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ABSTRACT 

Recent results of Monte Carlo simulations for SU(3) lattice gauge 

theories are used to make quantitative predictions which can be compared 

with QCD phenomenology. In particular, lattice results are used to pre- 

dict the onset of nonperturbative effects and to determine the interquark 

potential. The relationship between A0 and the short distance scale of 

the qqpotential is also calculated. The predictions are in agreement 

with theoretical expectations, but indicate that .fermions.must be in- 

corporated into the lattice calculations before any realistic results 

relevant to QCD can be derived. 
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1. INTRODUCTION 

Recently there have been many studies of pure SU(3) lattice gauge 

theories using Monte Carlo simulations1 and Hamiltonian' and Euclidean3 

strong couplings expansions. In each case the running coupling constant 

has exhibited a rapid crossover from strong to weak coupling behavior. 

Assuming that the qualitative features of the results will be unaltered 

by the inclusion of light fermions, we find from lattice studies, in- 

creasing evidence that QCD can simultaneously exhibit the properties of 

confinement and asymptotic freedom. 

In fact, since all of the above calculations yield the same 

Picture, a consistent quantitative description of the behavior of the 

running coupling constant emerges. For SU(3) lattice gauge theories 

with the Wilson form of the action4, the crossover from the perturbative 

to the nonperturbative regime occurs at a value of g,(a) N 1, where go 

denotes the lattice coupling constant defined in the presence of the 

lattice cutoff, a. However, since g(Q2) is a more commonly used 

variable than g 0 (a) it would be useful to know how the lattice results 

translate into a more conventional momentum space description. The 

location in Q2 of the crossover region from weak to strong coupling 

behavior is of particular interest. 

The behavior of Wilson loops on the lattice has also been exten- 

sively studied. In continuum QCD the potential between two static color 

sources separated by a distance R is evaluated from the expectation 

values of Wilson loops, Tr P exp 
C 
ig$ AaTadx’ 

c u 1 , and is given by 
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V(R) = iz [- + In(Tr(olP{exp[ig$cA>adx']}~o))] . (1.1) 

Here P denotes path ordering, and A; and Ta denote the color gauge fields 

and group generators respectively, a being the color index. So, using 

the expectation values of Wilson loops measured in Monte Carlo simula- 

tions and assuming that the continuum limit of the theory is the same as 

the weak coupling limit, we can obtain a lattice prediction for the in- 

terquark potential. 

It is important to note that in lattice gauge theories the Wilson 

loop 

W(C) = (i Tq qp) ’ (1.2) 

where U denotes the usual link operators5, is defined around a closed 

contour C comprised of links in the lattice. Consequently only 

rectangular Wilson loops are considered, which in the continuum limit is 

equivalent to studying the interaction between two spatially separated 

static color sources as given in (1.1). We are thus considering a 

theory which should be equivalent to QCD with infinitely massive quarks. 

From the m 
4 

+ = limit of the continuum theory we can form some 

expectations about the behavior of the lattice potential at very short 

and very long distances. At short distances perturbative calculations 

should be valid and (1.1) is dominated by single gluon exchange. 

Hence for SU(3) 

vG2> N 
-4/3 a,(;;") 

+2 
, 

4 
(1.3) 



where c1 
S 

= g2/4?T. The coordinate space version of (1.3) is obtained by 

a Fourier transform. At long distances, although we cannot calculate 

explicitly, the success of various phenomenological models such as the 

potential models for cc and b; spectra and the results of string models 

imply a linearly confining potential V(R) N KR, where K is the string 

tension. 

It has been shown6 recently that in the continuum string model in 

the large distance limit, there is an additional contribution to the 

potential, (d-2)/24nR, d being the number of spacetime dimensions. 

This term is a consequence of string dynamics, not asymptotic freedom. 

Its presence has also been noted in studies7 of the roughened phase in 

the Hamiltonian formulation of lattice gauge theories. - 

The origin of the correction in lattice theories can be understood 

by observing that at strong coupling anunroughened string of finite 

width exists between quarks located on principal axes of the lattice. 

At sufficiently weak coupling it undergoes a phase transition to a 

roughened string with unbounded transverse fluctuations, which induce 

inverse power law corrections to the potential as in the continuum model. 

