exclu- 
sive reactions such as elastic lepton-hadron, photon-hadron and 
hadron-hadron scattering can provide an extensive, experimentally 
accessible, 
QCD? 

and perhaps definitive testing ground for perturbative 
In particular, the power-law behavior of these reactions 

directly tests the scale-invariance of the basic quark and gluon 
interactions at short distances, as well as the SU(3)-color symmetry 
of the hadronic valence wave functions. The normalizations of the 
exclusive amplitudes (both relative and absolute) test the basic 
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flavor and spin symmetry structure of the theory as well as the asymp- 
totic boundary condition for meson valence state wave functions 
obtained from the meson leptonic decay rates. The angular variation, 
helicity structure, and absolute sign of exclusive amplitudes test the 
spin and bare couplings of quarks and gluons. In addition the pre- 
dicted logarithmic modifications of exclusive amplitudes reflect the 
asymptotic freedom variation of the running coupling constant and the 
singularities in the operator product expansion of hadronic wave 
functions at short distances. In the case of exclusive processes such 
as meson form factors and the two-photon reactions yy+%,the deri- 
vations can be carried out with the same degree of rigor as that for 
the QCD predictions for structure function moments. An implicit 
assumption of all such analyses is that the short distance behavior 
of any nonperturbative or confinement dynamics is more regular than 
that given order-by-order in perturbation theory.7 

A convenient representation 0 of a hadronic bound state in terms 
of quark and gluon constituents is the set of Fock state wave func- 
tions $(n) as defined at equal time T = z+t on the light-cone. We 
will choose the physical gauge A + = A"+A3 = 0. By using light-cone 
quantitization (or equivalently, infinite-momentum-frame methods), 
we can define charge and number operators which are diagonal in the 
Fock state basis, i.e., conserved quantities which do not change 
particle number. The amplitude to find n (on-mass-shell) quarks and 
gluons in a hadron with 4-momentumP pdirected along the z-direction 
and spin projection S, is defined as (k' = k" + k3) 

6-d 
+,Z ( xi,~~ils') = 

k; 
, x. - 1 1 7 

, 

n 
where by momentum conservation 

i=l 
xi=1 and c di=O. 

i=l 
The si 

specify the spin-projection of the constituents. The state is off 
the light-cone energy shell, 

n M2 - 
n qi+m; 

c 

c 
i=l X. 

P- - 1 
<o . (l-1) 

i=l 
k; = 

P+ 

The valence Fock states (which in fact dominate large momentum trans- 
fer exclusive reactions) are the Iq{> (n=2) and Iqqq> (n=3) com- 
;~;;:;;u~~tt;~n~son and baryon. For each fermion or ant$-fermion 

V(Si)/&f s 

(kli,xi,si) multiplies the spin factor u(ki)/~ or 
T& wave function normalization condition is - - 

c 
b-4 (‘i) 

[d2kL][dx] = 1, (1.2) 
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where 

c 1 d2kL 5 16~~ 6(2) 

and 

. 

By studying the wave functions themselves, one could in principle 
understand not only the origin of the standard structure functions, 
but also the nature of multi-particle longitudinal and transverse 
momentum distributions, helicity dependences, as well as the effects 
of coherence. For example, the standard quark and gluon structure 
functions (probability distributions) which control large momentum 
transfer inclusive reactions at the scale Q2 are 

Ga,H(Xad? ) - +Q2) c 
n,s i,s / I'~~)(kli.xi'si)/ 2 [d2kL][dx] 

Z 

x 6(x-Xa). , .- (1.3) 

where d,l(Q') is due to the wave function renormalization of the con- 
stituent a. Note that only terms which fall-off as )$I2 - (kza)-l 
(modulo logs) contribute to the Q2 dependence of the integral. These 
contributions are analyzable by the renormalization group and corres- 
pond in perturbative QCD to quark or gluon pair production or frag- 
mentation processes associated with the struck constituent a. In 
general, unless x is close to 1, all Fock states in the hadron con- 
tribute to G,/H. [Multi-particle probability distributions are simple 
generalizations of Eq. (1.3).] Inclusive cross sections for reactions 
such as deep inelastic lepton or photon scattering can then be obtained 
by convoluting G,/H(x,~) with the elementary hard scattering quark or 
gluon subprocess cross sections ds, compzted for on-shell constituents 
(a) collinear with hadron H. The scale Q is controlled by the momen- 
tum transfer in the subprocess and the available phase-space for the 
spectator constituents. A detailed discussion is given in Ref. 9. 

In the next sections we shall show how exclusive processes in 
QCD can be directly related to the valence Fock states Jo - and '4 
for mesons and baryons. qq qqq 
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11. CALCULATIONS OF QCD EXCLUSIVE PROCESSES 

The simplest illustration of the calculation of exclusive reac- 
tions in QCD is the evaluation of the F?ry(Q2) , y+7F" transition form 
factor, which is measureable in two-photon ee+ee.rrO (y*y+nO) reac- 
tions [see Fig. l(a)]. The form factor is defined via the amplitude 

p = -ie2 Fn,(Q2) e'vo'p~ ho qc . (2.1) 

XI 
= 

-+-c x2 

6-81 
cp (x,Q) 

(e) 4138Al 

Fig. 1. Perturbative QCD 
analysis of the yy*+-t"O 
amplitude. Higher Fock 
state contributions such 
as (c) are power-law 
suppressed in a physical 
gauge. The factorization 
of FAy(Q2) is shown in (d). 

The lowest order contribution is shown in Fig. l(b). We choose a 
frame with 

q = (q+,q-,;;,) = (o&*q/p+,q,) , q; = Q2 = -q2 3 

p* = (P+,P-,G1) = (P+,M~/P+,~) . (2.2) 

We then compute the y*y-trO amplitude in time-order perturbation 
theory in terms of the light-wave Fock state amplitude: 

~(x~~d = F*T- (+q$)$(- 5)/17)/2+-o . (2.3) 

The denominator associated with the fermion propagator is proportional 
to (k,+x1q1)2. For large Q2 one then easily finds (x1+x2 = 1) 

F,,(Q2) = 25 $'- ")j -!& ':;o- .f!$ ,J,(x,kl), (2.4) 

0 
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where 

~ = (i~~,2 Xi)9 . 

