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Abstract: The measured values of Wilson loops in Monte 
Carlo simulations of SU(3) lattice gauge theories are 
used to predict the qi potential. The relationship 
between ho and the short distance scale of the qq 
potential is also calculated. The predictions are in 
agreement with theoretical expectations but indicate 
that fermions must be incorporated into the lattice 
calculations before any realistic results relevant to 
QCD can be derived. 
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1. Introduction 

The behaviour of Wilson loops on the lattice has been extensively studied in 

recent Monte Carlo simulations 1) of pure SU(3) lattice gauge theories. 2) In con- 

tinuum QCD the potential between two static colour sources separated by a dis- 

tance R is evaluated from the expectation values of Wilson loops, 

Tr P exp{ig$CAETadxFL}, and is given by 

V(R) = ;E [-; %n(Tr (,iP[exp{ig{CA~Tadx'\]/O))] . (1) 

Here P denotes path ordering and A; and Ta denote the colour gauge fields and 

group generators respectively, a being the colour index. Assuming that the weak 

coupling limit and the continuum limit of the lattice theory are identical, we 

can use (1) and the measured values of rectangular Wilson loops to obtain a lat- 

tice prediction for the qq potential in the absence of light quarks. 3) 

We expect that at short distances perturbative calculations should be valid, 

so that (1) is dominated by single gluon exchange. Hence for SU(3) the qq poten- 

tial is given by 

(2) 

At long distances, potential models for heavy qy systems and string models imply 

a linearly confining potential V(R)-KR, where K is the string tension. The 

string model also predicts 4) that an additional contribution, proportional to l/R, 

will be present as a consequence of string dynamics, 

We note that lattice gauge theories are known to exhibit confinement natural- 

ly in the strong coupling limit. Furthermore, since the string tension is an un- 

determined parameter which must be chosen in order to set the QCD scale, 
5) - 

any 

calculation of the qq potential using lattice results is guaranteed to exhibit 

the desired behaviour at large R. The areas of interest lie in the short dis- 

tance region where the lattice potential should exhibit Coulomb-like behaviour 

and in the comparison with phenomenologically determined potentials. 

2. The Static q{ potential at Short Distances 

Incorporating the lowest order beha;iour of c(,(;~) into (2) and taking the 

Fourier transform we obtain 6) 

V(R) = HIT 
33RRn (AR) ' 

AR<<1 . (3) 
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Unfortunately, A is a scheme dependent quantity and is ambiguous in lowest order. 

In order to make a useful prediction for short distance behaviour of the lattice 

qq potential, we need to evaluate the perturbative expansion for the energy be- 

tween two static colour sources to the one loop level, using as an expansion 

parameter g,(a), the coupling constant defined in the presence of the lattice 

cutoff. Since we know how to relate expansions in different renormalization 

schemes, the evaluation of this quantity in any scheme will suffice, provided 

all finite terms to a given order in g' are retained. 

Using a minimal subtraction scheme (MS) in the Feynman gauge (01~1) we 

find the potential is given by 7) 

v,,(i2) = - 4 (v’>C, 00 2 
;i2 1+ 

5g~2k2(G) 

16~r~ 
Iln L 

i2 , (4) 

where C2(R) and C 2 (G) are the usual Casimir factors for SU(N) and y is Euler's 

constant, 

The relationship between g,(a) and gMOM (p2), the coupling constant defined 

in the momentum subtraction scheme, is given by 8) 

2 2 ( 1 11C2 ((3) 

gMOM ' 
48~~ 

, 
where R(N) is a finite number depending on the gauge group SU(N). 

Expressing gi,,(u2) in terms of gMoM(u2) we obtain') 

(5) 

where the A(a,nf) are calculated 13) for various values of c1 and nf. Using (4), 

(5) and (6), we obtain 

Y2 
1 + go(a)C2(G) 

16~~~ )I 
, (7) 

where 

J = 1lY -- 
3 

4rA(l,O) + ALTAR 
‘c2 (G) C2W ' 

We can rewrite (7) by absorbing J into the logarithm and expressing g:(a) in 

terms of a and the QCD scale, A 10) 
0' 

If we take the Fourier transform of the resulting expression in the short 

distance limit and as usual, absorb terms like (const/RnR)2 into the definition 



of A, we obtain a prediction for the short distance bebaviour of the lattice 

potential given by 

VO(R) = 
4nC2(R) 

2 ' (8) 

where 

AP 
= 82.07 A0 for SU(3) , nf= 0 , 

= 56.47 A0 for SU(2) , nf=O l 

The determination of Ap from the measured values of Wilson loops thus provides 

a consistency check on lattice calculations. 

3. Calculation of the qy Potential from the Numerical Data 

The Monte Carlo procedure measures the lattice average of a rectangular 

Wilson loop, <W(I,J)> , as a function of the coupling constant, with I and J 

denoting the.side lengths of the loop in fundamental lattice units. If we 

suppose for the moment that J corresponds to the time direction and convert (1) 

into lattice variables we obtain the potential 

V(Ia) = lim 
Ja-+= 

(& [- %n<W(I,J)>]} . (9) 

For SU(3), the total lattice size is only 64 and the values of I and J are 

restricted to lie in the range, 1 < I,J 2 3. Finite size effects could thus 

be important and it may be necessary to include terms in (9) for finite J, that 

drop out in the limit J-t-. For example, correction terms involving powers of 

the cutoff and an important perimeter dependent contribution due to the self- 

energy of the static sources must be considered. 

