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ABSTRACT 

A new method has been developed for measuring the impedance 

of a two-gap cavity used in high-power klystrons. The principle 

is based on network analysis. The cavity under test is consid- 

ered as a microwave network. The two gaps of the cavity and its 
E- 

output terminal are referred to as three ports. We then can use 

an impedance matrix to characterize this system, and the six in- 

dependent impedance parameters can be found by measuring the 
- - 

input impedance seen from the output waveguide when the gaps are 

in different conditions; viz., either open, shorted or perturbed. 

The gap impedance then can be deduced therefrom. It is 

shown that there are three impedances for a double-gap cavity 

instead of one for a single-gap cavity. Another problem dealt 

with here is how to evaluate the capacitance introduced by the 

perturbation. A few typical experimental results are presented. 

Submitted to IEEE Transaction on Electron Devices 

-1 * Work supported by the Department of Energy, contract DE-AC03-76SF00515. 

_-, 



-2- 

INTRODUCTION 

It is well known that usually there are two approaches to treating 

a microwave circuit. One is based on field equations, another is based 

on network analysis. In principle, field equations are more elegant, 

but very often the boundary problems are too difficult to get a rigorous 

solution. Instead, the circuit concept is rather simple, and is prefer- 

able for many engineering problems. It has been proven that in many 

cases the validity is equivalent for b0th.l There are some articles 

discussing the measurement of, the impedance in a periodic structure.2-5 

The measurement of the impedance in a klystron output cavity witi single 

gap and filter output structure has also been discussed by others.6 Now 
a-- 

we are concerned about estimating the impedance of a double-gap cavity 

used in high-power klystrons, which is not periodic and is strongly 

_ coupled to the output waveguide. For a common single-gap cavity the - - 
typical process is measuring R/Q by means of perturbation techniques and 

combining with the Q measurement to calculate the gap impedance. Unfor- 

tunately, in the case of high-power klystrons in which the coupling iris 

of the output cavity is usually very large, the perturbation formula can 

no longer be used, because it is based on the concept that the whole 

system is isolated, that electric and magnetic energies are balanced at 

resonance, and any perturbation destroying the balance will cause the 

resonance frequency to change. But this condition is no longer satisfied 

for the cavity mentioned above. It has been found that sometimes a 

network analysis method is more flexible and more powerful. We will 

discuss this below. 
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IMPEDANCE MATRIX 

To begin with, we have to clarify our problem. In a single gap 

cavity, impedance is defined as the ratio of the voltage across the gap 
* 

and the current by which the voltage is induced. For a two-gap cavity, 

although the beam passes through two gaps sequentially, the a.c. compo- 

nents of current are different both in amplitude and phase. Besides, 

the current will not only induce a certain voltage on the gap it passes 

but also induces a voltage on the other gap, so there are at least 

three impedances which we have to obtain. Now we consider a microwave 

network which represents the system we are concerned with. Two ports 

represent the two gaps, while the third port represents the output wave- 
a.- 

guide, as shown in Fig. 1. We then can relate the three ports by an 

impedance matrix as follows: 

zll z12 z13 

z21 z22 '23 

z31 '32 z33 

(1) 

If we terminate any two terminals, say a,b, with impedances Za,Zb, 

then they determine a fixed Zc impedance looking into the third terminal. 

So that in general one can write: 

v1 = ZlIl, v2 = z21*, v3 = Z313 , (2) 

where one of these impedances would be an input impedance at its terminal, 

and the other two, output impedances, with appropriate attention to our 

7-w sign convention. 

* Another equivalent definition of the impedance is: Rsh = V 
2 /2P. 

-- 
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Using relation (2) we can get unique relations between voltages for 

various choices of terminating impedance. Substituting (2) into (l), we 

get the following equation and its expanding form: 

a-- 

212 

z22 - z2 

Z 32 

z13 

'23 

z33 - z3 

= 0 (3) 

2 2 2 2 
z3 = z33 + 2z12z23z31 - '11'23 - '22'13 + '1'23 + '2'13 

( zll - z1>(z22 - z2) - Z:2 
(4) 

z3' the input impedance seen from the output waveguide, is easy to 

_ :-measure; and will change when Z 1 or Z 2 is changed. Note that there are 

six independent parameters. It is necessary to do six different experi- 

ments to define them. We can do it this way: let gap 1 or gap 2 be 

opened, shorted, or connected to some convenient value of impedance, 

for which the best choice is to perturb the gap by putting a small 

object into it, which introduces an extra capacitance ACp shunting the 

gap. Then Zl or Z2 will be infinite, zero, or Z = - l/jwAC P P 
, respec- 

tively. Substituting those values into (4), the input impedance Z3, 

which is the only impedance we can measure directly, will be as follows: 
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Condition in Gaps 

SW z1 , z2=Q) 

zl=o, z2=03 

z1 
= 03, z2= 0 

Z1=Zlp, z2=w 

z1 =w 3 3 = zzp 

*- 

zl=o, z2=o z3ss = z33 + 

z3ab To Be Measured 

z300 = z33 
2 

z13 
Z3so = 233 - - zll 

2 
'23 

Z3os = 233 - - z22 

z3po = z33 + z 
z:3 

1P - zll 
2 

z30p = z33 + z 
'23 

2P - z22 
2 2 

2z12z23z13 - '11'23 - '22'13 
2 

z11z22 - z12 

(5) 

The subscripts o,s,p of Z3 denote, respectively, the condition 

that the gap 1 or gap 2 is opened, shorted, or perturbed. 