The QCD radiative corrections to this result can be organized in the 
following way: First consider the loop integration (xL,y) associated 
with gluons which attach to the exchanged fermion [Figs. l(c) and 
l(d)l. For the ultraviolet region R, > 3 the vertex and self-energy 
insertions lead to the fermion line renormalization factor d,1(t2>. 
For RI< Q, one obtains either higher corrections in c.,(G2) to the 
44+y* + y amplitude or in the case of Fig. l(c),power-law suppressed 
contributions (in A+= 0 gauge). The gluons which are+exchanged between 
the quark legs are inc$uded in the definition of $(x,kL) and lead to 
a power-law tail $(x,k,) N k12. This implies a logarithmic Q2 depend- 
ence for the (gauge-independent) "distribution amplitude" 

(2.5) 

Since Z+= 0, z2 = -z2 N @(l/Q2) and one can compute the Q2 dependence 
of Q from the operatAr produci Expansion of $(2/2)$(-z/2) in Eq. (2.3) 
near the light-conelo to leading order in us: ._ 

m 

+(x,Q) = x1x2 C3'2(xl-x2) , nn (2.6) 

where the yn are the standard nonsinglet anomalous dimensions. Alter- 
natively, this result can be obtained via an evolution equation of the 
form2 

as (Q2) 
1 

Q 2 + +(x,Q) = 
aQ 

4n 
J 

dy V(X,Y> +(y,Q) (2.7) 

0 

where V(x,y> is computed from the single gluon exchange kernel. We 
thus obtain 

1 

FTIy(Q2) = --?-- - 
J 

dx 

& Q2 o x1x2 
e4) 

2Jnc(et - e!j) 
= 

Q2 
n$2 an (', $rn (2.8) 
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with corrections of order c(,(Q2) and m2/Q2. The decay IT+~V deter- 
mines the wave function at the origin: 

1 
aO 

J 
f71 

--c= dx 4$x,Q) = - 
0 2fi 

. (2.9) 

In the case of the pion form factor, a similar analysis gives2-5 
(see Fig. 2): 

F,(Q2) = 
+ (G,)ip(Y 95,) 

x(1-x) y(l-Y) * 
(2.10) 

Again to leading order in as(Q2) and m2/Q2. 

1 I-X I-Y Fig. 2. Factorized 

5-81 4121Al 

Figure 3 illustrates this QCD prediction for Q2F given 3 dif- 
ferent initial functions $(x,Qo)atQi = 2 GeV2 with r:presentative 
values of the QCD scale parameter A2. In each case the normalization 
is uniquely determined by (2.9); all curves ultimately converge to 
the asymptotic limit Q2F, + 16ras(Q2)fz.5 For Fig. 3, we have multi- 
plied (2.10) by (l+m2/Q2)-1 to allow a smooth connection with the 
low Q2 behavior suggegted by vector dominance models. 

The behavior exhibited in Fig. 3 can be radically modified if 
cp(X i,QO) has nodes or other complex structure in Xi. However such 
behavior is unlikely for ground state mesons such as the pion. For 
these, one intuitively expects a smooth, positive-definite distribu- 
tion amplitude, peaked about x1,x2 N l/2. Given these constraints, 
the normalization of F,(Q2) is largely determined by the breadth of 
the distribution -- broad distributions [Fig. 3(c)] result in a large 
form factor, narrow distributions [Fig. 3(b)] in a small one. The 
magnitude of the form factor also depends to some extent upon the 
scale parameter A2 through the factor crs(Q2) in (2.10). 
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Fig. 3. Leading order QCD 
predictions for the pion 
form factor assuming various 
distribution amplitudes 
$(xi,Qo) at Qi = 2 GeV2 and 
various values of the QCD 
scale parameter A2. The 
data are from the analysis 
of electroproduction e-p -f 
e-+T++n; C. Bebek et al., 
Ref. 41. 

An important question is the magnitude of the higher-order 
corrections to F 

3 
(Q2). Since the gluon carries momentum transfer 

-t = (l-x)(1-y)Q , one expects that higher corrections will be mini- 
mized if one takes the argument of us in Eq. (2.10) to be a fraction 
2 l/4 of Q2. A detailed calculation of the a, correction has been 
recently given by R. D. Field, R. Gupta, S. Otto, and L. Chang,l' 
with,however, the extra restriction that $(x,Q) 5 fi frx(l-x). 
Their result can be written (in the MS scheme) as: 

Q2Fn(Q2) = 0.43as(Q2)[1+0.11as+...] (2.11) 

with as(Q2) = us(Q2/16). 
The complete calculation to this order also requires an evalua- 

tion of the order os corrections to the distribution amplitude. A 
detailed calculation may be possible by analyzing the breakdown of 
conformal invariance due to the Q2 -dependence of the kernel in the 
evolution equation.12 

Unlike the electromagnetic form factor F,(Q2), the y+.rr' form 
factor in leading order has no explicit dependence on cts(Q2). Con- 
syquently an accurate measurement of F .,(Q2) determines 

/dx [4;Cx,"a, /x(1-x)] . This can be combined with the normalizing sum 
0 ruleI CEq. (2.9)] t o constrain the x-dependence of 9,(x,<). To 
illustrate this, consider normalized distribution amplitudes of the 
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general form 

f 
4qx,5 = --IE- I- (2n+2) ( lwx)'l xn ; 

2fi @(n+l))2 
ri'0 (2.12) 

where large ~(5) implies a sharply peaked (at x=1/2) distribution 
and small n(Q) gives a broad distribution. This ansatz gives a ITY 
transition form factor 

Q2 Fny(Q2) 
2n+1 = 2f - 71 37-l 

(2.13) 

which is clearly quite sensitive to the parameter n. 
Q2, n(Q) + 1 and thus2 

For very high 

2f 
F -tTI as Q2+m . 

