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ABSTRACT 

Interpoint-distance-based graphs can be used to define measures of asso- 

ciation that extend Kendall's notion of a generalized correlation co- 

efficient. We present particular statistics that provide distribution- 

free tests of independence sensitive to alternatives involving non-mono- 

tonic relationships. Moreover, since ordering plays no essential role, 

the ideas are fully applicable in a multivariate setting. We also de- 

fine an asymmetric coefficient measuring the extent to which (a vector) 

X can be used to make single-valued predictions of (a vector) Y. A dis- 

cussion of various techniques for proving such statistics asymptotically 

normal is included. As an example of the effectiveness of our approach, 

we present an application to the examination of residuals from multiple 

regression. 
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Introduction 

The theory of generalized correlation coefficients, as advanced by 

Daniels, Kendall, and others (see Kendall, 1962, p.l9),exposes the under- 

lying structure of such useful tools as Spearman's p and Kendall's I-. 

The theory can be exploited to provide measures of correlation that. 

while still intended to uncover monotone relationships, are less speci- 

fically directed towards linearity than Pearson's product-moment formu- 

lation. Permutation tests of "no correlation" that are distribution-free 

can be constructed from such statistics. It is our purpose to (1) define 

tests that have power against non-monotone alternatives, (2) follow the 

same program in a multivariate setting, and (3) define a statistic 

that will measure how predictable a random vector Y is from a random 

vector X, without regard to how well X can be predicted from Y. This last. 

statistic forms the basis of a test of "no correlation" that has power 

against alternatives where many X values may be associated with (nearly) 

the same Y value. Our approach is motivated by interpoint-distance-based 

graphs and focuses on the degree to which closeness of two vectors in 

one space is matched by closeness of the corresponding two vectors in 

the other. Note that this is not the same as requiring high correlation 

between the corresponding interpoint distances in the two spaces; large 

distances are not considered. When using the statistics proposed herein, 

values significant under the "no correlation" null hypothesis should be 

used to signal the need to examine the nature of the uncovered relation- 

ship, not as a final answer to some sharply defined question. 
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Generalized Correlation Coeffeicient 

Consider a sample (xi,yi), i=l,N, of ordered pairs. A generali- 

zed correlation coefficient, ignoring standardization, is a statistic of 

the form 

N N 
r= c x a.. b.. 

i=l j=l ‘J 1J (1) 

where a ij is a score for every pair (i,j) of X observations and b.. is 
1J 

a score for every pair of Y observations. As is well known, the choices 

a ij =x 

and a.. 
1J 

b i+j’ ij = yi-y.i a.. 
J 1J 

= rank(xi)-rank(xj), bij = rank(yi)-rank( 

= sign (xi-xj), b.. 
1J 

= sign (yi-yj) lead to the Pearson, Spearman, 

and Kendall measures, respectively (Kendall, 1962). Conditioning 

on the sets {xi1 and fyi1 of observed X and Y values, a test of "no cor- 

relation" is available using the distribution of 

(2) 

where n is a permutation of (1,2,... ,N), with all permutations having 

equal probability. The tails of this distribution determine whether or 

not the value (1) is too positive or negative an extreme. This is an 

appropriate test since "no correlation" may be thought of as having all 

N! permutations of the Y subscripts -- i.e., all possible X-Y pairings -- 

equally likely. 

The notion of a generalized correlation coefficient (1) need not be 

restricted to two univariate variables; scores a.. and b.. can be defined 
1J 1J 

for vectors. However, the notion of ordering which plays an essential 

role in the formulation of Spearman's P and Kendall's T is not available 

for multivariate observations. 
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Interpdint-Distance Based Graphs 

In extending such measures to multivariate observations, our intu- 

ition has been guided by the notion of interpoint-distance-based graphs. 

These graphs have the sample observations (considered as points in 

Euclidean space) as nodes. Such graphs can summarize the useful proper- 

ties of the N(N-1)/2 interpoint distances. Consider a graph for which 

every observation point is a node, and each node pair defines an edge. 

Such a (complete) graph has N nodes and N(N-1)/2 edges. Assign as a 

weight to each edge the Euclidean distance (or generalized dissimilarity) 

between the nodes defining it. Our statistics are based on spanning sub- 

graphs of this complete graph. A subgraph of a given graph is a graph 

with all of its nodes and edges in the given graph. A spanning subgraph 

has its node set identical to the node set of the given graph. 