The presence of the roughening transition also causes a weak non- 

analyticity in the string tension K and limits the usefulness of extra- 

polating strong coupling expansions to the weak coupling limit. Monte 

Carlo calculations using planar Wilson loops may also be subject to a 

systematic error, since it is assumed that K survives to the continuum 

limit. No evidence for any roughening transition is however observed. 

The issue would be settled by repeating the Monte Carlo calculations 

for nonplanar Wilson 100~s.~ 
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Unfortunately it is unlikely that the presence of the additional 

l/R term will ever be clearly seen in physical systems. Although no 

phenomenological model has so far been sufficiently sensitive to demon- 

strate its existence, the relative importance of the term becomes 

greater at shorter distances within the nonperturbative regime. In- 

verse scattering reconstructions of the potential9 indicate, however, 

that states for heavier q? systems lie quite deeply in the potential well 

where conventional gluon exchange effects are dominant. 

It is worth pointing out here that lattice gauge theories are well 

known to exhibit confinement naturally in the strong coupling limit. 

Furthermore, the string tension is an undetermined dimensionful parameter 

which must be chosen in order to set the QCD scale.lO Hence any calcula- 

tion of the interquark potential from lattice mea.surements of the Wilson ._ 

loop is guaranteed to exhibit the desired behavior at large R. The areas 

of interest lie in the short distance region where the lattice potential 

should reproduce the results of continuum theory and also in the cross- 

over region, which connects the perturbative and nonperturbative domains. 

We can compare the lattice prediction with phenomenologically 

determined potentials, although we do not a priori expect them to agree 

at short distances due to the absence of light fermions in the lattice 

analysis. 

We must also bear in mind that important corrections to the results 

due to finite size effects may exist. These arise as a consequence of 

the discrete nature of the lattice, the finite volume of the lattice and 

the finite extent of the Wilson loops considered. To date however, the 

Monte Carlo analyses have indicated that surprisingly reliable numerical 



-6- 

estimates can be extracted from relatively small Wilson loops and small 

overall lattice size. 

A brief outline of the paper is as follows: In Sec. II we discuss 

the lattice prediction for the onset of nonperturbative effects in momentum 

space. A detailed prediction for the short distance behavior of the 

lattice potential is made by using the continuum theory in Sec. III. 

In Sec. IV we evaluate the interquark potential from the Monte Carlo 

data. Section V contains a discussion of the results. 

II. THE ONSET OF NONPERTURBATIVE EFFECTS 

One of the results of recent Monte Carlo simulations1 is adetermina- 

tion of the dependence of the lattice coupling constant, g,(a), on a. 

From this we can estimate (go,a)cr, the crossover point where nonpertur- 

bative effects become important. Our aim is to translate these quantities 

into momentum space. 

The maximum momentum corresponding to a particular lattice spacing, 

a, is given by 

Q : = - . (2.1) 

The Monte Carlo points begin to depart from the expected weak coupling 

behavior at a value of a2K - 0.7. Choosing as usual 

(2.2) 

and setting the Regge slope ~1' =0.9 GeV -2 we find an upper limit for the 

crossover point corresponding to Qfr = 2.5 GeV2. The extrapolations of 
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the predicted strong and weak coupling behavior for the lattice coupling 

constant cross at a2K - 1.2 corresponding to a lower limit of QEr= 1.6 GeV2. 

Hence lattice calculations predict that nonperturbative effects grow 

rapidly for values of Q2 less than Qtr - 2 GeV2. Of course, since light 

fermions have not been included in the analyses so far, the estimate of 

this point may change. However, the value of Qfr obtained is consistent 

with the observed rapid onset of scaling in this region of QL. 

The next problem is to translate the values g,(a), to the effective 

coupling, g(Q2>. Now the functional dependence of go on l/a is the same 

as that of g on Q:5 

Ai-= BG) = a anQ 
agO 

--=B(so) * a Rn a (2.3) 

Defining the function F(go) to give the dependence of go on a as 

observed in Monte Carlo simulations, where 

Rn a2 = F(go) , (2.4) 

then we can integrate the renormalization group equations to obtain 

,'b ' = F[ih2)]- F[8(Q2)] 
u2 

. (2.5) 

So if i(u2) is known, the value i(Q2) can be evaluated. 