TY Q2 
(2.14) 

The x-dependence of the integrand in Eq. (2.8) is identical to 
that in Eq. (2.10) for F,(Q2). Consequently all dependence on $r can 
be removed by comparing the two processes. In fact, a measurement of 
each provides a direct determination of as(Q2):* ._ 

as(Q2) = & 
Fn (Q2) 

Q21 Fny(Q2) 1 2 
+ o(2) . (2.15) 

Once the O(az) corrections have been computed, this could be used to 
measure a and the QCD scale parameter A for a given renormalization 
prescriptSon. 

Of course all of these formulae are valid only at large Q2; 
O(m2/Q2) corrections become important at lower Q2. However the Q2+0 
behavior of FTy is fixed by the experimental rates for the decay 
ITO -f 2y, or, equivalently as it turns out, by current algebra which 
implies: 

F,,(Q2) -f -+ as Q2+0 . (2.16) 
4lT f IT 

To estimate the effects due to O(m2/Q2) corrections, we write F in 
terms of a monopole form v 
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1 
F-- 1 0.27 GeV -1 

N 

TY 4a2fn l+(Q2/8r2f;) l+Q2/M2 
(2.17) 

( M2 - .68 GeV2 > 

which interpolates between the Q 2=0 and Q2=a limits. The mass scale 
M2 is quite similar to that measured for F,(Q2). If the best n(Q) in 
Eq. (2.12) is appreciably different from n=l at current Q2, this 
mass-scale parameter might actually be more like 

M2(n> = .68 GeV2 y . (2.18) 

Predictions for other meson form factors are given in Refs. 2 and 13. 
These meson form factor results can also be derived using re- 

normalization group methods, as has been shown by Mueller and Duncan.' 
The essential method is to prove Callan-Symansik equations for moments 
of the reducible quark scattering amplitudes. The evolution equation 
method and the renormalization group methods are equivalent, differing 
only in the organization of the calculation. The light-cone pertur- 
bation theory Fock-state methods, however, have a number of advantages: 
(a) direct calculation in the physical momentum-space k1 and x vari- 
ables; (b) simple connections between the Bethe-Salpeter wave func- 
tions, distribution amplitudes, and Fock state.amplitudes; and (c) 
straightforward analyses of higher Fock states. Finally, we emphasize 
that the distribution amplitudes $M(x,Q) and 9B(Xi,Q) are physical, 
gauge-invariant measures of the meson and baryon wave functions at 
short distances.2 

III. LARGE MOMENTUM TRANSFER EXCLUSIVE PROCESSES IN QCD 

Let us now briefly review the essential points for calculating 
an exclusive large momentum transfer hadronic amplitude in QCD. Away 
from possible special points in the x. integrations (see below), a 
general hadronic amplitude..KAB+CD(Q 2l ,8c.m.) can be written as a 
convolution over the Xi of a connected hard-scattering amplitude 
TH(Xi,Si;Q2,ec.m.) with the valence quark distribution amplitudes:2 

k,2<G2 

@,cx ,:I = d,l(?j) 
J 

d2kL 'bqi (x ,kl) (3.1) 

and 
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k;i< Q2 

?B(Xi'G) = dF 
-3/2(;) 

I 
[d2k1]qqqq(xi,kli) , i= 1,2,3 (3.2) 

for flavor singlet mesons and baryons, respectively. The pion form 
factor, for example, is given by2-4 (see Fig. 2) 

FT(Q2) = jdx jdy G,“(Y,qy) TH(X,Y;Q2) $,(~,“9~) 
0 0 

(3.3) 

where ax = min(x,l-x)Q. 
In TH each hadron is replaced by massless, collinear valence 

partons, each carrying some fraction of the hadron's momentum. Thus 
TH is the scattering amplitude for the constituents. The distribution 
amplitude 4,(x,Q), for example, is the amplitude for finding a quark 
and antiquark in a pion carrying momentum fractions x and l-x, res- 
pectively, and collinear up to the scale Q, The distribution ampli- 
tudes are weakly (logarithmically) Q-dependent due to QCD scaling 
violation. The detailed dependence can be derived via evolution 
equations2 or the operator product expansion at short distances." 

The essential behavior of an exclusive amplitude at large Q2 is 
determined by TH. For most xi, all internal quark and gluon legs are 
far off-shell Cp? w 52, where 'v2 is a linear function..of Q2 and the 
Xii in the lowest- a rder tree graphs for TH. This is essential if 
contributions k2 << Q2 are to factorize, 
the distributiok amplitudes. 

and thereby be absorbed into 
In higher orders TH is defined to be 

"collinear irreduci le"; 
9 

i.e., the transverse momentum integrations 
are restricted to kL > 32 since the region kz < q2 is already included 
in 0. In general there can be endpoint regions of integration 
Cxi -f 0) and/or pinch (Landshoff) singularities14 at particular values 
of xi for which intermediate propagators in the connected quark 
scattering amplitude approach the mass shell, and factorization is 
jeopardized. In the case of the meson form factors, and ampli;;des 
such as yy -f 6, y*+y -f M, and e+e- -f M1...MN at fixed angle, 
these regions of integration lead to power-law suppressed contribu- 
tions, even at the tree level. We then can obtain rigorous predic- 
tions for these large momentum transfer processes; in particular TH 
has a consistent perturbative expansion in crs(Q2). 

For baryon form factors,2~17 it is easily seen that any anomalous 
contribution from the endpoint region xl N 1, ~23x3 - O(m/Q) is 
strongly suppressed by the Sudakov form factor which arises from the 
loop corrections to the near on-shell, high Q2, Gyq vertex. The 
leading contribution to the baryon form factor thus comes from the 
hard scattering region. The Sudakov suppression of the endpoint 
region implies an all orders resummation of the perturbative contri- 
butions, and thus such derivations are not as rigorous as those for 
the meson form factors.2,4 



