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expression for A given in Eqs. (2.1) through (2.5) was obtained 

by F. A. Berends, R. Gastmans and T. T. Wu, University of Leuven 

preprint, KUL-TF-79/022 (1979). 
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Add Table III with the following: 

TABLE III 

Cross sections for e+e- + p+~-y calculated according to Eq. (2.36). We 

use s = (29 GeV)2, xmin = kmin/E = 4/14.5, Okemin-= ekumin 5 OkRmin, 

S’ min = s(l-xmax). ARe and ARu represent the contributions to R from 

initial and final state y emission respectively. We let 6s(s'>=0 when 

calculating ARe, ARU and AR E ARe+ AR,,. (AR) corr E 1.2 AR which approxi- 

mately takes into account the effect of 6s(s') given by Table II. 

8 kRmin kmax S’ min ARe ARP AR (AR) corr 
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ABSTRACT 

The phenomenon of copious production of hard 

photons by the initial e+ or e- 
+- in the e e colliding 

beam is discussed. Approximately one-half unit of R 

in the total hadronic cross section quoted by the 

experimenters could be due to this source. An im- 

provement in the evaluation of hard photon emission 

in the e+e- colliding beam experiment is given. 

Inclusion of higher order effects increases the 

cross section for e+ + e- + 'y + X by about 20% 

at PEP/PETRA energy. 
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1. INTRODUCTION 

Recently Ritson et al., have investigated the possibility of an 

excited state of muon by sampling puy final state from the MAC detector 

at PEP at CM energy of 2E = 29 GeV. They found surprisingly large cross 

section, namely 0.1x u 
ee+w (lowest order) even at large photon energies 

(k > 3 GeV) and large angle between y and all leTtons (e,, > 20'). 

Normally one would expect the cross section for such events to be very 

small, approximately c(o ee+pp ' Furthermore they found that my invariant 

mass was clustered around 16 GeV, a possible candidate for u*. After 

some calculation we concluded that the standard QED indeed can explain 

these events. The reason for such a large cross section is that a pho- 

ton can steal almost all the energy from the initial e+ or e- resulting 

in a very large annihilation cross section. When a photon of energy k 

is emitted by the initial e+e- system, s is changed into s' = s(l-k/E). 

In this experiment s is (29)2 GeV2 and s' can be as small as 1.5 GeV2 

(for 6 
LA- 

> 20', E 
-c 

+ > 1 GeV). The cross section for the annihilation 

can thus be enhanced by two or three orders of magnitude, which is more 

than enough to compensate for the smallness of c1 associated with emission 

of noninfrared y at large ang1es.l The invariant mass of uy is 

C2kE$l-cosek,)l'l. Since k w 14 GeV, E - 5 GeV, <case 
h 

> N -0.8 for such 

events it is easy to understand why the yu invariant mass is clustered 

around 16 GeV. 

The mechanism of copious production of high-energy y described above 

is also true when the final states are hadrons, electrons and ~'5. In 

the e+e- experiment, an event with a high energy photon and highly non- 
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colinear pair is most likely classified as hadronic. Hence many events 
+- 

of the type e e -t yX with X being hadrons, e+e- pair, ~.r+i.l- pair, r+r- 

pair are likely counted as hadronic reactions. It is therefore quite 

possible that about2 0.5 of the quoted value of R is due to highly non- 
+- 

colinear e e -f yX events. All these events should be excluded when 

evaluating R. 

As a by-product of this research I also looTed into how the cross 
+- section for e e + yX was calculated by the experimentalists. A Monte 

Carlo program provided by Berend and Kleiss3 seems to be the standard 

tool. The phenomenon of copious emission of hard photons at a large 

angle is buried in this Monte Carlo program. Some improvement can be 

made on the program by including higher order effects.4 The most dis- 

tinguished features of the higher order effects are the following two: 

1. Inclusion of vacuum polarizations and vertex corrections increases 

the cross section for e+e- + yX by about 20% at PEP/PETRA energy. 