Spanning subgraphs that we have found useful are the K nearest-neigh- 

bor graph (KNN) and the K minimal spanning tree (KMST). The KNN has an 

edge between each point and its K closest points. The KMST is a generali- 

zation of the minimal spanning tree (MST), well known in graph theory. 

Define a path between two prescribed nodes in a graph as an alternating 

sequence of nodes and edges with the prescribed nodes as first and last 

elements, all other nodes distinct, and each edge linking the two nodes 

adjacent to it in the sequence. An MST is a spanning subgraph with the 

property that it provides a path between every pair of nodes with minimal 

sum of edge weights, i. e., minimal total distance. It is immediate that 

MSTs have precisely N-l edges and do indeed form a tree, i.e., have no 

cycles. Note that the MST of points in R1 simply connects the points in 

sorted order. 
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An MST connects (provides a path between) all of the points with 

minimal total distance (sum of edge weights). A second-MST connects all 

of the points with minimal total distance subject to the constraint that 

it share no edges with the MST. (Two graphs that share no edges are 

said to be orthogonal.) A k-MST is a minimal spanning tree orthogonal 

to the (k-l) through the second MST and the MST. The KMST is the graph 

defined by all of the edges of the first k-MSTs. A KMST clearly has 

K(N-1) edges. If K<<N, the edges of both the KMST and KNN graphs will 

mainly be defined by node pairs of small interpoint distance. 

These concepts are illustrated in Figure 1. Figure la displays 50 

points in the plane. Figure lb shows the (l)NN graph for these points 

and Figure lc shows the (l)MST. Figures Id and le show the 5NN and 5MST 

respectively. 

Interpoint-distance-based graphs can also be defined for (multi- 

variate) unordered categorical variables using "Hamming Distance" (the 

number of coordinates for which two observations realize different cate- 

gories). A graph can then be constructed by connecting nodes at zero 

distance from each other, or by choosing a strategy for resolving ties 

and building a KMST or KNN. 

Computational methods for constructing KNN and KMST graphs, given a 

set of observations and an appropriately defined distance or dissimilarity 

measure, can be found in the appendix of Friedman and Rafsky (1979). 

Association Measures Based on Graph Intersections 

The Kendall measure of association T can be defined in terms of the 

number of edges in the intersection of two graphs, that is, the number 
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of edge's the two graphs have in common. For univariate observations, 

consider the graph in which each unique pair of observations (i,j) define 

an edge if and only if x~x.. 
J Consider another such graph in which ob- 

servations i and j define an edge if and only if yi<yj. Let i? be the 

number of edges shared by these two graphs. This number will clearly tend 

to be large for a Strong positive mOnOtOne relation between X and y, and 

small for a negative one. In fact, r is related to Kendall's T by 

T = (r/N )-1. 

In order to have power against more general alternatives, we use, 

instead of the graph defined above, the interpoint-distance-based (KMST 

or KNN) graphs defined in the previous section. As before, one graph G, 

is defined over the X observations and a corresponding graph Gy is defined 

over the Y observations. The test statistic r is taken to be the number 

of edges in the intersection of the two graphs. The valie of such a sta- 

tistic will tend to be large if observations which are close in X also 

tend to be close in Y. Since KNN and KMST graphs (K<<N) involve very few, 

if any, large distances, the test statistic will reflect only the extent 

to which closeness is correlated between the two spaces without regard 

to the correlation (or lack of it) for larger distances. This test is 

applicable to both univariate and multivariate observations and will be 

able to detect general relationships, i.e., those that are not necessarily 

one-one (non-monotone in the univariate case). 

Measures of association based on graph intersections can be easily 

cast in the form of generalized correlation coefficients (1). Let 



-6- 

a I 1 if edge (i,j) E Gx 

ij = 0 otherwise 

b 
ij = 

I 

1 if edge (i,j) E Gy 

0 otherwise 

then clearly 

1 N. N 
r = - C c a.. b.. 12 iyl j=l ‘J ‘J 

(3) 

(4) 

(5) 

is the number of edges in the intersection. 

Measures of Prediction 

The association measures defined above measure the extent to which 

close-values in one space (X) are matched by close values in the other 

U) 3 as reflected by the sample, without regard-for the -larger distances. 

It is this lack of regard for the larger distances that gives rise to 

power for general relations between the X and Y. The price paid for this 

generality is less power in those situations in which the relationship is 

one-one, many-one, or one-many. In these cases, including the larger 

distances in an association measure can greatly increase power. 