In the case of hadron-hadron scattering amplitudes, some contri- 
butions to TH have pinch singularities at finite values of the Xi -- 
corresponding to multiple quark-quark scattering at large momentum 
transfer with nearly on-shell intermediate states. However, these 
regions of integration are again suppressed by Sudakov form factors 
at the qqg vertices, and the hard-scattering region completely domi- 
nates the pinch contributions.18 In fact, as conjectured by Mueller,' 
the leading contribution from these diagrams for meson-meson scatter- 
ing arises from the region Ik:l - @(Q2)l-c where E = (2c+l)-', 
c = 8CE/(ll-2/3 nf). [For four flavors, E z 0.281.1 In an Abelian 
theory where the Sudakov suppression is stronger, lkzl - @(Q2). Thus 
for meson-meson scattering at large momentum transfer we have 

(3.4) 

The hard scattering amplitude TB includes the Sudakov form factors 
which control and eliminate the pinch region. The effective value of 
q varies with the x i phase-space integration. The leading power com- 
puted by Mueller for Eq. (3.4) is 

e/4? - 
mr + 7T-n 

( Q 2 1 -3/2-cRn (2c+1)/2c 5 - ( Q 2 ) -1.922 
(3.5) 

compared to (Q2)-2 from dimensional counting. ._ 
Although detailed results for hadron-hadron scattering have not 

been completely worked out, we can abstract from the above analysis 
some general features of QCD common to all exclusive processes at 
large momentum transfer: 

(1) All of the nonperturbative bound-state physics in the scat- 
tering amplitude is isolated in the process-independent distribution 
amplitudes. This is an essential feature of QCD factorization. 

(2) Since the distribution amplitude I$ is the L, = 0 orbital 
angular momentum projection of the hadron wave function, the sum of 
the interacting constituents' spin along the hadron's momentum equals 
the hadron spin: 

c 
icH 

SF = s; (3.6) 

In contrast, there are any number of noninteracting spectator con- 
stituents in inclusive structure functions and the spin of the active 
quarks or gluons is only statistically related to the hadron spin in 
inclusive reactions (except at the edge of phase space x -+ 1). 

(3) Since all loop integrations in TH are of order 5 the quark 
and hadron masses can be neglected at large Q2 up to corrections of 
order - m/s. The vector gluon coupling conserves quark helicity when 
all masses are neglected -- i.e., ii,yu u+ = 0. Thus total quark 
helicity is conserved in TH. In addition because of (2), the hadron's 
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helicity is the sum of the helicities of its valence quarks in TH. 
We thus have the selection ruleI 

c 'H - c AH = 0 , 
initial final 

(3.7) 

i.e., total hadronic helicity is conserved,up to corrections of order 
m/Q or higher. Only flavor-singlet mesons in the O3 nonet can have 
a two-gluon valence component,and thus even for these states the quark 
helicity equals the hadronic helicity. Consequently hadronic helicity 
conservation applies for all amplitudes involving light mesons and 
baryons.20 Exclusive reactions which involve hadrons with quarks or 
gluons in higher orbital angular states are suppressed by powers. 

(4) The nominal power-law behavior of an exclusive amplitude at 
fixed 8,*,. is (l/Q)n-4 where n is the number of external elementary 
particles (quarks, gluons, leptons, photons . ..) in TH. This dimen- 
sional counting rule21 is modified by the Q5-dependence of the factors 
of as(Q2) in TH, by the Q2-evolution of the distribution amplitudes, 
and possibly by a small power correction associated with the Sudakov 
suppression of pinch singularities in hadron-hadron scattering. The 
dimensional counting rules in fact appear to be experimentally well- 
established for a wide variety of processes. 

The helicity rule, Eq. (3.7), is one of the most characteristic 
features of QCD, being a direct consequence of the gluon's spin. A 
scalar or tensor gluon-quark coupling flips the quark's helicity. 
Thus, for such theories, helicity may or may not be conserved in any 
given diagram contributing to TH, depending upon the number of inter- 
actions involved. Only for a vector theory, like QCD, can we have a 
helicity selection rule valid to all orders in perturbation theory. 

The study of timelike hadronic form factors using e+e' colliding 
beams can provide very sensitive tests of this rule, since the virtual 
photon in e+e- + y* -f hA6B always has spin fl along the beam axis at 
high energies. Angular momentum conservation implies that the vir- 
tual photon can "decay" with one of only two possible angular distri- 
butions in the center of momentum frame: 
and sin28 for IxA- 

(l+COS28) for IXA-ABI = 1, 

hA,B" 
xBI = 0 where XA,B are the helicities of hadron 

Hadronic helicity conservation, Eq. (3.7), as required by QCD 
greatly restricts the possibilities. It implies that XA+XB = 0 
(since the photon carries no "quark helicity"), or equivalently that 
AA- hg = 2AA = -2xB. Consequently, angular momentum conservation 
requires /AA] = IxB] = l/2 for baryons, and IhAl = lhgl = 0 for 
mesons; furthermore, 
determined:ly 

the angular distributions are now completely 

A 
dcose ( e+e- + BE > 0: i+c0s2e (baryons) 

(3.8) 
do +- - -eeeMM 0: ( > 

2 
dcose sin 8 (mesons) 

We emphasize that these predictions are far from trivial for vector 
mesons and for all baryo;ls. For example, one expects distributions 
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like 1<acos28, -1 < ct < 1, in theories with a scalar or tensor gluon. 
So simply verifying these angular distributions [Eq. (3.8)] would give 
strong evidence in favor of a vector gluon. 

The power-law dependence in s of these cross sections is also 
predicted in QCD, using the dimensional counting rule. Such "all 
orders" predictions for QCD allowed processes are summarized in 
Table I.lg Processes suppressed in QCD are also listed there; these 
all violate hadronic helicity conservation, and are suppressed by 
powers of m2/s in QCD. This would not necessarily be the case in 
scalar or tensor theories. 

TABLE I 

Exclusive channels in e+e- annihilation. The hAi;By" COUplingS 

in allowed processes are -ie(p,-pB)iF(s) f:;moesons, 
-ie7(pB)yUG(s)u(pA) for baryons, and 

meson-photon final states. 
-le s,,vjpPM.s PyFMvly(s) for 

Similar pre ictions apply 
to decays of heavy-quark vector states, like the 

4J,dJ' ,*-', produced in eSe- collisions. 

e+e- + hA(;iA) 6,(X,) Angular Distribution 
'++e- + hA$) 

.(e+e- + ,+lJ-) 

e+e- + n+n-,K+K- 

p+(O)p-(0) ,K*+K*- 

Allowed 

in QCD 

Suppressed 

in QCD 

e+e- + p(fk);(&) ,G,. . . 

p(+%)i(S%) ,:A,. . . 