From the Monte Carlo data, at least down to Q2 = 920, the behavior 

of the running coupling constant is well described by the perturbation 

expansion to the two loop level. For definiteness, we choose g(Q2) to 

be defined in the momentum subtraction scheme with AMOM chosen in the 

conventional way to avoid ambiguities.ll Then we have from (2.5) 
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i2CQ2) = 
1 

Q2 '1 42 ' 
(2.6) 

Y. Rn -I- - RnRn 

<OM " 4OM 

with 

and 

a OM = 83.42 A0 

, 

, for SU(N) , 

, 

A 
0 

= (5 + 1.5) x lOa b!E , for SU(3) 
l 

A-plot of (2.6) is shown in Fig. 1. The dotted line shows only the 

lowest order estimate of i2(Q2) for comparison. 

If we assume that the evolution of the momentum space coupling 

constant in the strong coupling regime is approximately given by the 

evolution of g,(a), then from (2.5) 

AZ-= fin [3g2( Q,fr )] 

'2,r En [3g2(Q2)] 
. (2.7) 

The strong coupling curve shown in Fig. 1 is given by (2.7) with Qfr chosen 

to be 1.6 GeV2, the point at which the extrapolations of the weak and 

strong coupling curves cross in the Monte Carlo simulations. 

In the same spirit, the translation of the actual Monte Carlo data 

points shown in Fig. 1 is obtained by assuming that the points are related 

by 
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'+ ) = -dj = A[i2(Q$ i2(Qf)] , (2.8) 

where A is a constant to be determined from the data. 

The numerical values for g2(Q2) obtained in the strong coupling region 

should not be taken too seriously because of the assumptions involved in 

deriving them. However, it is worth emphasizing two points. First, the 

rapid change in behavior of g2(Q2) occurs at a small value of g2/4=; and 

second, the rapid growth in the coupling constant would never be obtained 

by a perturbative expansion in powers of g. This means that if we believe 

that lattice gauge theories provide an accurate description of continuum 

QCD and that the inclusion of light fermions not alter the conclusions 

drastically, then the application of perturbative analyses for these low 

values of Q2 is not justified. 

III. THE STATIC Qo POTENTIAL AT SHORT DISTANCES 

Incorporating the lowest order behavior of usG2) into (1.3) and 

taking the Fourier transform we obtainI 

V(R) = HIT 
33R Rn (AR) , AR<<1 . (3.1) 

As a prediction for the short distance behavior of the potential, (3.1) 

is not very useful. The value of A, apart from being a scheme dependent 

quantity, is ambiguous in lowest order. Clearly to make any sensible 

prediction for the short distance behavior of the lattice qs potential 

we need to evaluate the perturbative expansion for the potential to the 
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one loop level, with only static sources present. Furthermore, the 

expansion parameter should be the coupling constant defined in the pre- 

sence of the lattice cutoff. 

Fortunately the perturbative expansion of the potential including 

all finite terms in any scheme will suffice because we know how to relate 

expansions in different schemes to one another." It is imperative how- 

ever that all finite terms to a given order in g2 be retained, otherwise 

the relationship between the A parameters is lost. 

The energy between two static color sources in the one loop approxi- 

mation,13 evaluated using a minimal subtraction scheme l4 (MS) in the 

Feynman gauge (a = 1) is given by 

VMSG2) = - ?&(P~)C~(R) 

+2 
q 

1+ 
&(v2)C2(G) 

16n2 

(3.2) 

In (3.2) F&,(P~) is the coupling constant defined in the MS scheme14 and 

y is Euler's constant. C2(R) and C2(G) are the usual Casimir factors 

for SU(N). 

Now we wish to express (3.2) in terms of g,(a), the coupling defined 

in the presence of a lattice cutoff. The relationship between gMOM(P2) 

and g,(a), where %,(u2) is the coupling constant defined in the momentum 

subtraction scheme has been evaluated for pure SU(2) and SU(3) gauge 

theories15 and is given by 

&OM(u2) 

1 1C2 (G) 2 

48a2 ) 1 + O(g;) . 