2. The deviation from the coplanarity of the final state can be evalu- 

ated by inclusion of multiple photon emission. For example the final 
+- 

state of the reaction e e -t u+u-y forms a plane but the final state of 

the reaction e+e- -+ p+u-yy does not. The deviation from the coplanarity 

can be approximated by assuming that most of the extra photons emitted 
+ - are soft and are emitted along the direction of motion of either e ,e , 

+ 
w or Ft- (peaking approximation). 

Both of these effects can be incorporated into the existing Monte 

Carlo program. 

In the modern detectors now being used at PEP and PETRA, practically 

all the particles in the final states are detected and analyzed. In this 
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situation the Monte Carlo method is the most logical one to be used in 

the analysis of data. However analytical expressions showing all the 

gross features of the problem are often useful in rough estimate of the 

cross sections as well as selection of various cuts to be used in the 

Monte Carlo methods. We have derived some simple formulas in Section II 

for this purpose. 

II. CALCULATIONS 

A. Lowest Order Calculation 

Lowest order cross section for e+ + e- + p+ + 1-1~ + y can be obtained 

using Feynman diagrams shown in Fig. 1. We shall use an approximate 

formula given by Berend, Gastmans and Wu3 for the matrix element squared, 

3 
$$ 64(Pl+P2-P3-P4-k)A (2.1) 

with 

A=M.HMS+MUMU+MEMU, (2.2) 

1 t +P2+u +u’ 
+ I:'(Pl.k);P;:) (2.3) 

t2+d 

(P3*k)22 
+ 

t2+ tt2+ u2+ut 2 
MEMU = 4ss’ 

t2+ tf2+ u2+u’ 2 

4s(P3*k)(P4*k) 
(2.4) 
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and 

t = ( P2-P4)2 , t' = (P1-P3)2 , u = (P2-P3)2 , 

u' = 
( P1-P4 , ) 

2 s = Pl+P2)2 
2 

( 
, s' = 

( P3+P4) - 

PI’ 3’ P3 and P4 refer to four momenta of e-, ef, l.~- and u + respectively. 

We have also calculated the exact expression foGA using Hearn's REDUCE 

program.5 The exact expression for A is about one hundred times more 

complicated than Eqs. (2.2)-(2.5) but numerically the latter yields 

results accurate to within one part in 3000 compared with the exact 

a3 calculation in the kinematical range we have checked. The MEMU term 

comes from the interference (Ml+M2)+(M3+M4), which is odd under the 

+ exchange u f--t p- and thus it contributes only to the asymmetry and not 

to the total cross section. 

B. Radiative Corrections 

We consider next the radiative correction to Eq. (2.1). One inserts 

the vacuum polarization and noninfrared divergent part of the vertex 

correction to diagrams Ml, M2, M3, M4 in Fig. 1. This correction changes 

A in Eqs. (2.1)-(2.2) into 

A’ = MEME[1+6Js1)] + MUM++$(s)] + MEN+++ 6Js') + $ bs(s)].(2.6) 

ds is the symmetric and noninfrared divergent part of the radiative 

corrections. It consists of noninfrared part of the vertex correction 

and the vacuum polarization contributions: 

l3p) = G;ert(s) + d&(s) + 6;acw + 6~,,(4 + qacw + 6;$I) (2.7) 
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'Zert and 6' vert are vertex corrections for e and p vertices respectively: 

2 
6zert(s) = $ i Rn -%-- l+$- 

( m2 > , 
e 

6tert(s) = $ $ Rn + - 1 + $- ) 
( 

. 
m 1-I 

The vacuum polarizations can be calculated from6- 

OCI 6X u vertw = + p s 
eejx(s’) ds’ 

2Tr a s-s 1 
'th 

(2.8) 

(2.9) 