Aid ,Y*?*,. . . 

=+I?- + p+(o)o-(il) + - + *-, . . . rn P ,KK 

P+(tl)P-(+l),... 

e+e- .+ P(tli);(t%) ,Pb, A&. . . 

P(t%&?) ,A., . . . 

Ak%,a(&, , . . . 

sin*e 

2 sin e 

1 + cos*e 

1 + cos*e 

1 + cos*e 

1 + cos*e 

1 + cos*e 
2 sin e 

41 F(s) I * - c/s* 

t( F(s) I* - c/s* 

(nct/2)4FMy(s)~ * - c/s 

1 G(s) 1 2 - c/s4 
2 (G(s)\ - c/s4 
2 IG(s)I _ c/s4 

The exclusive decays of heavy quark atoms (+,$I ,. . . ) into light 
hadrons can also be analyzed in QCD. 22g16y1g The decay $ -+ pp for 
example proceeds via diagrams such as those in Fig. 4. Since Jl's 
produced in eSe- collisions must also have spin +l along the beam 
direction and since they can only couple to light quarks via gluons, 
all the properties listed in Table I apply to $, +', T, T',... decays 
as well. Already there is considerable experimental data for the $ 
and $' decays. 

Perhaps the most significanttestsarethedecays $,$'-+pp,nn,... . 
The predicted angular distribution l+cos2B is consistent with published 
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(a) ’ XI x2 x3 
A /+ * w 

-wx + W + . . . 

l-vu-u- MM 

YI y2 y3 

(b) 

C 

Ji 
c 

5 -II 

Fig. 4. (a) QCD analysis of 
Q -+ BB-. (b) Helicity-labeled, 
quark gluon subprocesses. 

data.16 This is important evidence favoring a vector gluon since 
scalar or tensor gluon theories would predict a distribution of 
sin2B+ &(a,). Dimensional counting rules can be checked by comparing 
the J, and +' rates into pp, normalized by the total rates into light- 
quark hadrons so as to remove dependence upon the heavy-quark wave 
functions1 Theory predictslg 

BR($ + PP) - 
BR($' +PF) 

where 

BR($ -f pp) : r($ + PP) 
r(j~ + light-quark hadrons) ' 

(3.9) 

(3.10) 

Existing data suggests a ratio (M$T/M,,,)~ with n - 8+ 3, in good 
agreement with QCD. 

Many more examples of exclusive reactions which test the basic 
scaling laws and spin structure of QCD are discussed in Refs. 2,7,19. 
The essential point is that exclusive reactions have the potential 
for isolating the QCD hard-scattering processes in situations where 
the helicities of all the interaction constituents are controlled. 
In contrast, in inclusive reactions the absence of restrictions on 
the spectator quark and gluons allows only a statistical correlation 
between the constituent and hadronic helicities. 

IV. EXCLUSIVE TWO-PHOTON PROCESSES15 

The two-photon reactions (M = IT,K,~,w,...) 

at large s = (k + k > 2 

E (YY + MM) 12 

and fixed 0 c-m. 
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provide a particularly important laboratory for testing QCD since 
these "Compton" processes are, by far, the simplest calculable large- 
angle exclusive hadronic scattering reactions. As we discuss below, 
the large-momentum-transfer scaling behavior, the helicity structure, 
and often even the absolute normalization can be rigorously computed 
for each two-photon channel.13 

Conversely, the angular dependence of the yy + ti amplitudes can 
be used to determine the shape of the process-independent meson "dis- 
tribution amplitudes," $M(x,Q), the basic short-distance wavefunctions 
which control the valence quark distributions in high momentum trans- 
fer exclusive reactions. 

A critically important feature of the yy + M!i amplitude is that 
the contributions of Landshoff pitch singularities are power-law 
suppressed at the Born level -- even before taking into account 
Sudakov form factor suppression. There are also no anomalous con- 
tributions from the x - 1 endpoint integration region. Thus, as in 
the calculation of the meson form factors, each fixed-angle helicity 
amplitude can be written to leading order in l/Q in the factorized 
form [Q2 = p2 = tu/s; 5 T X 

= min(xQ,(l-x)Q)] (see Fig. 5): 

11 

,M = dy +GCY,C~) TH(~,~,~9@cem,) 9,(x,Q,) (4.1) 
Y-Y-+-MM 0 0 

where TH is the hard-scattering amplitude yy-+(qq)(qq) for the pro- 
duction of the valence quarks collinear with each meson-and $M(x,Q> 
is the (process-independent) distribution amplitude for finding the 
valence q and 6 with light-cone fractions of the meson's momentum, 
integrated over transverse momenta kl < Q. The contribution of 
nonvalence Fock states are power-law suppressed. Further, the spin- 
selection rule (3.7) of QCD predicts that vector mesons M and E are 
produced with opposite helicities to leading order in l/Q and all 
orders in as(Q2). 

Fig. 5. (a) Factorized 
structure of the yy -t * 
amplitude in QCD at large 
momentum transfer. The TH 
amplitude is computed with 
quarks collinear'with the 
outgoing mesons. 
(b) Diagram contributing to 
TH (yy + MM) to lowest order 
in as. 
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Dimensional counting21 predicts that for large s, s4da/dt scales 
at fixed t/s or f3c.m. up to factors of Rn s/A2. 

gome forty diagrams contribute to the hard-scattering amplitudes 
for yy -+ MM (for nonsinglet mesons). These can be derived from the 
four independent diagrams in Fig. 5b by particle interchange. The 
resulting amplitudes for helicity zero mesons are: 

T* 167rci 
S 32~a (el - e2) 2a =- 

T 3s [ 1 x(1-x)Y(l-Y) 1 _ cos28 
-- c.m. 

(4.2) 

T+-t 161~a~ 321~ct 
(el - e2) 2 (1-a) ele2a(y(l-y) +x(1-x)) 

=--- 
T-+ 3s x(1-x)y(l-y) 1-cos2ec m 

+ 2 a 
. . 