From the set of equations, the parameters Z.. can be solved and 
=J 

expressed by Z3ab (a,b = o,s,p). 

GAP IMPEDANCE 

What we are concerned with is: "When a bunched beam passes through 

the gap, how much voltage can it induce?" This problem is just the 

opposite of that discussed above. Namely, we want to find the input 

impedance seen from port 1 and 2 when port 3 is terminated. It can also 

be solved by the basic equation (1). Expanding (1) and using (2) we 

obtain: -1 
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v1 = %lX1 + 512I2 
(6) 

v2 = S2111 + 522I2 

where 2 
z13 

511 = zll + z3 - z33 

%3 
522 = z22 + z3 - z33 (3 

Cl2 = ii21 = 3.2 + 
‘13’23 

z3 - z33 

Z3 here is the loaded impedance at port 3. Since the impedance matrix 

"parameters have been found as mentioned before, they are readily 

calculated. 

Up to now, there is no restriction on the loading of the output 
- - 

waveguide, nor on the network under test. Generally, the load is 

matched; its normalized form is: 

z3 = -1 (8) 

The minus sign is due to the definition of the current, which orients 

toward the network rather than the load'as shown in Fig. 1. Note that 

the reference plane on port 3 is still optional. For simplicity, we 

choose the reference plane as the position of the standing wave minimum 

when there is no perturbation. We regard this plane as the origin. 

Providing the system is lossless, the impedance at the minimum is zero. 

7-e 

-- 

Thus: 

z33 = z300 = 0 (9) 

- ---al@ 
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while the other impedances in (5) can be expressed by: 

Z 3ab = jtaneab (a,b = o,s,p) (10) 

where 8 is the phase shift with the origin, when the gaps are opened, 

shorted, or perturbed. By some algebra, the gap impedances can be ex- 

pressed as below 

5 = 
ij P ij + jx.. , =J i,j = 1,2 

1 x11 
'11 = WAC 

( cot6 - tote ' 
> 

- = - tote 
1P PO so pll so 

1 X22 
'22 = wAC 

2P ( 
, 

tote - tote -= - c0te OS oP OS > P22 

- - 
.- p12 = iJ= , E = [J(coteso- cotesspteos- mess) - cotess] 

where AClp and AC2p are the capacitances introduced in the gap 1 or 2 by 

the perturbations. 

From the process discussed above, we note that all the formulas are 

universally applicable - no matter how complex the system is; no matter 

if it is resonant or not. Especially, it can be used in a single gap 

cavity or a filter type output circuit which is often used in wide band 

klystrons. In this case only ~11 and x11 exist. I 
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EVALUATION OF PERTURBATION 

All the deductions above are based on the concept of network rather 

than electromagnetic field. They are valid because in the region of a 

klystron gap only electric field is important. The shape of a static 

electric field is a reasonable approximation. So the concept of capaci- 

tance will also be adequate in this case. Suppose C 
g 

is the capacitance 

of the gap, which is contained within the network, while the increment 

of capacitance AC, which is introduced by perturbation and shunted with 

Cg as shown in Fig. 2, will be referred to as an outer susceptance. We 

will only be concerned with the electric field in the gap region; 
.i"- 

although it is quite possible that there is another region where elec- 

tric field plays an important role as well, it does not affect our pro- 

blem. The perturbation only affects the amount of C nothing else. ._ g' 
Now consider the electric energy stored in the capacitance. It is 

42 
'E = 2C 

g 
(12) 

where Q is the charge on the surface of the electrodes, the wall of the 

gaps. If a metal bead is put inside the gap, it will perturb the field 

and cause the stored energy to decrease. Let us recall the implication 

of the perturbation concept. It says that only local field near the 

perturbing object is influenced; the rest of the field will remain un- 

changed. (Incidentally, let us point out that this restriction is not 

necessary in our previous discussion although we use the same termino- 

logy-perturbation.) If the bead is small enough, the electric field 

_-. 