In the many-one situation it is often important to know how well a 

(possibly vector valued) variable X can be used to make single valued 

predictions of a (possibly vector valued) variable Y without regard for 

how well X can be predicted from Y. The association measure defined in 

the previous section has sufficient generality but sacrifices some power. 

A more powerful test of association for such many-to-one relations would 

involve only small interpoint distances in the X space while making use 

of both small and large distances in the Y space, thus taking advantage 
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of the (hypothesized) single valued dependence of Y on X. 

As in the previous section, let Gx be an interpoint-distance-based 

(KMST or KNN) graph defined over the observations in the X space. For 

each observation i, rank the other observations j#i in increasing order 

of their distance from i in the Y space. Let Ri(j) be the position of 

the jth observation in the list of observations ordered in increasing Y 

distance from observation i. Defining a.. as in (3) and b.. = Ri(j), we 
1J 1J 

have as our proposed measure of prediction 

t+ N N N 

r2= c x a..b..= z 
i=l j=l 1J 1J 

z a.. Ri(j) 
i=l j=l ‘J 

or (6) 

i-2 = \-\ 
6%X, Ri(jI- 

Nnt.e that here rejection is for small values of r2: 

Distribution Moments 

The moments of r(n) are determined by the scores aij and bij. It 

is straightforward, if laborious, to compute them directly from these 

scores. In this section, we present the first two (central) moments 

for the scores used in (5) and (6) in terms of easily obtained parameters 

of the corresponding graphs. These results are derived in the Appendix. 

Consider first the association measures based on graph intersections 

(3-5). Let ex and ey be the number of edges, respectively, in the two 

graphs. (Since Gx and Gy are spanning subgraphs of the complete graph, 
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they both contain N nodes as does their intersection.) For the case of 

KMST graphs, the number of edges is always K(N-1). For KNN graphs, the 

number of edges will depend on the actual point scatter of the obser- 

vations. 

Define the degree di of node i to be the number of edges which it 

(along with some other node) defines --in other words, the number of 

edges "incident" upon it. The average degree of the nodes in a graph is 

related to the number of edges by 

(7) 

The second graph parameter determined by the set of node degrees used in 

calculating the second moment is the number of edge pairs that share a 

.common node. This parameter, C, is related to the node degrees by 

c = ' di(di-1)/2 . 
jYj 

(8) 

The first two (and, in fact, all of the) moments are determined by 

the set of node degrees of the two graphs Gx and Gy. 

Let Cx(Cy) be the number of edge pairs that share a common node for 

Gx (respectively Gy). The first two moments of rl (5) are: 

E I[qJe,, "UI =+g-+ 
(9) 

Var DjJex, ey3 Cx, Cyl = (10) 

4 Cex(ex-l 1 - 2Cx] [e (e -1) - 2C 

+ N(N-l)(N-2) cxcy + y-3 
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Fdr the prediction measure (6), the moments are determined by the 

set of node degrees of Gx (through ex and Cx) and two parameters of the 

matrix R whose elements are Ri(j). Let 

AR= ; X Ri(j) Rj(i) 
i=l j=l 

N [ I, 
2 

BR = i!, 5 Rj(i) . 
j=l 

then 

E [r2 1 ei] = ex N 

and 

var [r2 
1 

ex+AR,BRl = 

uu 

(12) 

(13) 

e2 

N-G I 
N(3N+l) + 4(AR - BR) 

3 TqTiq7F22J I 

2(N-l)(N-4)AR + 4BR N(N-.l)(N+2) (14) 

N(N-l)(N-2) - 3 

2c 
t 

(N-Z);N-3) 
I 

(N+l) BR-Z(N-1)AR 

N(N-1) ' - - 
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Asymptotic Normality 

In this section, we discuss conditions under which the permutation 

distributions of L', and r2 are asymptotically normal. Our results have 

as their basis the work of Daniels (1944) on the permutation distribution 

of generalized correlation coefficients (2). 

Daniel< proof of the asymptotic normality of (2) rests on two con- 

ditions on the scores aij and bij: 

a ij 
= -a.. and b.. = - b. 