(3.3) 
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R(N) is'a known finite number depending on the gauge group SU(N). 

The relationship between %oM(u2) and ~~(112) is well known and is 

given by 

E& (u2) = .&,(u2) 

-. 

GOMb2) 
4T + O(g4) 

I 
* (3.4) 

The A(cr,nf) are calculated14 for various values of the gauge parameter cx 

and the number of quark flavors n f' 

From (3.3) and (3.4) for pure SU(N) gauge theories we have 

11C2(G) ;2 
4882 Rn 22 + R(N) + '(ii') + O(g4) . 

au 1 1 
(3.5) 

Hence (3.2) becomes 

V,(;;2) = - 
C2 (RI g2 (a> 

;; [I + g";;":'"' (+ ii $ --J)] , (3.6) 

where 

31 J+,_g- 41~A(1,0) _ 16a2R(N) 
C2 ((3 C2 (G) . 

Notice that u2 has dropped out of (3.6). 

Defining A0 in the usual way so that terms of the form [const/!Ln(aAo)2]2 

are absent we obtain 

gfJ(a) = 
1 

( > 

2 
y1 

(3.7) 

Yo!?n--&- +- RnRn --&- 
2 l 

0 yO ( > 0 

So we can write (3.6) as 
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voG2, = -y[s(y !2,ne +J)]-1 . (3.8) 

If J is now absorbed into the argument of the logarithm we have 

VoG2) = - y [':I::"' Rn $-j-l , (3.9) 

AQ 
= 1~ exp 

= 31.71 A0 for SU(2) 

= 46.08 A0 for SU(3) . (3.10) 

Note that (3.9) has the same form as (1.3), but now we know the 

exact relationship between the A 
Q 

characterizing the short distance 

behavior of the potential and the A0 determined from Monte Carlo simu- 

lations. 

Since we are interested in the relationship between A0 and the scale 

characterizing the short distance structure of the qs potential, we need 

to consider the expression for the potential in coordinate space. In 

order to determine the ratio of the two scales it is sufficient to keep 

only terms up to O[l/!Ln (aAo)']. We thus take the Fourier transform of 

(3.6) to obtain an expression for V 0 (R) in the short distance limit given 

by 

VO(R) = - 
C2 (RI 9: (a> T2R2 - - 

4vR 2 
a 

(3.11) 
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Inserting the expression (3.7) for g:(a) and absorbing constant terms into 

the definition of A, we find that the short distance behavior of the 

lattice qq potential is given by 

VO(R) = 
12K2(R) 

11C2(G)R Rn (ApR)2 
, (3.12) 

where 

AP = 56.47 A0 for SU(2) , nf=O , 

(3.13) 

= 82.07 A0 for SU(3) , nf=O . 

Since the relationship between the A's in different renormalization 

schemes in the continuum theory is independent of the rank of the gauge 

group, the ratio of the factors obtained in (3.13) is just the ratio of 

the Hasenfratz factors for SU(2) and SU(3). 

Provided that our assumptions concerning the nature of the continuum 

limit are satisfied, (3.13) g ives a prediction for the short distance 

scale dependence of the lattice interquark potential in terms of a known 

quantity, Ao. The determination of Ap from the measured values for Wilson 

loops thus provides a consistency check on the lattice calculations. It 

is also a test of whether meaningful information can be extracted from 

relatively small loops, since significant finite size effects would lead 

to deviations from (3.13). 
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IV. CALCULATION OF THE Q?j POTENTIAL FROM THE NUMERICAL DATA 

The Monte Carlo procedure measures the lattice average of a rec- 

tangular Wilson loop W(I,J) as a function of the coupling constant, with 

I and J denoting the side lengths of the loop in fundamental lattice units. 

The lattice average <W(I,J)> is evaluated by first bringing the lattice to 

equilibrium and then averaging the value of W(I,J) over all possible IxJ 

configurations on the lattice. Errors quoted are the standard deviations 

for fluctuations obtained over several iterations after reaching equilibrium. 

Let us suppose for the moment that J corresponds to the time direction. 