-b2cos2Bc m . . 1 

where = (l-x)(1-y) +xy, the subscripts -I-t-,--,... refer to photon 

helicities, and el, e2 are the quark charges (i.e., the mesons have 
charges t(el - e2)). To compute the yy -+ MM amplitude &AX, (Eq. (4.1)), 
we now need 'only know the x-dependence of the meson's distribution 
amplitude $M(x,G); the overall normalization of $M is fixed by the 
'sum rule' (n, = 3) 

1 
fM 

dx$M(x,Q) = - 
2fi 

0 

(4.3) 

where fM is the meson decay constant as determined from leptonic 
decays. Note that the dependence in x and y of several terms in 
TAX, is quite similar to that appearing in the meson's electro- 
magnetic form factor (2.10): 

16ras 1 

FM(s) = 3s 
/ 

dxdy 
@GGx' q+Y ,Gy) 

x(1-x) y(l-Y) 
(4.4) 

0 

when $M(x,Q) = $M(l-x,Q) is assumed. Thus much of the dependence on 
$(x,9) can be removed from AAx, by expressing it in terms of the 
meson form factor - i.e., 

zz\ = 16na FM(s) [ ,“‘,~~i:),] 
(4.5) 

CM+- 
= 16na FM(S) 

( (el - e212) 
,fff-+ l- c0s2ec m 

+ 2(ele2) gpc.m. ;'M] 
. . I 
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up to corrections of order as and m2/s. Now the only dependence on 

@MY and indeed the only unknown quantity, is in the e-dependent 
factor 

1 

I 
dxdy 

@bTl 4$Y,$ a[y (1-y) + x (l-x)] 

x(1-x) y(l-y) 
0 

a2 -b2cos2ec m . . 
1 

dx dy 
qp,a QY,G) 

x(1-x) y(l-y) 

The spin-averaged cross section fol 
expressions: 

lows immedia tely from these 

' (4.6) 

do 2 do 
dt= s dcose c.m. 

FM(S) 2 = 16Ta2 7 

i 

22 
((el-e2) ) 2(ele2X(el-e2)2) 

i - c0s2ec m 
> 

2+ 
. . i - c0s2ec m . . 

(4.7) 

In Fig. 6 the spin-averaged cross section (for yy += GUT> are 
plotted for several forms of $M(x,Q). At very large energies, the 
distribution amplitude evolves to the form 

O,(x,Q) F J? fM x(1-x) , (4.8) 

and the predictions [curve (a)] become exact and parameter-free. 
However this evolution with increasing Q2 is very slow (logarithmic), 
and at current energies $M could be quite different in structure, 
depending upon the details of hadronic binding. kCurves (b) and (c) 
correspond to the extreme examples $M 0: [x(1-x)]& and $M 0: 6(x-%), 
respectively. Remarkably, the cross section for charged mesons is 
essentially independent of the choice of $M, making this an essen- 
tially parameter-free prediction of perturbative QCD. By contrast, 
the predictions for neutral helicity-zero mesons are quite sensitive 
to the structure of @M. Thus we can study the x-dependence of the 
meson distribution amplitude by measuring the angular dependence of 
this process. 

The cross sections shown in Fig. 6 are specifically for YY +-ITT, 
where the pion form factor has been approximated by F,(s) - 0.4 GeV2/s. 
The ~'n- cross section is quite large at moderate s: 
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Fig. 6. QCD predictions for 
yy + rr71 to leading order in QCD. 
The results assume the pion form 
factor 

5 
arameterization F,(s)- 

0.4 GeV /s. Curves (a), (b) and 
(c) correspond to the distribu- 
tion amplitudes 9 
[x(1-x)]%, and G(fri ;)x(l-x)y -/ , respec- 
tively. Predictions for other 
helicity zero mesons are obtained 

0 0.2 0.4 0.6 0.8 1.0 by multiplying with the scale 
z2 = cos* (8) II(L . constants given in Ref. 15. 

g (YY -f lT+Try 4/Fn(s)12 
"r 

1 - cOsiec m 
._ 

. . (4.9) 

"r 0.6 GeV4 at e 
2 =Tr/2 . c.m. 

S 

Similar predictions are possible for other helicity-zero mesons. The 
normalization of yy+I&l relative to the yy-fnr cross section is com- 
pletely determined by the ratio of meson decay constants (fM/f,)4 and 
by the flavor-symmetry of the wave functions, provided only that @M 
and $n are similar in shape. Note that the cross section for charged 
p's with helicity zero is almost an order of magnitude larger than 
that for charged r's. 

Finally notice that the leading order predictions [Eq. (4.5)] 
have no explicit dependence on es. Thus they are relatively insen- 
sitive to the choice of renormalization scheme or of a normalization 
scale. This is not the case for either the form factor or the two- 
photon annihilation amplitude when examined separately. However by 
combining the two analyses as in Eq. (4.5) we obtain meaningful 
results without computing O(cls) corrections. The corresponding 
calculations for helicity one mesons are given in Ref. 13. Hadronic 
helicity conservation implies that only helicity-zero mesons can 
couple to a single highly virtual photon. SO FQ, the transverse 
form factor cannot be measured experimentally. For simplicity we 
will assume that the longitudinal and transverse form factors are 
equal to obtain a rough estimate of the yy+plpl cross section 
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(Fig. 7):5 Again we see strong dependence on @ML for all angles 
except ecem, - ~/2, where the terms involving g1 vanish. Conse- 
quently a measurement of the angular distribution would be very sen- 
sitive to the x-dependence of @ML, while measurements at ecSm, = ~12 
determine FM (s). 

1. 
Notice also that the number of charged p-pairs 

(with any he Icity) is much larger than the number of neutral p's, 
particularly near ecmm, = a/2. The cross sections are again quite 
large with 

+- 
da/c-It (YY+P~P~) 

da/dt (YY -f IJ+V-> 

5 GeV4 - 
2 * (4.10) 

S 

8 
TT =- 

c.m. 2 

Results for other mesons are given in Ref. 15. 