J’ 1J Ji’ 

X a.. aik - N 3 and c b.. bik-N 
3 

ijk lJ ijk lJ 

(15) 

(16) 

A careful reading of Daniels' proof reveals that (15) is used only to in- 

sure 
Ca 
ij ij 

= x bij = 0 
ij 

(17) 

but the weaker condition (17) can always be assumed without loss of gen- 

erality by simply centering the aij and bij. Moreover, Daniels' arqu- 

ments remain valid if (16) is replaced b,y the weaker 
2 \T a . . 

lim iyk& lJ aik aib 1 = 0 - f++oo C a.. aik 
ijk iJ I" 

(18) 

with a similar condition on the b... 13 
With the scores a.. and bij IJ 

defined in (3) and (4), conditions (16) 

and (18) become 
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N 
z dp - N3 as N -) co 
j=l 

(19) 

3 

and lim 
N-a 

i 
[ .I ; d3 

i=l ' = 0 (20) 

for both Gx and G . 
Y 

'These conditions place restrictions on the topology 

of the graphs Gx and G 
Y 

. 

Condition (19) requires the graphs to be dense. For example, (19) 

can be-insured if the degree of each node grows linearly with N. Choosing 

K proportional to N, KNN and KMST graphs meet this requirement. Since 

the number of edges of a graph is related to the average node degree by 

(7), this would require ex and ey to grow quadratically in N, or linearly 

in N(N-1)/Z - the number of edges in the complete graph. 

Condition (20) permits Daniels' proof to be applied to sparse graphs 

as well. For example, consider the case in which the maximum node degree 

is bounded by a constant independent of N. This would obtain for KNN 

and KMST graphs based on Euclidean or more general (e.g., qth power) dis- 

stances if K is held constant with increasing h!, Sphere pac'king properties 

of p-space (Leech and Sloane, 1971) imply that the maximum degree in this 

case is bounded by a constant depending only on p. Under these conditions 

ex and ey grow only linearly with N so that Gx and Gy link a vanishingly 

small fraction of the N(N-1)/Z node pairs as N becomes large, resulting 
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in very sparse graphs. Clearly the numerator of (20) grows as N2 tihile 

1 dis- the denominator grows as N3, thereby insuring the limiting norma 

tribution. 

There are sequences of sparse graphs for which (20) is violated and 

the limiting distributions are not normal. Such a sequence could be con- 

structed of "fan" graphs which have N-l nodes with degree one and one 

node with degree N-l. For these graphs, the numerator and denominator of 

(20) both grow as N6 and the condition is violated. The permutation dis- 

tribution of the number of edges in the intersection of these Gx with any 

Gy puts equal probability on each node degree of Gy. Since a sequence of 

Gy's can be chosen with maximal degree bounded independent of N, such 

distributions cannot approach normality as N increases. In order to in- 

sure an asymptotic normal distribution for r, (or r,) as well as have 

power for the corresponding tests, it is important that as N increases, 

the increasing number of edges of the spanning subgraph be distributed 

among the node pairs in a way that prohibits a (too rapidly) decreasing 

fraction of the nodes from defining a (too rapidly) increasing fraction 

of the edges. 

The asymptotic normality of the distribution of r2 depends com- 

pletely on Gx satisfying (19) or (20). The scores bij = Ri(j) can easily 

be seen to satisfy (20) since the numerator grows as N 14 while the denom- 

inator grows as N 15 . 



- 13 - 

Previous Nork 

of monotone 

of the samp 

observation 

Generalizations to a multivariate setting of nonparametric measures 

association have mostly been based on projection rank analogs 

le covariance matrix. That is, the coordinate va lues of each 

are replaced by their corresponding ranks in the projection 

on each coordinate (or possibly some transformation of the ranks) and the 

covariance matrix computed. Tests for association can then be based on 

this matrix (see Puri and Sen, 1971, for a survey). The earliest use (in 

a limited setting) of measures of association based on interpoint-distance- 

based-graphs appears to have been in epidemiology (see Knox and Braith- 

Waite, 1963, and references therein). For these studies, the X space (in 

the language of this paper) was taken to be a (two-dimensional) map of 

the locations of the onset of a particular disease. The Y space was the 

-t one-dimensional) time of disease onset. A high association between 

positions in space and time is evidence for epidemicity (that is, real 

or apparent contagion). 

The graphs used in these studies were all distance threshold graphs. 

That is, each point is connected to all points within a prespecified dis- 

tance. For example, Knox (1964) used a map distance threshold of one 

kilometer and a time distance threshold of 59 days. Knox specu’lated that 

if the graphs were sufficiently sparse (number of edges very small com- 

pared to the complete graph) the number of observations so adjacent in 

both space and time would be approximately a Poisson variable. 