Then <W(I,J)> is the interaction energy between two static color sources 

in the fundamental representation separated by a distance of Ia. Converting 

(1.1) into lattice variables we obtain the potential 

V(Ia) = lim 
Ja+= 

{&[- kn<W(I,J)>]} . _ (4.1) 

Unfortunately, Monte Carlo simulations cannot be done for infinitely 

long loops. In fact since the total lattice size is only 64 for SU(3), 

the dimensions of the loops measured extend only to 3x 3. Finite size 

effects could thus be important and it may be necessary to include terms 

in (4.1) for finite J, that drop out in the limit J+m. 

For example, a number of cutoff dependent corrections may be present. 

In particular, terms involving powers of the cutoff will occur in <W(I,J)> 

due to the sharp corners in the loop. The absolute normalization of the 

loops is also uncertain and in principle depends on the cutoff. Another 

important contribution to <W(I,J)> is a perimeter dependent term due to 

the self-energy of the static sources which gives rise to an ultraviolet 
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divergence as a-to. The interaction energy thus contains, in addition 

to the potential we wish to determine, an unknown term that is different 

for each value of the lattice spacing. The various contributions to 

<W(I,J)> can be represented in the following form: 

<W(I,J)> = N(a) exp -V(Ia)*Ja + Perimeter(a) + Constants(a) . 

(4.2) 

Two simple parametrizations corresponding to (4.2) come to mind: 

(i) <W(I,J)> asymmetric in I,J; and (ii) <W(I,J)> symmetric in 1,J. 

Consider first the asymmetric case given by 

-an<W(I,J)> = V(Ia)=Ja + PI(a)*Ia + PJ(a)*Ja + C(a) ; I 5 J , 

(4.3) 

where PI(a), P,(a) and C(a) are cutoff dependent constants to be deter- 

mined. The condition I < J is imposed with the idea that a rectangular 

IxJ Wilson loop measured on the lattice approximates (4.1) if J is chosen 

to be the time direction. If I > J we just interchange the assignment of 

the space and time directions and write 

- an<W(I,J) > = V(Ja)*Ia + PJ(a)*Ia + PI(a)*Ja -I- C(a) ; I > J . 

(4.4) 

Since there is nothing to distinguish the time direction for finite size 

loops, the Monte Carlo data for SU(3) is actually symmetric in I and J. 

Consequently we can use (4.3) alone to determine V(Ia>. 

In (4.3) we note that the terms PI(a) and C(a), which would drop out 

in the limit J--f-, can be eliminated, but the term P,(a) can never be 
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separated from the potential. Thus the quantity we extract from the 

Monte Carlo data is given by 

[v(la> + 'Jta)] . (4.5) 

The presence of the self-energy contribution P,(a) in (4.5) means that the 

potential is determined only up to an unknown a dependent constant so that 

just those values corresponding to multiples of a particular value of a 

can be compared. 

Using (4.3) and a set of the SU(3) Monte Carlo data for some g,(a) 

gives us 6 equations for 5 unknowns, CV(Ia)+PJ(a)l, 151s 3, PI(a) and 

C(a) l The system is overdetermined. The procedure adopted is to use the 

extra equation to obtain an additional estimate of the value of one of the 

potentials. Ideally, in the absence of finite size effects and statistical 

fluctuations, all estimates would yield the same value. _ 

The above analysis also allows us to make an estimate of finite size 

effects. From (4.3) we see that 

[V(Ia)+PJ(a)] = i -Rn<W(I,J-l-1)) + Rn <W(I,J)> 
> 

, I I J . (4.6) 

The perimeter dependent and constant terms have cancelled out. Further- 

more, the larger the value of J, the better we expect the estimate (4.6) 

of V(Ia) to be. For example, we note that for I,3 < 3 we must set 

[V(2a)+PJ(a)] = :{- Rn<W(2,3)> + Rn <W(2,2)> 
> 

. (4.7) 

However [V(a) +PJ(a) 1 can be chosen to be 

1 - 
a -i 

- Rn<W(1,3)> + Rn <W(1,2)> 
> 

(4.8) 
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or 

1 - 
a i 

-Rn<W(1,2)> + Rn <W(l,l)> 
> 

(4.9) 

We expect (4.8) to give a better estimate of V(a) than (4.9). The 

differences between the values obtained using (4.8) and (4.9) can also, 

in principle, give an indication of the errors involved in using small 

sized Wilson loops. Unfortunately, the data available for SU(3) are 

rather limited and more measurements for larger loops would be useful. 

