
FASTBUS INTRODUCTION AND DEMONSTRATION*

C. A. Logg, L. Paffrath, B. Bertolucci, and D. Horelick
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305

This poster session paper presents a simplified
explanation of the FASTBUS communication protocol and
a brief description of the FASTBUS modules and the
FASTBUS Operating System (FBOS) being used in the cur-
rent prototyping efforts at SLAC. A sample session
utilizing the FBOS to initialize and exercise a
FASTBUS segment is also presented.

Introduction

FASTBUS is a standardized modular 32-bit data-bus
system for data acquisition, data processing, and con-
trol. A FASTBUS system consists of multiple segments
which-can operate independently, but link together
for passing data. FASTBUS operates asynchronously to
accommodate high and low speed devices, using hand-
shake protocols for reliability. It can also operate
synchronously without handshake for transfer of data
blocks at maximum speed.

This poster session paper presents a simplified
explanation of the operation of the FASTBUS communica-
tion protocol. For a detailed description see Ref. 1.
Also included is an overview of the FASTBUS Operating
System (FBOS) and the three modules being used in the
current prototyping efforts at SLAC.

FASTBUS Components

An example of a simple FASTBUS system is a single
FASTBUS segment and a few modules. A 19 inch FASTBUS
crate (Fig. l), which can hold up to 26 modules, is an
example of a backplane segment. Each slot in the crate
(and thus the module in that slot) can be uniquely ac-
cessed. The address of the slot in which a module re-
sides is known as the module's GEOGRAPHIC ADDRESS. The
lowest 32 addresses allocated to any segment are used
as the geographic addresses of the segment.

I i

5.. - .Dll./‘

Fig. 1. A 19" FASTBUS Crate

There are two categories of FASTBUS modules:
MASTERS and SLAVES. A master module is one which can
gain control (MASTERSHIP) of the segment and initiate
operations on the segment. A slave module cannot gain
mastership of a segment. I t can only assert informa-
tion on the segment in response to a specific request
by a master. Slave modules, however, can request

SLAC-PUB-2738
May 1981
(1)

servicing by asserting the Service Request (SR) line.
All master modules must have slave capabilities.

Various recommended and mandatory module design
features have been included in the specification
(Ref. 1) to facilitate the creation of intelligent soft-
ware for handling FASTBUS systems. One specification
is the explicit definition of certain CONTROL and
STATUS REGISTERS (CSRs). One of the mandatory CSRs is
CSR 0. CSR 0, when read, must return the ID (type or
model number) of the module. This mandatory feature
makes it possible to identify the contents of each slot
in a segment and hence generate a map of an entire
FASTBUS system, segment by segment.

Another highly recommended feature is the imple-
mentation of a CSR to hold a software settable address.
This address is known as the LOGICAL ADDRESS. Once
this CSR is loaded and the logical address recognition
enabled, the module can be addressed by asserting this
address instead of the geographic address on the bus.
The primary advantage of logical addressing is that it
allows the allocation of as much address sp.ace as is
needed by each module. The logical address can thus
include internal address information which selects a
part of a module, while geographic addressing can only
select the module as a whole. Another advantage of
logical addressing is that the module can be relocated
within a crate (and possibly even the system) without
any software changes in the masters (if the masters
address modules by their logical addresses).

A FASTBUS segment has two attached ancillary logic
boards. They are the Enable Geographic (EG Line) Gene-
rator, and the Arbitration Timing Controller (ATC).

Phases in a FASTBUS Operation
There are basically 4 phases in a FASTBUS opera-

tion. These are the ARBITRATION, the ADDRESS cycle,
the DATA cycle, and the BUS RELEASE phases.

Arbitration is the first phase in which a master
must participate. Only one master can utilize the bus
of a segment at any time. The arbitration resolves any
contention which there may be for the use of the bus.

Once mastership is gained, the master addresses the
module(s) with which it is going to communicate. The
address cycle results in the establishment of the link
between a master and slave(s).

Once a master has established the link, it can
proceed to perform any data cycles necessary.

When an operation is complete, the master may
either proceed with another address and data cycle se-
quence, or release mastership of the segment so other
masters can have access to it.

The Arbitration Phase
The FASTBUS lines used in this discussion of

Arbitration are:
AR - Arbitration Request
AG - Arbitration Grant
AL - Arbitration Level (6 lines)
GK - Grant Acknowledge.
The FASTBUS component used in the arbitration is

the Arbitration Timing Controller (ATC).
Another FASTBUS line related to the arbitration,

but ignored in this discussion, is the Arbitration
Inhibit (AI) line.

The first step a master must perform when it is
going to execute an operation on a FASTBUS segment is
to arbitrate for mastership of the segment. The

* Work supported by the Department of Energy under contract number DE-AC03-76SF00515.

(Contributed to the Topical Conference on Computerized Data Acquisition in Particle and Nuclear Physics,
Oak Ridge, Tennessee, May 28-30, 1981.)

sequence (Fig. 2) for this is:

1. All masters, requiring masterhip on a segment,
assert the AR line on the segment.

2. The ATC recognizes the arbitration requests and,
at the appropriate time, generates AG which is an
arbitration synchronization signal.

3. Each master which is arbitrating for FASTBUS mas-
tership then asserts its arbitration vector on the
6 AL lines. A master's arbitration vector is its
arbitration priority. During arbitration, each
arbitrating master compares its internal arbitra-
tion level, bit by bit, with the level on the bus.
If the bus level is higher, each master removes
any lower order bits that it has asserted. When
the ATC lowers the AG line, the master whose ALs
match the ALs on the bus wins mastership. The
winning master asserts GK to take mastership of
the segment.