Two simple parametrizations of <W(I,J)> which include these additional 

contributions come to mind: (i) <W(I,J)> asymmetric in I,J and (ii) <W(I,J)> 

symmetric in I,J. Consider first the asymmetric case given by 

-Rn <W(I,J)> = V(Ia)*Ja + PI(a)*Ia + PJ(a)*J(4 + c(a) , IIJ , (10) 

where P,(a), P,(a) and C(a) are a dependent constants to be determined. The 

condition 11 J is imposed with the idea that an Ix J Wilson loop approximates 

(9) if J is chosen to be the time direction. Since there is nothing to distin- 

guish the time direction, the Monte Carlo data for SU(3) is actually symmetric 

in I and J. In (10) we note that the self-energy contribution P,(a) can never 

be separated from V(Ia). This means that the potential is determined only up 

to an arbitrary a dependent constant. 
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For the values of I and J that are available, (10) generates an overdeter- 

mined system of equations. The extra equation is used to obtain an additional 

estimate of the value of one of the potentials which, in the absence of finite 

size effects and statistical fluctuations, would be equal to the other estimates. 

The magnitude of finite size effects can also be estimated from (10) by 

observing that the perimeter dependent and constant terms can be eliminated to 

give 

[V(Ia) + P,(a)] = $ -Ln<W(I,J+l)> + an<W(I,J)> . (11) 

The larger value of J, the better we expect the estimate (11) of V(Ia> to be. 

For example, for I,J I 3, [V(a) + P,(a)1 can be chosen to be 

or 

1 - 
a i 

-%n<W(l,3)> + Rn<W(1,2)> 
I 

, (12) 

1 
a 1 

- Rn<W(1,2)> + Rn<W(l,l)> 
t 

. 

We expect (12) to give a better estimate of V(a) than (13). The spread in the 

values obtained using (12) and (13) also gives an indication of the errors 

involved in using small sized Wilson loops. 

Next we consider the case of W(I,J) symmetric in I,J, which is given by 

- !Ln<W(I,J)> = 4 + [V(Ja)+P(a)]Ia -I- C(a) 
> 

. (14) 

Here we have adopted the idea that the lattice results average each of-the possi- 

ble interpretations of the time direction for an Ix J loop. Again, for I,J I 3, 

the system is overdetermined. As before, we can estimate finite size effects by 

choosing some subset of the equations generated by (14) to determine our poten- 

tials. The two possibilities chosen for illustration are: 

(4 {I,J) = {1,2) 

(b) {I,J) = 11,3) . 

Both sets of SU(3) data analysed here are measured with gi < 1. Hence the 

distance between the sources may be calculated using the known weak coupling be- 

haviour. 11) It turns out that the distance scales differ by a factor of two, so 

that the unknown normalization due to the self-energy contribution can be 

removed by choosing V(a,) = V(2a2), with al = 2a2. 
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4. Discussion 

The results of the calculations described in Section 3 using parametriza- 

tions (10) and (14) are shown in Figures 1 and 2, respectively. Both figures 
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Fig. 1. The evaluation of the qq 
potential from lattice measurements 
of Wilson loops using parametriza- 
tion (lo), The calculated points 
are compared with various phenomen- 
ological potentials and with the 
prediction (15) for the q; poten- 
tial in the absence of light quarks. 
The points labelled "large loops" 
and "small loops" correspond to 
choosing V(a) given by (12) and 
(13), respectively. 
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Fig. 2. As for Figure 1, but using 
parametrization (14) to evaluate 
the potential. The points labelled 
"1~1-2~2 loops" and "1~1-3~3 
loops" correspond to alternatives 
(a) and (b) respectively, as 
discussed in Section 3. 

include for comparison several phenomenological potentials determined from heavy 

qi bound state spectra. 6,121 The solid lines in each figure are plots of 

V(R) = 167~ 

33R Ln(ApR)2 ' 
R < 0.2 fm , 

and (15) 

V(R) = KR , R > 0.3 fm . 

These curves exhibit the expected long and short distance behaviour of the lat- 

tice qq potential. We see that in both cases the data points give a reasonable 

description of the short distance behaviour calculated in Section 2. It is also 

reassuring to note that the results are not very dependent on the detailed 

method of extraction of V(R) since there is reasonable agreement between the 

results for different methods of estimating the potential. In Figure 1, the 

values determined from (12) are in marginally better agreement with the predic- 

tion (15), but more data would be required to see a definite trend. 

Presumably due to the absence of light fermions in the lattice analysis, 

the lattice potential is in poor agreement with the phenomenological potentials 

and consequently does not give a good fit to cc and bg spectra. These results 

thus indicate the need to include fermions in the lattice analysis before we can 

determine any realistic values for quantities relevant to QCD. 
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