(2.10) 

where s th is the threshold value of s for the production of the final 

state X and P stands for the principal part of the integration. For a 

lepton pair with mass m, we have sth = 4m2, 

4m2 with fi2 = 1 - ---s-- , 

and we thus obtain from (2.10), 

withx= s th /s and 

(2.11) 

r 4 s f(x) = ? _ $ _ ; + (1-x)6(2+xl Rn 1 -i- (l-x)& I ifx51 (2.12) 
l- (l-x)2 

and r 4 f(x) = $ _ $ _ 4 + (x-l)3(2+x) tan -1 1 

(x-l+ f 
if x> 1 . (2.13) 

Since we are interested in energy range s >> 4m2 
v' 

we have 

6;ac(s) = $. ( J. 3 Rn 
I 

$- 9 > 
, 

e 
(2. 1.4) 
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> 
, 

mu 
4m 2 

6= vac(s> = fpT) with X~ = --$- . 

(2.15) 

(2.16) 

Except for resonances, o 
e+e-+hadron 

(s) can be roughly represented 

by7 1.2 u had 
e+e-+quarks partons' 

hence we can write Gvac in terms of the 

function f(x) given above in the following way: _ 

6 h,;;(s) = 1.2 ( $ f(x) + + f(xs) + $ f(xc) + $ f(xb)}, (2.17) 

where x X u' xs' c and x b are sth 1s for production of different quark 

flavors and are given approximately by xu = 4rnf Is, xx = 1 GeV2/s, 

X 
C 

= 9 GeV2/s and xb = 100 GeV2/s. 
had 

The numerical values of 6zert, 6zert, 6zac, 6:,,, 6:,,, Gvac and 

their sum 6s are given in Table I. 

Normally Eq. (2.1) is regarded as part of the radiative corrections 

to the lowest order cross section for e+e- 
+- 

-f!JlJ' In this case the 

higher order effect is usually obtained by exponentiating the infrared 

divergent part on the lowest order corrections. For example for an 

experiment in which the only experimental constraint is either 

2E- E3- E4 > AE or 2 ki < AE and AE << E, the cross section for 

e+e- 
i=l 

+ ufu- + any number of photons can be written as8 

do duO T 
-=- 
dQ3 dQ3 ( , 

where dao/dn3 
is the lowest order differential cross section for 

+- +- 
e e + UP, 

duO 2 c1 -=- 
dfi3 4s ( i + c0s2e > . 

(2.18) 

(2.19) 
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(AE/E)T' is the infrared divergent part of the radiative corrections and 

hence it was exponentiated in order to take care of multiple soft photon 

emission. 

T=te+tU+t 
w ' (2.20) 

\ 
te = $ (En-$- 1) , (2.21) 

t = 
w 

$ Rn [tan :) , 

(2.22) 

(2.23) 

where 8 is the angle between e- and p . t 
ev 

is asymmetric with respect 

to the plane perpendicular to the beam axis. 6* is the asymmetric and 

noninfrared divergent part of the radiative corrections: 

6,(e) = ${ ,+i2s2* [cosoie,z(,inp) -I- enZ(cos~)}+ sin2$ Ln(cos!) 

- cos2JJ- 2 !Ln ( sin' 3 ,I + 2 En2 
8 

( sin- > 
- 2 2 !?n2 ( c0.s; J 

- $(sin'+) + @~cos'+)) , (2.24) 

where Q(x) is the Spence function (also called dilogarithm). The 

numerical values of 6,(e) are shown in Table II. &A and t are both 
ev 

+ odd with respect to the interchange LI ++ 1-1~ and hence contribute only 

to the asymmetry but not to the total cross section up to order u3 in 

the cross section. Their product 6 t 
A eu 

will contribute to the total 

cross section in the c1 4 cross section, but its contribution to 

e+e- + n+n-y is less than 1% if 10' c 8 < 170'. This can be seen 
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from ' 

(2.25) 

Since 6s is about 20%, the contribution to the cross section from 6 t A eu 

can be ignored unless one is interested in a very small angle. 

The asymmetric terms 6A and t 
ev 

are very important when one is 

dealing with the effects due to interference between Z. and y exchanges. 