Barton and David (1966) introduced the graph theoretic specification 

of the problem,derived the first two moments (9) and (lo), and set up a 

methodology for computing higher moments. 
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They were also the first to study the asymptotic permu- 

tation distribution of statistics based 

on graph intersections. They show for the case of ex and ey both growing 

linearly in N and the graphs Gx and Gy having a low degree of connective- 

ness,relative to their respective number of edges (such graphs are called 

"incoherent" - see Barton and David, 1966, Section 3.7, for precise 

definitions), I?, tends toward a Poisson distribution as N increases. 

Abe (1969) points out that there is no valid ground, under the Barton 

and David conditions, for applying the central limit theorem for a 

Poisson variable, and thereby deducing asymptotic normality in such situa- 

tions. However, for the special case of distance threshold graphs 

considered by Knox, the theory of U-statistics (Hoeffding, 1948) can be 

applied to directly deduce asymptotic normality under very general condi- 

.tions. Unfortunately, statistics based on the intersection of KNN and 

KMST graphs are not U-statistics, and we must appeal to our generaliza- 

tion of Daniels' (1944) conditions (18, 20) for the case of sparse graphs. 

Abe (1969) shows asymptotic normality for statistics based on graph 

intersections provided e, and e 
Y 

satisfy N5" < exey and (exey/N3)r -) 0 

for all r >2 as N -+ co. This result is not applicable to sparse graphs 

ceX 
and/or e 

Y" 
N),, or dense graphs (ex and/or e - N'). 

Y 
It can, how- 

ever, be applied to some cases between these two extremes.. For example, 

e e 
XY- 

Nty for 2.5 < u < 3. 

There has been considerable work on the asymptotic distribution of 

statistics similar to (2) under a variety of conditions; see, for example, 

Jogdeo (1968), Brown and Kildea (1978), and Shapiro and Hubert (1979). 
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However, the asymptotics introduced by Daniels (1944) appear to pro- 

vide the most general conditions for the asymptotic normality of our 

statistics r, and r 2. 

Although not suggesting graphs, Mantel and Valand (1970) discussed 

using the direct correlation between the interpoint distances as a mea- 

sure of association between two multivariate spaces. As discussed above, 

such measures are mainly sensitive to one-one relationships. They do 

mention, however, the possibility of weighting the distances so as to in- 

crease the influence of the smaller distances. 

Shepard and Carrol (1965) discuss using interpoint distances in 

forming measures of prediction for multivariate observations in the con- 

text of parametric mapping and multidimensional scaling. Simon (1977) 

and Weier and Basu (1978) discuss measures of association specifically 

directed at the hypothesis of total independence of the-variables. 

Notes 

(1) A situation for which 1'* is appropriate is testing goodness-of-fit. 

Suppose the relation between 1 and 3 can be expressed as 

1 = f(X) •t E - 

where f is a single valued function and 

lx = L] = 0. E[E 

The "no correlation" nul 

HO 

1 hypothesis is 

: f(X) = constant. 

(21) 

(22) 

(23) 



If instead our hypothesis is f(L) = g(X), where g(X) is a specified 

function, then we may test whether the function g(X) exhausts the pre- 

dictive relationship of 1 on 3 or whether a more elaborate (or perhaps 

different) model might be in order. This is equivalent to testing that 

there is no association between Y-g@) and 5. Note that association 

measures directed at one-to-one relationships are not suitable for this 

application. The general association measure r, (5) is suitable but is 

less sensitive than r2 because it does not use to advantage the (pre- 

sumed) single-valued relation of Y on X. - - 

(2) The two-sample runs test (Wald and Wolfowitz, 1940) as well as its 

mult ivariate general ization (Friedman and Rafsky, 1979) are a special 

case of r, (5). The graph Gx is taken to be the MST over the values of 

the (pooled) observations. The graph Gy is defined over-the categorical 

variable that labels the sample identity of each observation: all points 

are connected to all others with the same label. With these definitions 
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for Gx and G , 
Y 

the number-of-runs test statistic R is simply related to 

I-, by R = N - r, t 1. When cast in this framework, it is easy to see 

how to generalize both tests to cases of more than two samples: the 

categorical sample identity variable simply takes on more than two values. 

The asymptotic null distribution for such a test is guaranteed to be nor- 

mal by (20) and'its first two moments are easily derived from (9) and (10). 