Next we consider the case of W(I,J) symmetric in 1,J. This parame- 

terization of <W(I,J)>, which is motivated by the symmetry of the Monte 

Carlo data.in I and J, is given by 

- %n<W(I,J)> = ${[V(Ia) +P(a)]*Ja + [V(Ja)+P(a)]*Ia + C(a)) . 

(4.10) 

In this case we adopt the philosophy that the lattice results average 

each of the possible interpretations of the time direction for an IxJ 

loop. The self-energy term is now distributed between the two potentials. 

Again, for 1,J I 3 the system is overdetermined, this time with 6 con- 

straints for 4 unknowns. As before, by choosing different subsets of the 

equations generated by (4.10) to determine our potentials we can make some 

estimate of finite size effects. 

The two possibilities chosen for illustration are: 

(a> {I,J) = {1,2) : giving 3 estimates for V(3a). 

(b) (I,J} = 11,31 : giving 3 estimates for V(2a). 

The Monte Carlo data actually gives values of <W(I,J)> corresponding 

to a particular value of go. However, we know how go behaves as a function 
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of a and hence it is a simple matter to calculate the physical scale. 

The two sets of SU(3) data analysed here correspond to couplings in the 

weak coupling regime with gi < 1. Hence the corresponding values of a 

are given by 

- 0.2 fm 2 
for go = 0.9916 

, 

(4.11) 
, 

- 0.1 fm 2 
for go = 0.9018 

The values of a are subject to 30% uncertainty due to the uncertainty in 

*O' 
16 

It turns out that for the two values of coupling considered, the 

corresponding distance scales differ very nearly-by a factor of 2. Hence 

in this case we can chose one of the P,(a) such that 

V(al) = V(2a2) , al = 2a2 . 

This now leaves one irrelevant additive constant, which corresponds 

to choosing a zero in the energy scale. 

V. DISCUSSION 

The results of the calculations described in Sec. IV using the 

asymmetric parametrization (4.3) and the symmetric parametrization (4.10) 

are presented in Figs. 2 and 3, respectively. In Fig. 2 the points 

labeled "large loops" and "small loops" correspond to choosing V(a) given 
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by (4.8)' and (4.9) respectively, while in Fig. 3 the points labeled 

"1~1-2~2 loops" and "1~1-3~3 loops" correspond to the alternatives (a) 

and (b) respectively as discussed in Sec. IV. Both figures also include 

for comparison several phenomenological potentials determined from heavy 

qi bound state spectra.12'17 

The solid lines shown in each figure are plots of 

and 

V(R) = - 161~ 

33R Rn(ApR)2 ' 
R < 0.2 fm (5.1) 

V(R) = KR , R > 0.3 fm . 

These plots exhibit the expected long and short distance behavior of the 

lattice qq.potential and are the curves along which the data points should 

lie in these limits. For both figures the absolute normalization of the 

data points is fixed so that the values for large distances closely 

approximate the linearly rising part of (5.1). We see that in both cases 

the data points give a resonable description of the expected short dis- 

tance behavior of the qi potential as calculated in Sec. 111,18 and the 

transition from Coulomb-like to confining behavior is evident. Errors 

in the determination of a are not shown while errors due to the statis- 

tical fluctuations in <W(I,J)> are small. 

The spread in the data points for the lattice potential at a parti- 

cular value of R gives some estimate of finite size effects. Although 

these are not negligible, it is reassuring to note that there is reason- 

able agreement between different estimates of the potential within a 

particular parameterization of <W(I,J)> and also between estimates made 

from the alternative parametrizations (4.3) and (4.10). This indicates 

that the results are not very dependent on the detailed method of extrac- 

tion of V(R). In Fig. 2 the values determined from (4.8) using larger 
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loops are in marginally better agreement with the predicted curve but 

clearly more data would be required to see any definite trend. If one 

uses the symmetric parametrization (4.10) there is no reason to suppose 

that either of the alternatives (a) or (b) yields a more reliable esti- 

mate of the potential, as is evident from the scatter of points in Fig. 3. 