Also at PEP/PETRA energies (s w 1000 GeV2) the weak-electromagnetic 

interference is about s/4 of the pure electromagnetic effect; hence it 

is comparable to the u2 radiative corrections which is O(02!Ln2s/m:). 

The corrections to this order have never been calculated. We shall not 

deal with this effect in this paper. Therefore we shall ignore the 

asymmetric terms t eFr and 6A in Eq. (2.18) and Eq. (2.20), as well as 

MEMU in Eq. (2.5) and Eq. (2.6). 

Equation (2.18) is correct only when k/E CC 1. If we ignore the 

asymmetric terms 6A and t ell' Eq. (2.18) can be generalized to hard 

photon emission in the following way: 

Since AE represents the maximum energy of a photon which can be 

emitted, differentiating Eq. (2.18) with respect to AE yields 

do daO -=- 
dfi3dx dQ3 ( 1+6s+6A) $ XT (2.26) 

where x = k/E. tdao/dQ3) (T/x) represents the Lowest order brems- 

strahlung cross section for small x. ds is the corrections due to the 

insertion of vacuum polarizations and noninfrared part of the vertex 

correction. As shown in Eq. (2.6) one should use 6s(s') when a hard 
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photon is emitted by the initial state but Ss(s) when the photon is 

emitted by the final state. The factor xT represents the effect of 

multiple photon emission. Ignoring the asymmetric term, Ten, we 

decompose xT into four factors x T t1 t2 t3 t4 =x x x x , where 

t1 = t2 = 4[-qi)-‘I- (2.27) 

and 

t3 = t4 = ++)-'I l (2.28) 

It is convenient to regard tl, t2, t3 and t4 as the thicknesses of the 

equivalent radiators4 in the paths of pl, p2, p3 and p4 particles, 

respectively. These equivalent radiators simulate the effect of multiple 

photons emitted by pl, p2, p3 and p4, respectively. A monoenergetic 

particle initially with energy Ei after going through a radiator of 

thickness ti (in unit of radiation lengths) will acquire an energy 

distribution (i = 1, 2, 3, 4) 

where 

Pi Xi dxi 
( 1 

= ti(l-Xi) 1 
t.-ldx 

i 

E: 
x. = 1 

1 Ei . 

Integrating pi(xi) from 0 to AE/Ei we have 

AE/E i ti 
. 

(2.29) 

(2.30) 

Equation (2.29) is accurate only when l-xi << 1. For a large energy 

loss a better approximation for the internal bremsstrahlung from a 
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spin+ particle is1'4 

1+x2 i 
Pi xi = 5 2 ( ) ( ) 

l-x 
ti-1 

i . (2.31) 

The final state of the reaction e+e- + p+p-y is coplanar in the CM 

system. If more than one photon is emitted, the final state is no longer 

coplanar unless the extra photons are parallel to FL-, LI+ or the original 

Y* Since most of the photons are emitted along"either ef, e-, u- + or u , 

the extra photons emitted by e+ or e- are the major sources of acoplan- 

arity. Thus in order to choose the acoplanarity cuts one has to under- 

stand the effect of tl and t2 which simulates the effect of multiple 

photon emission by e- and e+, respectively. This can be done easily in 

the Monte Carlo program by replacing the monochromatic initial energies 

El and E2 by distributions given by Eq. (2.31), the rest of the calcu- 

lation uses the perturbation theory for evaluating e+e- -t u+p-y [i.e., 

Eq. (2.6)1. 

C. Partially Integrated Cross Sections 

With the modern detectors now being used at PEP and PETFU, practi- 

cally all the particles in the final state are detected and analyzed. 