(3) As with all methods based on interpoint distances or dissimilari- 

ties, the definition of distance (or dissimilarity) is important. KNN 

and KMST graphs depend on the sorted order of the edge weights of the 

complete graph. Different distance (or dissimilarity) measures can re- 

sult in a different order. For the case of a single variable X, 
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d = 
ij II xi-Xjl is a natural definition of distance. For vector valued 

variables, there are a variety of definitions possible. Weighted 

Euclidean (or more general qth power norms) are often used with the 

weight for each variable chosen by the researcher to reflect its pre- 

sumed importance within the context of the problem. Although KNN and 

KMST graphs are resistant to moderate changes in the coordinate weights, 

they are not fully robust, and the power of these tests for particular 

situations can depend on specific choices. Note, however, that since 

these statistics depend only on the order of the interpoint distances 

rather than the actual values, they are robust to (possibly large) 

changes involving only a small fraction of the observations. 

(4) -In addition to choice of distance (dissimilarity) measure, another 

important choice is the size (number of edges) of the spanning subgraphs 

Gx and Gy. In some cases (e.g., graphs on a single categorical variable), 

this is fixed by the nature of the graph definition (e.g., all points 

linked to all other points with the same value). In the case of KNN or 

KMST graphs, the size of the graph is determined by the choice of K. 

The best choice will depend upon the particular situation and there are, 

as yet, no specific guidelines. As the sample size becomes large, it is 

unlikely that the best choice would involve having both graphs sparse; 

that is, both ex and ey growing linearly with the sample size. Similarily, 

it is unlikely that both graphs should be dense: ex and ey growing as N2. 

Choices between these two extremes are likely to be best. For example, 

the Wald-Wolfowitz runs test takes one graph (sample identity) to be 

dense and the other (MST) to be sparse. 
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An Example 

In order to study the effectiveness of our approach, we apply the 

statistic r2 to the goodness-of-fit problem discussed in the previous 

section. For each experiment, a sample of 100 (X,Y) pairs (;CRp, YCR') 

were drawn according to the model 

with 

Y = f(Z) •t E (25) 

c 
f(X) = 10 z (Xi - l/2)2, (26) 

i=l 

each Xi drawn from a uniform distribution over the interval [O,l] and 

each E drawn from a standard normal distribution. For each experiment, 

the hypothesis (23) was tested using the reference distribution given 

by (13), (14) and normality. The graph Gx was taken to be the 5MST 

-defined over the X points using simple equal weighted Euclidean distance. 

(Other similar choices for Gx lead to nearly the same results.) A run 

of 100 experiments was performed for each p, 1 s p I 10. The fraction 

of experiments in each run for which the value of r2 was less than the 

five percent point of the reference distribution was used as an estimate 

of power at five percent significance. 

In addition, the data of each experiment was fit to the model 

t S(X) = PO + i$l Bixi (27) 

and hypothesis (23) tested using f(X) = Y-g(X). The parameters pi, 

0 5;i zz p, were estimated by least squares. 
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Figure 2 shows a plot of yi vs. xi, 1 5 i 2 100, for one of the ex- 

periments (the first) from the 100 experiments comprising the run for 

p=l. Table 1 shows a summary of the resu Its for all ten runs. Included 

in the table for each run is the ratio of the standard deviation of f(X) 

(26) to that of E. 

Also included in Table 1 are results for a second study where we 

chose the null case (f(X) = 0) to test the adequacy of the normal approxi- - 

mation. The number of experiments for which rT was less than the 5% point 

of the reference d istribution is d splayed. 
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TABLE 1 

Y = f(X) -I E 

Power at 5% Sianificance 

P [ 

Var Cf(X)l 
vYiqTT- 1 Y vs 5 Y - 

i g; o- /--/a .x:vs x 
i=ll' - 

f (&)=O 

1 0.72 1.0 1.0 

2 1.02 1.0 1.0 

3 1.26 1.0 1.0 

4 1.48 0.99 0.98 

5 1.67 0.97 0.90 

6 1.81 0.87 0.70 

7 1.98 0.76 0.49 

8 2.01 0.67 0.29 

9 2.25 0.59 0.22 

10 2.32 0.49 0.20 

f(X) = in, (xi-1/2)2 
x - u[O,llP E- N(W) 

100 observations per experiment 

100 experiments per run (value of p). 

7 

6 

7 

2 

8 

6 

10 

4 

3 

9 
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The ability of a test based on r2 to reject (23) for these data is 

seen to decrease with increasing dimension. For low to moderate dimen- 

sion (p zc 6), the power is reasonably high. 