-9- 

lines, and so the charge, on the surface will remain unchanged. There- 

fore, any perturbation causes a decrease of electric energy, and will in 

the mean time cause an increase of the capacitance. From (12) we obtain 

C 
ACb = - + AWE . (13) 

E 

On the other hand, AWE can be calculated by the well-known 

perturbation formula: 

AWE = - 3 coE2kAv (14) 

where Av is the volume of the bead, and k is a constant related to the 

shape of the perturbing object, which is 3 for a sphere. Besides, WE 

can be written in another form: 
- . 

(15) 

f(z) is the field distribution function, z is the longitudinal position 

along the axis of the gap. Substituting (14) and (15) into (13), we 

then obtain: 

*'b = sOkAv 
E,f(z) 

EJ(z) l dz 1 
2 

. (16) 

---.- 
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When the bead is placed at the electric field maximum, where 

= E Em, f(z) = 1, perturbation reaches maximum too. Thus: 

E kAv 

Acbmax = E 
(17) 

Since the value of ACb depends on the exact location of the bead, 

it is not convenient to control its location when frequency response is 

wanted, so a stable perturbation arrangement is preferable. A metal 

pin is then selected. Suppose AC 
P 

and ACb are capacitances introduced 

,by metal pin and bead, respectively, the corresponding phase shifts of 

standing wave minimum are 8 pin and 9 be, then from (11) we can calculate 

AcP by: 

tote be - cotesl 
AC P = *'b cot0 pin - cotesl (18) 

Furthermore, the electric field distribution can be tested by 

moving the bead along the axis and measuring the phase shift in a fixed 

frequency, and using the following approximate formula: 

E2 'be -= 
E2 ebem m 

(19) 

where Em and 8 bem are the electric field maximum and corresponding phase 

shift. 
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EXPERIMENT RESULTS 

7-w 

An experimental double-gap cavity model was tested. This model is 

formed essentially by the last two cavities of a standard SLAC XK-5 

klystron with a coupling slot between them as shown in Fig. 3. It also 

shows the shape of the pins and the shorting rods which we used. In- 

serting the latter can be reasonably regarded as an approximate short. 

The shorting rods are drilled hollow in order to minimize the influence 

of a shorting rod to the other gap. The resonance frequencies of the 

original two cavities are different. They are about 2856MHz and 31OOMHz, 

respectively. The loaded Q of the original output cavity is only about 

,18, so its R/Q and its field distribution cannot be measured directly 

by the conventional method without narrowing the coupling iris. Figure 

4 shows the measured field shape by means of the present method and 

- rmaking use of (19). The frequency was fixed precisely, and only the 

standing wave minimum was measured. 

In order to estimate the error, two beads with diameters of l/4 and 

l/8 inches were used. The results shown in Fig. 4(a) and (b) coincide 

pretty well. The field shape shows that the fields of the two gaps 

overlap each other in the middle region. The individual field of each 

gap should be that shown by the dashed line in Fig. 4(a). The capaci- 

tances introduced by the l/4 inch bead in gap 1 and gap 2 are 

4.78 x 10 -15 and 5.48 x 10 -15 farad, respectively, while that introduced 

by the pins are 3.51 x lo-l4 and 4.03 x 10 -14 farad. The final results 

of the gap impedance are shown in Fig. 5. The upper part shows the 

absolute values and real parts of the impedances, and the lower part, 

their phases. 

_- 
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We have also checked the impedance of a single-gap output cavity of 

a ST.& XK-5 klystron without knowing R/Q. The obtained value is about 

1900 ohms. A modified cavity with a narrower iris, for which both con- 

ventional and present methods are valid, has been tested too. The dif- 

ference between them is about 10 percent. 

A CHECK OF THE THEORY 

In order to check the validity of the network approximation, we 

note that from (4) it is possible to predict the input impedance seen 

'"from the output waveguide in the case that both gaps are perturbed 

simultaneously. By some algebra, the following formulas are deduced: 

8 = arctanX 
PP 3PP 

where 

xss(1-a2 > - ( xso + xos > 
X 

3PP = 

+ xsoxos (< + +J 

( 
) ( 

x x 
1 -a 2 + xsoxos - 1 

PO oP ) 

X ab = tan6 ab (a,b = o,s,p)* 

(20a) 

The calculated as well as the experimental results are plotted in 
-1 

Fig. 6. The difference between them is about one degree. 

-- 
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FIGURE CAPTIONS 

Fig. 1. An equivalent network of a three-port microwave system. 

Fig. 2. The capacitance increment introduced by the perturbation 

as an outer capacitance connected to the network. 

Fig. 3 The double-gap cavity model with (a) the pins, and 

(b) the shorting rods. 

E -~ 

Fig. 4. The field distribution function measured by using a bead 

with a diameter of (a) l/4 inches, and (b) l/8 inches. 

- - 
Fig. 5. The impedances of a double-gap cavity where 

5 ij = /iijlejeij = pij + jxij , i,j = 1,2 . 

Fig. 6. A check of the theory. 

-- 
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