It is therefore difficult and probably not useful to decide which 

variables in Eq. (2.1) should be integrated analytically. For this 

reason the Monte Carlo method is the most logical choice for analyzing 

the data. However it is dangerous to rely solely on the Monte Carlo 

method without understanding the gross features. We derive some 

partially integrated cross sections showning these gross features of the 

cross section. There are several regions in the phase space of u+p-y 

where the events are concentrated. 
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1. Soft Photon Region. The probability of emitting a soft photon 

is proportional to dk/klmT (see Eq. (2.26)). 

2. Hard Photon Region. When a hard photon is emitted by the 

initial electron or positron, the resultant annihilation cross section is 

enhanced by the factor s/s' = (l-k/E) -1 . This factor can be very large 

as mentioned in the introduction (see Eq. (2.3)). Thus near k = E, the 

cross section has k dependence of the form dk/(l-k/E). 

3. Small Emission Angles. Photons are predominantly emitted along 

either ply p2, p3 or p4 as can be seen from the denominators pl*k, p2mk, 

p 3 l k and p 4 l k in Eqs. (2.2), (2.3) and (2.4). Let us consider the 

emission of y by the initial e+e-; this is given by MEME in Eq. (2.3). ' 
n 

The term proportional to rn: is negative and is important only when the 

emission angle is small compared with me/E. The second term dominates 

the cross section when Ok1 and ek2 are large compared with me/E. Since 

p1 = -p2, we have 

(pl*k;(pZ.k) = k2(Et-Ps cos2Bkl) = k2(m:IpI sin2ekl) 

(2.32) 

This shows that when e 
kl 

>> ml/E1 the cross section is independent of 

me and the angular dependence is (d cos0kl)/sin20kL. The emission of Y 

from the final muons is given by MUMU in Eq. (2.4). Here p3 and p4 are 

no longer opposite to each other but the dependence of the cross sections 

on the emission angle is roughly the same as that for the electrons 

except here we replace me by m . 
u 

We derive an approximate analytic expression showing all these 

three characteristic features in the following. Let us consider MEME 
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term in Eqs. (2.1) and (2.3). We first perform integration with respect 

to P3 and p4 in the rest frame of p3 + p4 with the help of rS4 function, 

then we perform the integration with respect to k in the laboratory 

system from k min to kmax and the angle between k and p1 from Bklmin to 

7-r-e klmin' The result is 

X max (l-x) case klmin 

J [ X 
1+y2 sin26 

+ 1+ (1-x)2 
2 

min klmin 
(2.33) 

x Rn y2(l+ cosOklmin)2 

1+y2 sin2* 1 u ee+XcS’) 
klmin X 

where x = k/El, y = El/me, and a,,,(~') is the*lowest order cross 

section for the process e+e-+ X as a function of s' = s(l-x). For muon 

pair we have 

6s(s') is the correction due to vacuum polarizations and the noninfrared 

part of vertex corrections as shown in Eq. (2.7). The factor dx/x was 

replaced by dx/x 
l-tl-t2 

in order to account for the infinitely many soft 

photons emitted by p1 and p2. We have ignored the y emission by the 

final particles, hence this formula is appropriate for use in calculating 

the cross section for e+e- + y -I- hadrons due to emission of y from the 

initial e+. The cross section for emission of y from the final p' can 

be inferred from Eq. (2.33). 
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We can write approximately 

X 

max u ee+upycS) = aee+lJ!J(S) ? 
/ 1[ 

case . 

- 1 + y ', siL'TLrnin + 

1+ (1-x)2 
2(1-x) 

X min 

x Rn Yt(l+ case 
2 

kemin > 

1+y2 sin6 e kemin 1 (1 + “p)) 
) 

2 
‘OSekpmin (1-x) 

1.y; sin26 

+ (l+ (l-~)~) Rn y~(l~cosek~min~, 
2 2 

knmin 1+ Y; sin 0 kumin I 

x (1 + 6p) dx 
l-tl-t2-t3-t4 . 