Summary 

An association measure (r,) has been developed that is sensitive to 

general alternatives. A measure of one-way single valued association 

(r2) has also been developed that can be used as well for testing 

goodness-of-fit. These measures are based on interpoint distance graphs 

(spanning subgraphs of the complete graph) in which the observations are 

nodesc Two particular spanning subgraphs -the KNN and KMST- have been 

proposed as being especially suitable for this purpose. Since these 

graphs, as well as the matrix Ri(j), can be defined for vector valued 

observations, all results are applicable in multivariate settings. An 

extension to Daniels' (1944) theorem on the asymptotic normality (of the 

permutation distribution) of generalized correlation coefficients is used 

to derive the asymptotic null distributions of these statistics. 

A FORTRAN program implementing the tests described is available . 

from either author. 
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APPENDIX: MOMENT CALCULATIONS 

In this section, we present the detailed calculation of the first 

two moments of the permutation distribution (2) for the statistics r, 

(3-5) and r2 (6). The results are presented in (9), (lo), (13), and (14). 

(9). Label the edges of G, arbitrarily and We first derive E[r, 

define the indicator variable zi as 

Then 

and 

z. = 
1 

r, = 

1ifiEG 
Y 

1 li <e - x' (A') 
0 otherwise 

e 
X 

~ ‘i, 

i=l 

e 

q1 = $ E[zi] = e, Pr I~.~=11 ._ 
i=l 

072) 

(A3) 

The quantity Pr{zi=ll is the probability that a randomly selected edge is 

in G 
Y' 

This is just the ratio of the number of edges in Gy to the total 

possible number of edges (in the complete graph). Thus, 

Pr {zi=l} = eY 
No/2 

so that from (A3) we have the result (9). 

Consider next Var[T,] (10). From (AZ) one has 

e 

Var[i-J = 2 
i=l 

Var[zi] + 2 L' cov(zi,zj). 
kj 

(A41 

(A51 
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Now, Vdr [zi] = p(l-p) so that 

e 

5 Var[Zi] = ex p(l-p) 
i=l 

with p = Pr{zi=l} given by (A4) 

simplified using 

COV(Zi,Zj) = E[zizj] - p2 (A71 

so that it can be expressed as 

. The second summand in (A5) can be 

3 

2 2' Cov(zi,zj) = 2 L" E[zizj] - ex(ex-1) pL. 
i<j i<j 

ow 

(A6) 

The quantity E[zizj] can have two distinct values which depend upon 

whether or not the edqe pair (i,j) share a common defining node. Consider 

first-the situation in which this is the case. Then E[zizj] is just the 

probability that a randomly selected edge pair shares a.common node in Gy. 

This is just the ratio of the number of edge pairs that share a common 

node in G y, Cy (8), to the total number of edge pairs sharing a node (in 

the complete graph). From (S), with di=N-1 for the complete graph, this 

latter quantity is just N(N-1)(%-2)/Z. Therefore, 

') P 

E[zizjl(i,j) share a common node in Gx] = -&) . (A9) 

By a similar argument, E[ziZj] for the case in which the edge pair (i,j) 

does not share a common node is just the ratio of the number of edge 

pairs that do not share a common node in G to the corresponding total 
Y 

number (in the complete graph). The numerator of this ratio is just the 

difference between the total number of edge pairs in Gy, ey(ey-1)/Z, and 

C 
Y' 

Similarily, the number of edge pairs in the complete graph that do 

not share a node in common is the difference between the total number of 



- 24 - 

edge Palirs in the complete graph, [N(N-1)/Z] [N(N-1)/Z - 1]/2, and 

N(N-l)(N-2)/Z. This latter difference reduces to N(Y-l)(N-2)(N-3)/8, 

giving the result 

E[zizj 1 (i,j) do not share common node in Gx] 

= --&g-p;%- (Al 0) 

The number of times the summand corresponding to (A9) appears in 

the double sum (A5) is simply Cx and that corresponding to (AlO) 

is ex(ex-1)/Z - Cx. Combining (A4-AlO), one has the result (10). 

We now derive the first two moments of r2 (6) as presented in 

(11-14). For notational convenience, we take Ri(i) = 0, 1 5 i 2 N, 

and consider the N x N matrix R = [R,(j)] with Ri(j) as its (i,j) entry. 

Consider E[r,] (13). From (6), we have 
L ._ 

E[T2] = 
(i,T)cG 

E[Ri (j '] = 2 ex E[Ri( j)l 

.!! N-1 
= T&TJ i4; j=, 

x j =F 

(All) 

(Al 2) 
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Combing (All-Al2) gives the result (13). 