The finite volume of the lattice is another important effect which 

must also be considered. In fact, using a lattice periodic over Nt sites 

in the time direction is equivalent to studying the theory at a temperature 

of T = l/N,a. The finite temperature theory is known to exhibit a de- 

confining phase transition to a Debye screened Coulomb phase for values 

of the coupling less than some critical value g* 
0' As the lattice size Nt 

is increased, the transition is driven to weaker values of g* 
0' Thus, it 

is important to check that for the lattice size in question we are still 

in the confined phase for all values of go considered. 

In a recent study of finite temperature SU(3) gauge theories," 

the critical temperature was found to be 

T* = GOM rt 15% . (5.2) 

Using the known renormalization group behavior, we can estimate for any 

gz the critical lattice size N: below which we are in the deconfined 

phase: 

1 N; = - = 
ik 

Ta 
$ exp(*)~Yog~2V:'2Y' -. (5.3) 

For the Monte Carlo data we find from (5.3) that 
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": = 5.4 f 0.8 *2 for go = 0.9916 , (5.4a) 

N: = 10.7+_ 1.6 *2 
for go = 0.9018 . (5.4b) 

Recall that the SU(3) analysis was done on a 64 1attice.l Hence the 

Wilson loop data corresponding to (5.4a) is probably within the confining 

phase, whereas the data corresponding to (5.4b) is in some doubt. However 

the situation is not clear becasue no evidence for the finite temperature 

phase transition suggested by (5.4b) is observed in any of the Monte Carlo 

simulations. One possible explanation may be that the small Wilson loops 

under consideration are not sensitive to phenomena occurring on the scale 

of the total lattice size.20 Furthermore, (5.2) has been determined only 

for nonsymmetric lattices of sizes up to Nt =4 so that an extrapolation 

is involved in obtaining the values in (5.4). A determination of the 
. 

dependence of gi on N, for spacetime symmetric lattices would be useful.21 

It is also interesting to note that a recent study22 of SU(2) lattice 

gauge theories has shown that even if the theory is in the deconfined 

phase, the Debye screening length is so large that one is effectively 

measuring the Coulomb potential. 

Finally, we note that the lattice calculation is in poor agreement 

with the phenomenological potentials at short distances. In Sec. III, 

we found that the scale characterizing the short distance behavior of 

the lattice potential was 82.07 no, or approximately 170 MeV. Phenomeno- 

logical potentials on the other hand are characterized by a scale equiva- 

lent to about 400 MeV.12 Since the phenomenological potentials are 

determined in the presence of light quarks which are not included in the 

calculation described in Sec. III, we might attribute the discrepancy 

between the two scales to the absence of fermions in the lattice analysis.16 



-22- 

We'can check the sensitivity of potential models to a change in the 

short distance scale characterizing the potential by attempting to fit 

the cc and bi spectra, using (5.1) to approximate the lattice potential. 

The results for cc states are in reasonable agreement with experiment, 

but the fit to the bg spectrum is poor since, by virtue of their greater 

mass, these states are much more sensitive to the short distance behavior 

of the potential. The deviation of the lattice potential from the 

phenomenological potentials is sufficient to spoil the fit to the heavy 

qq spectra. These results thus indicate the need to include fermions in 

the lattice analysis before any attempt can be made to calculate a 

realistic value for the scale that characterizes QCD at short distances. 
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FIGURE CAPTIONS 

Fig. 1. The coupling constant as a function of QL obtained from the 

translation of lattice Monte Carlo results into momentum space. 

The data points shown are obtained from the Monte Carlo data1 

for the quantity x(1,1) versus gi. 

Fig. 2. The evaluation of the qq potential from lattice measurements of 

Wilson loops using parametrization (4.3). The calculated points 

are compared with various phenomenological potentials and with 

the prediction (5.1) for the qi potential in the absence of light 

quarks. The points labeled “large loops" and "small loops" 

correspond to choosing V(a) given by (4.8) and (4.9) respectively. 

Fig. 3. As for Fig. 2 but using parametrization (4.10) to evaluate the 

potential. The points labeled "1~1-2~2 loops" and "1x1- 3x3 

loops" correspond to alternatives (a) and (b) respectively as 

discussed in Sec. IV. 
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