X 

(2.34) 

The first square bracket comes from the y emission by the initial e' 

and the second square bracket comes from the emission of y by the final 

u ' 'kernin and 'kpmin are respectively ye and yu angular cuts. As 

shown in Table II, 6s(s') is a very slowly changing function of x, and 

hence we may approximate it by its average value. If we are not inter- 

ested in very small values of xmin, the correction due to multiple pho- 

ton emission can be ignored (i.e., tl + t2 f t3 + t4 -f 0). Equation 

(2.34) can then be integrated, yielding 
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) 

x2 -xzin max 
-X + max min 4 

1 1 (1 + 6p) (2035) x in y31+ 
case 2- 

kymin > 

l+yi sin20 kvmin . 

When the emission angles are made large enough such that y 0 u knmin 
>> 1 

and Yeekemin >> 1, we have 

case kemin Rn xmax 
X -X max min 

yz sin20kemin Xmin 
2 

1 lmXmax 
+-z Rn 1-Xmin I- ('+ gs(SHVe )) 

L 
case 

+ - kpmin X 

JnF-x 
min ( 

-x 
l+yi sin20 

max min 
knmin 

AR -+ 
PUY 

2 2 
8 X -X 

kemin max min 
X Rn cot 2 -x + 

max min ) 4 1 
e 

X (l+ 6s(s)) Rn cot (2.36) 

We have used the relation s' = s(l-x) to write !LnC(l-xmax)/(l-xmin)l = 

RntS~in/S~ax) in order to make it apparent that this log is due to the 

singularity in s'. Experimentally s' is the square of the invariant 

mass of l.~ pair and hence it can be measured more accurately than the 
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energy of y. V"~ve) is roughly 20% as shown in Table II. It is 

interesting to observe that Eq. (2.36) is independent of me, m and Ei's 
P 

except in 6s(s) which varies with s very slowly. 

III. NUMERICAL EXAMPLES 

In Table III we show some numerical examples of cross sections for 

<e+e- + p+u 2 y)/(4u n/3s) calculated according to-Eq. (2.36). ekgmin is 

the angular cut between y and leptons (e or p). The parameters used 

corresponds to the actual case used by the MAC detector group at PEP. 

We have shown both km, and siin; they are related by sAin = s(l-kmax/E). 

These two columns illustrate why it is sometimes dangerous to use a Monte 

Carlo program blindly. Usually the energy resolution of the photon 

detector is not good enough to specify the exact kmax shown in the table. 

Thus one can easily make a factor of two error in evaluating the cross 

section by specifying the wrong kmax. sAin can be more accurately 

determined and in the MAC experiment s' min = 1.5 CeV2 is the actual cut.g 

ARe and ARu represent the contributions to R from initial and final state 

y emission, respectively. We let 6s(s') = 0 when calculating ARe and 

ARp and AR : ARe + AR . 
1-I (AR) corr G 1.2 x R which approximately takes 

into account the effect of cS,(s') given in Table II. 

The copious production of high-energy y has experimental consequences 

on experiments using the small angle detector (2~ experiment) as well as 

the measurement of R using the central detectors. In Table IV we compute 

o(ee -t yX)/a(ee 3 X) 3 AR/R using only the first half of Eq. (2.36). 

X can be e+e-, p'n-, r+-c-, or hadrons. Experimentally these events are 

characterized by one very high-energy photon and on the opposite side 
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either 'two charged particles or two jets of hadrons. These events tend 

to be lumped as the hadronic events when evaluating R = o(ee -+ hadrons)/ 

o(ee -t p+p-). From Table IV we see that roughly one unit of R in total 

cross section for small angle detector (0 > 1.5') could be due to 

ee + yX, the detail depends upon Bkemin and sAin. Similarly approximately 

one-half unit in R in the central detector (0 > 10') could be due to 

ee -+ yX. Since the value of R is used for the test of QCD, we believe 

a more careful subtraction of ee -t yX events should be exercised. 