IO4 

I o3 

I o2 

IO’ 

Fig. 7. QCD predictions for 
yy-fpl;~ with opposite helicity 
+l to leading order in QCD. 
The normalization given here 
assumes that the p distribution 
amplitude is helicity inde- 
pendent. 

0 0.2 0.4 0.6 0.8 I .O 
l-ii z2 q cos2 (8) ,861. 

The yy+@ and y*y-+M processes 
the basic Born structure of QCD, the 

thus provide detailed checks of 
scaling behavior of the quark 

and gluon propagators and interactions, as well as the constituent 
charges and spins. Conversely, the angular dependence of the yy+-6 
amplitudes can be used to determine the shape of the process- 
independent distribution amplitude $M(x,Q) for valence quarks in the 
meson qc Fock state. The cosec.m. -dependence of the yy+% amplitude 
determines the light cone x-dependence of the meson distribution 
amplitude in much the same way that the xB. dependence of deep inelas- 
tic cross sections determines the light-coAe x-dependence of the 
structure functions (quark probability functions) Gq/M(x,Q). 
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The form of the predictions 
order in as(Q2). 9 

iven here are exact to leading 
Power-law (m/Q) corrections can arise from mass 

insertions, higher Fock states, pinch singularities and nonperturba- 
tive effects. In particular, the predictions are only valid when 
s-channel resonance effects can be neglected. It is likely that the 
background due to resonances can be reduced relative to the leading 
order QCD contributions if one measures the two-photon processes wi:h 
at least one of the photons tagged at moderate spacelike momentum q , 
since resonance contributions are expected to be strongly damped-by 
form factor effects. In contrast, the leading order QCD yly2+MM 
am litudes are relatively insensitive to the value of q: or q$ for 
iq$ << s. 

Finally, we note that the amplitudes given above have simple 
crossing properties. In particular, we can immediately analyze the 
Compton amplitude yM-+yM in the region t large enough with s >> It\ 
in order to study the leading Regge behavior in the large momentum 
transfer domain. In the case of helicity +l mesons, the leading con- 
tribution to the Compton amplitude has the form (s >> It/> 

OZ(yM+yM = 167raF MI ct> (et + eff) 

x = 
Y 

A' , AM= Ah) 
Y 

(4.11) 

which corresponds to a fixed Regge singularity at J= 0. In the case 
of helicity zero mesons, this singularity actuaily decouples, and the 
leading J-plane singularity is at J=-2. 

v. APPLICATIONS TO HEAVY QUARK SYSTEMS 

We can also use the above formalism for calculating exclusive 
amplitudes such as the decay of heavy quark systems into light hadrons. 
If we approximate the Y as a ICE) bound state,then the lowest order 
amplitude for Y-tpp proceeds by the 3 gluon intermediate state shown 
in Fig. 4. The branching ratio islg 

r *+3g+pP) = l&M1 (Tj2 
p($+3g+all) 3.2~10~ as3(s) - - 

Ai s4 
(5.1) 

where I;cMl/& -N .4, s = 9.6 GeV2, and 

1 

<T> Z 
I 

[dxl [dyl 
c*(Yi,s) x1y3+x3yl 

0 
YlY2Y3 [xl(l-Y1) +Yl(l --x1) 1 b3(1-Y3) + y3u-x3) 1 

~(xi,s> 
X . (5.2) 

x1x2x3 
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Notice that there can be no endpoint singularities in the xi and 
yi integrations; the integrations are finite so long as $(xi,s) 5 Rx: 
as Xi + 0 for some E > 0. For this reason the present analysis is 
perhaps more reliable than that of the electromagnetic form factor. 
However, calculations of P($ -+ pi) cannot be carried beyond the first 
order corrections without a deeper understanding of the heavy-quark 
wave function. Still, the power-law behavior and hadronic helicity 
conservation are features valid to all orders and, given the uncer- 
tainties involved in analyzing heavy quark wave functions, they 
remain the most interesting aspects of this and similar decays. In 
addition, measurement of the BE branching ratios can be used as an 
important constraint on the normalization and shape of the baryon 
distribution amplitudes. 

VI.. RELATED QCD PROCESSES 

The %ock state description of the hadron wavefunctions at equal- 
time on the light-cone allows a systematic study of a large number 
of QCD phenomena: 

(a) The x + 1 behavior of structure functions can be analyzed 
perturbatively. Only the minimal Fock state components 
contribute to the limiting behavior. The main power behav- 
ior corresponds to the spectator counting rule- 23 with strong 
spin correlations. The perturbative QCD predictions reflect 
the elementary scaling of quark and gluon propagators in 
the far-off shell domain. A striking QCD prediction is 
that the helicity of the hadron tends to be carried by the 
constituent with the highest x.24 The evolution of the 
structure functions must take into account the strong-phase 
limits at x + 1. Detailed discussions of these results and 
the breakdown of the exclusive-inclusive correction are 
given in Ref. 24. 

(b) The Fock state structure of QCD at infinite momentum is 
more complex than usually assumed in phenomenological 
applications. In addition to the "extrinsic" gluons gen- 
erated by QCD evolution, there are always "intrinsic" gluons 
and non-valence quark components in the hadron wavefunction 
which are insensitive to the momentum scale of the probe.25 
For example, the X = -II gluons exchanged between-quarks, 
boosted to infinite momentum, yield an intrinsic gluon com- 
ponent to the Fock states. An even more striking example 
is the prediction26 of "intrinsic charm" in the proton and 
meson wavefunctions. One can estimate,27 using the bag 
model and perturbative QCD, that the proton bound state has 
a luudc?) c omponent with a probability of -l-2%.' When this 
state is Lorentz boosted to infinite momentum, the constit- 
uents with the largest mass have the highest x. Thus heavy 
quarks (though rare) carry most of the momentum in the Fock 
state in which they are present. The usual parton model 
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assumption that non-valence sea quarks are always found at 
low x is incorrect. The diffractive dissociation of the 
proton's intrinsic charm state provides a simple explana- 
tion why charmed baryons and charmed mesons which contain 
no valence quarks in common with the proton are diffrac- 
tively produced at large XL with sizeable cross sections at 
ISR energies.26p28 
The irreducible Fock state wavefunctionsof a hadron are 
strongly damped at x -+ 1 and x -+ 0, and thus do not yield 
non-singlet Regge behavior in the leading twist structure 
functions. If such Regge behavior exists it is specific to 
reducible nonperturbative corrections to the quark legs. A 
discussion will be given in Ref. 29. 
The distribution amplitude can be used to normalize higher 
twist (power-law suppressed) subprocesses in inclusive 
reactions. For example, one can compute a C/Q2 contribu- 
tion to the meson longitudinal structure function at large 
x from the y*q: + qG amplitude. This contribution is 
normalized to the meson distribution amplitude which in 
turn is normalized to the pion form factor.30 