IJe next derive Var[r2] (14). From (6) 

(A13) 

t c 
(i,jycGx (k,,&)EG, 

COV[Ri(j),Rk(JJ)I- 

Now, 

Var[R.$j)] = E[RT(j)] - iE[Ri(j)]I', (A14) 

with 
N-l 

E[R:(j)] % & 2 j2 = !('zel) , 
j=l 

(A15) 

so that combining (Al2) and (A14-A15) one has 

Var[Ri(j)] = yw . (AW 

The summand of the second sum (A13) can be expressed (using A12) as 

N2 (A17) 

The quantity E[Ri(j) R&J)] can take on six distinct values for ordered 

edge-pairs defined by nodes (i,j) and (k,L), (i,j)+(k,l). These values 

result from the following orderings: 

Case 1: (Lj), Ii&) j+k, 

Case 2: (i,j), (k,j) i+k, 

Case 3: (id, (j,k) id3 

Case 4: (i,j), (k,i) j+k, 

Case 5: (i,j), (j,i) 

Case 6: (id, (kd) all distinct. 



- 26 - 

We compu'te the value of E[Ri(j) Rk(i)] for each case in turn. 

Case I: 

N N N 

E[Ri(j) Ri(k)] = N(N-,)iNm2) Z E C Ri(j) Ri(k) i=l j=l kc1 
j*k 

= N(3N-1) 
12 

Case 2: 

N N 
E[Ri(j) Rk(j)] = rNT)b t '> i-1 jy, kY1 

"7 Ri(j) Rk(j) 

-i*k 

BR N(ZN-1) 
._ 

= N(N-1)(&z) - -m ' 

uw 

(Al 9) 

with BR given by (12). 
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Case 3: 

E!IRi(j) Rj(k)I = N(N-ji(N-2) 
N N N 
z \- 
i=l j:, ky, 

." Ri(j 

k+-i 

N’(N-1) AR 
= 4(N-2J- - 'mw 

with AR given by (11). 

Case 4: 

) Rj(k) 

(A201 

ErRi Rk(i)l = N(Y-ji(N-2) 5 ! $. Ri(j) Rk(i) 
i=l j=l k=l 

j+k 

= N2(W1) - AR (A21 > 4(N-2)- N(N-l)(N-2) " 

Case 5: 

E[Ri(j) Rj( 
AR 

) = TqFi-j- * (A221 

Case 6: 

EIIRi(j) Rk(l)I= 
1 

N N N, N, 

N(N-1)(N-2)(N-3) i:, j$, kb., At, Ri(j) Rk(R) 

k$i R+i 

k+j &j (A23) 
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1 

I 

N N N N 

= ?#'W)(N-2)(N-3) ' z 2 z Ri(j) Rk(R) 
i=l j=l k=l 1~1 

N N N 
_ x \7 x,7 

i=l jYJ it, CRi(j) Ri(‘) + Ri(j) Rj(‘)I 
i+'j*R 

N N N 
\7 \T -L/ u 

i=l 
i'[Ri(j) Rk(i) + Ri(j) Rk(j)] 

i+j&l k=l I 

Note that the triple sums of each of the four products have been evaluated 

in cases 1 through 4 above. Therefore, 

ECRi(j) Rk(a)l = N(N-,)(N!2)(N-3) (N 2 j)' 
I 

N-l 

j=l 

_ 3 N3(N-1)' + A _ B + fl'(N-l)(ZN-1) .f 
4 R R 6 / 

which after some simplification becomes 

E[Ri(j) Rk(4)] = w + 
AR-BR 

N(N-l)(N-2)(N-3) - (~24) 

This completes the calculation of the six distinct values for 

EIIRi(j) Rk(J)l (iA)*( 

Of the (2 ex)' ordered edge pairs {(i,j), (k,a)) in Gx, there are 

2 ex for which i=k and j=R, 2 Cx for each of the Cases l-41 2 ex for 

Case 5, and 4 e:-8 C,-4 ex for Case 6. These numbers along with (Al8 - 

A24) and (A17) permit the evaluation of the double sum in (A13). Then 

from (A16) and (A13) -with some algebraic simplification- we have the 

result (14). 
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FIGURE CAPTIONS 

FIGURE la: Fifty points from a bivariate normal distribution 

FIGURE lb: Edges of (l)NN graph shown as straight line segments 

FIGURE lc: Edges of (1)FIST graph shown as straight line segments 

FIGURE Id: Edges of 5NN graph shown as straight line segments. 

FIGURE le: Edges of 5MST graph shown as straight line segments 

FIGURE 2: One hundred points, Y=10(X-1/2)2 + E vs. X with < iid 

standard normal 
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