There are two ways of handling this problem. One way is to identify 

all such events and discard them. The other is to include all these 

events and make theoretical estimates of their cross sections and to 

subtract them from the data. Probably some combination of the two 

methods is the ideal solution. 
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Footnotes and References 

1. A similar phenomenon occurs in the electron scattering from a 

stationary target. Rutherford cross section is proportional to 

l/E2 of the incident energy. An incident electron can emit a very 

hard photon losing practically all its energy and then gets scat- 

tered by a nucleus at a low energy with a large cross section. 

This results in a rise in the radiative tail at the low energy 

end of the scattered electron spectrum. See L. W. MO and 

Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969). Also Y. S. Tsai, 
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TABLE I 

Noninfrared and Asymmetric part of the radiative 

correction tiA(e) = - ~A(R - e). This function is 

independent of energy in the extreme relativistic 

limit. 8 is defined as the angle between e- and 1-1~. 

*(degree) GA(percent) 

1 9.0 

2 6.5 

3 5.2 

5 3.9 

10 2.4 

20 1.3 

30 0.8 

40 0.5 

50 0.3 

60 0.2 

70 0.1 

80 0.1 

90 0 
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TABLE II 

Corrections due to vertex corrections and the vacuum polarizations in 

percent. 6s is the sum of all these corrections. 

G GeV 'zert e de e c ghad 6 vert vat vat vat vat S 

1 5.6 1.9 

5 6.7 3.0 

10 7.2 3.5 

20 7.7 4.0 

29 7.9 4.2 

34 8.0 4.3 

50 8.3 4.6 

100 8.8 5.1 

200 9.3 5.6 

2.1 0.4 --CO 

2.6 0.9 -0.1 

2.8 1.2 0.2 

3.0 1.4 0.5 

3.1 1.5 0.6 

3.2 1.5 0.7 

3.3 1.7 0.8 

3.5 1.9 1.0 

3.7 2.1 1.2 

0.5 10.4 

1.9 15.0 

2.7 17.6 

3.8 20.3 

4.3 21.7 

4.6 22.3 

5.1 23.7 

6.0 26.3 

7.0 28.8 
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TABLE III 

Cross sections for e+e- + u+u-y calculated according to Eq. (2.36). We 

2 use S = (29 GeV) 3 xmin = kmin/E = 4/14*5, ekemin = 'kl.lmin ' 'kgmin' 

S’ min = s(l-xmax). ARe and ARP represent the contributions to R from 

initial and final state y emission respectively. We let ds(s')=O when 

calculating AR,, ARu and AR Z ARe+AR . 51 
(AR) -- corr 1.2 AR which approxi- 

mately takes into account the effect of 8s(s') given by Table II. 

e kRmin k S’ max min ARe AR AR ( AR> corr 
(GeV) (GeV2) % %" % % 

2o" 

2o" 

2o" 

2o" 

10° 

loo 

loo 

loo 

13.5 58 2.8 1.2 4.0 

14.0 29 3.4 1.3 4.7 

14.3 11.6 4.1 1.3 5.4 

14.4741 1.5 6.3 1.3 7.6 

13.5 5% 3.9 1.7 5.6 

14.0 29 4.7 1.8 6.5 

14.3 11.6 5.8 1.8 7.6 

14.4741 1.5 8.9 1.8 10.7 

4.8 

5.6 

6.5 

9.1 

6.7 

7.8 

9.1 

12.8 



-24- 

TABLE IV 

Calculation of AR/R - cr(ee -f yX)/o(ee -t X) using the first half 

of Eq. (2.36). We assume o(ee -f X) 0~ s -1 and x min = 0.1. 

Okemin is the cut for angle between y and e. sAin is related 

to xmax by xmax = l-s '&s with s = (29 GeV) 2 

8 I ,-mi”. t 
kemin 

1 I I I 

1 20.8a 11.7 8.3 6.3 

4x 1o-2 27.3 15.3 10.9 8.3 

10 -6 48.8 27.4 19.5 14.8 

I aThe values of AR/R given are in percent. I 
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Figure Caption 

Fig. 1. Lowest order Feynman diagrams for the process e+e- -+ PfYY. 
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