2 Q2 
F;(x,Q) = + CF 

/ 
dk2 as(k2) Fr(k2) 

Q m2/(l-x) 

(6.1) 

which numerically is FL - x2/Q2 (GeV2 units). 
The dominance of the longitudinal structure functions 

in the fixed W limit for mesons is an essential prediction 
of perturbative QCD. Perhaps the most dramatic consequence 
is in the Drell-Yan process rp + R+R'X; one predicts31 that 
for fixed pair mass Q, the angular distribution of the R+ 
(in the pair rest frame) will change from the conventional 
(l+cos26+) distribution to sin2(f3+) for pairs produced at 
large XL. A recent analysis of the Chicago-Illinois- 
Princeton experiment32 at FNAL appears to confirm the QCD 
high twist prediction with about the expected normalization. 
Striking evidence for the effect has also been seen in a 
Gargamelle analysis 
in vp -+ r+p-X. 

33 of the quark fragmentation functions 
The results yield a quark fragmentation 

distribution into positive charged hadrons which is con- 
sistent with the predicted form: dN+/dzdy - B(~--z)~ + 
(C/Q2)(1-y) where the (l-y) behavior corresponds to a 
longitudinal structure function. It is also crucial to 
check that the e+e- + MX cross section becomes purely 
longitudinal (sin20) at large z at moderate Q2. Similarly 
one can absolutely normalize higher twist34 (PT -6 -scaling) 
amplitudes such as qq + Mq and qq + Mg, which contribute 
strongly to pp + MX inclusive reactions at sub-asymptotic 
transverse momentum PT. The corresponding analysis of y 
induced reactions and yq -+ Mq subprocesses is discussed 
in Ref. 35. The higher-twist amplitudes Tq + gq and 
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Tg -f qg lead to dramatic high pT jet production processes 
where there is no hadron energy in the meson beam direction 
(see Ref. 36). Again, these cross sections can be abso- 
lutely normalized to the pion form factor. 

(e) The Fock-state, light-cone perturbation theory methods 
allow a straightforward analysis of the effects of initial 
state hadronic interactions on QCD predictions for inclu- 
sive reactions such as the Drell-Yan reaction pp -+ p+n-X. 
As shown in Ref. 37, initial-state (Glauber) scattering 
severely disturbs the transverse momentum distributions of 
the interacting constituents. The Ql distribution of the 
dimuon pair is therefore not directly related to the in- 
trinsic transverse momentum of the quarks in the hadronic 
wavefunction. Even more important, the color exchange 
between active quarks and spectator constituents in the 
hadron-hadron collisions leads to a non-trivial renormal- 
ization of the QCD factorization predictions, which however 
does not change the basic A1 dependence of hadron-nucleus 
lepton-pair production processes at large Q2. A detailed 
discussion will be given in Ref. 37. 

(f) An important task is to further constrain the form and 
normalization of each Fock state wavefunction, especially 
for valence Fock states. A articularly interesting con- 
straint is provided by the TF 6 -+ 2y decay amplitude in the 
M2 << Rm2 limit. In a recent analysis with T. Huang, we 
obtain The constraint38 ._ 

k) 

1 

J 

G 
dx $ qq (kl = 0,x) = -g- 

0 

(6.2) 

which can be interpreted as a constraint on the non- 
perturbative valence pion wavefunction at large distances. 
This result, plus the boundary condition (2.9) for the 
pion wavefunction at the origin, leads to the result that 
the probability of finding the qq state in the pion is 
5 1/4, for a wide range of parameters of the kl and x 
dependence of &(x,kl). This result reinforces the argu- 
ment that higher Fock states play an important role in the 
destruction of light hadrons. A discussion of the con- 
nection between rest frame and light-cone wavefunctions 
is also given in Ref. 38. 
Basic electromagnetic properties of hadrons such as low 
Q2 form factors, magnetic moments, etc., can be defined 
in terms of the light-cone Fock state and wavefunctions. 
Detailed derivations are given in Refs. 2, 39. The 
analyses are inevitably complicated by the fact that the 
low Q2 form factors receive contributions from all of the 
hadron Fock states, not just the valence ]qq) and Iqqq) 
components. 
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(h) The methods used here have general applicability to atomic 
physics and nuclear physics problems. For example, the 
results discussed here for yy* + ~0 can be taken over im- 
mediately to yy* -f positronium with an obvious change of 
parameters. The value of A CD sets the approximate scale 
whereanuclear physicsdescr P ption in terms of hadronic 
degrees of freedom must merge with the QCD description in 
terms of quarks and gluons. It is also interesting to note 
that nuclear Fock states are much richer in QCD than they 
would be in a theory in which the only degrees of freedom 
are hadrons. For example, if we assume that at low rel- 
ative momentum a deuteron is dominated by its usual n-p 
configuration, quark-quark scattering automatically 
generates color-polarized 6-quark states such as 
I(uuu)8(ddd)8) at short distances. The implications of 
QCD for large momentum transfer nuclear form factors and 
the nuclear force at short distances is discussed in 
Ref. 40. 

(i) The fact that a meson can exist as a [qq) state at small 
- transverse separation implies that part of the time a 

meson will interact only weakly in nuclear targets. Such 
a state can be diffractively dissociated into q plus 6 jets 
at relatively large transverse momentum separation. A 
detailed discussion of such processes is given in Ref. 28. 
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