* AC IS generaleo when the bus IS clear.
I. 01..

Fig. 2. Lines Asserted During
Arbitration.

The Address Cycle Phase

The FASTBUS timing, control, and address/data
lines used in this address cycle discussion are:

AS - Address Sync
AK - Address Acknowledge
CB - Control/(Block)
NH - No handshake
AD - Address/)Data) Lines (32 lines).
Other FASTBUS lines which are relevant to the

address cycle but ignored in this discussion are:
EG - Enable Geographic; This line is generated by

the EG Generator to indicate that an address
is a geographic address.

NK - Negative Acknowledge, BK - Busy Acknowledge;
These lines are used in multiple segment
systems to return connection failure
information to the master.

PE - Parity Enable, PA - Parity; These lines are
used to indicate the parity of the data on
the AD lines. Their use is optional.

After a master has obtained mastership, it can
begin the address cycle.

Each module has two address spaces which are known
as CONTROL space and DATA space. As a protection me-
chanism, the connection to these two address spaces is
made via differing address cycles. The CB line is used
to indicate which address space is being addressed.
CB=l indicates a control space address. CB=O indicates
a data space address. It is also possible to address
more than one module at a time. This mode is known as
MULTI-LISTENER (or BROADCAST) mode and is indicated by
the NH line. NH=1 indicates multi-listener mode.
NH=0 indicates SINGLE-LISTENER mode, the one that will
be discussed here. The following table summarizes the
CB and NH encodings during the address cycle:

CB NH ADDRESS CYCLE MEAN1N.G

0 0 single module data space address
10 single module control space address
0 1 broadcast to data space
11 broadcast to control space

The master initiates the address cycle (Fig. 3) by
asserting the address of the slave on the AD lines,
asserting the CB and NH lines, and finally asserting
the AS line. The slave, upon recognizing its address,
asserts the AK line to establish the AS-AK lock. Once
the AS-AK lock is established, the master can proceed
to the data cycle phase.

GK

CB

NH

ADS

AS

AK
,-a . 0”

Fig. 3. Address Cycle.

The Data Cycle Phase

The FASTBUS Lines used in this data cycle
discussion are:

DS - Data Sync
DK - Data Acknowledge
CB - (Control)/Block Transfer
NH- No Handshake
BK - Busy Acknowledge
NK- Negative Acknowledge
RD- Read
AD- (Address)/Data (32 lines)
Other FASTBUS lines used in the data cycle, but

ignored in this discussion, are:
PE - Parity Enable, PA - Parity: The use of these
lines is optional.

The data transfer during a data cycle can be either
from the master to the slave (called a WRITE cycle), or,
from a slave to a master (called a READ cycle). The
direction of the transfer is controlled by the RD line.
RD=l for a read, RD=O for a write.

There are 4 possible types of data cycles. These
are called: a random data cycle, an extended address
cycle, a handshake block transfer cycle, and a non-
handshake block transfer cycle. The type of data cycle
being performed is indicated by the CB and NH lines
using the following encoding:

CB NH DATA CYCLE MEANING

0 0 random data cycle
10 handshake block transfer
0 1 extended address cycle
11 non-handshake block transfer

Once the AS-AK lock is established between a master
and slave, any combination of data cycles (which a slave
and master are equipped to handle) can be concatenated
to perform the transfer of information between the
modules.

A master initiates a data cycle by
1) asserting:

CB and NH to indicate the type of data cycle being
performed,

-2-

2)

1)

2)

3)

in I

RD to indicate the direction of data transfer, and,
in the case of a write, the data on the AD lines;
and, then asserting DS.

The slave responds to the initiated data cycle by
reading the RD line to determine the direction of
information transfer,
decoding the CB and NH lines to ascertain the type
of data cycle,
then executing internally the indicated function,
and, for a read, asserting the data on the AD
lines. If the slave detects an error it asserts an
error code on the hX and BK lines.
The slave then completes the data cycle handshake
by asserting DK.

An example of data cycle concatenation is shown
Figs. 4a and 4b. A normal address cycle, such as

displayed in Fig. 3 must have been successfully com-
pleted. In Fig. 4a:
Section A shows a random data write cycle. The master
asserts: CB=O, NH=O, the data on the AD lines, and
then DS=l. The slave, after processing, returns DK=l.
The master then drops DS, the slave drops DK, and the
master then proceeds to the next cycle.
Section B shows an extended address write cycle. The
extended address cycle is used to set a pointer in-
ternal to the slave module. This internal pointer,
called the Internal Address (IA) is the location within
a module where the next read or write data will come
from or go to. It is often referred to as the next
transfer address (NTA).

CB (01

/
AS ni(.

Fig. 4a. Examples of Write Cycles.

After the extended address cycle, which has set
the slave's internal address pointer, the master could
perform, for example, a handshake block transfer se-
quence of data cycles to read a block of data from a
consecutively addressed area within the slave.

Figure 4b (Sects. C, D, and E) shows an example
of a handshake block transfer read. Note that in the
extended address and random data cycles, DS must be
dropped at the completion of the data cycle. In a
handshake block transfer data cycle (CB=l), every
change in 3s is used to indicate another data cycle.

NH I 1 I il

Sectmn c
IS’ Cycle

Secllon D 1
:*. / 2nd Cycie ,

Sectton E / Seclmn F
3’O Cycle , Bus Release

Fig. 4b. Cycles of a Handshake Block Transfer
Read and Bus Release.

Bus Relase Phase
Once a master has obtained mastership it can per-

form any combination of address and data cycles needed
to complete its operations as long as it retains the
GK assertion. However, it is permissible to release
the GK line as soon as the AS-AK lock is established if
the master is not going to perform any more address
cycles. The release of GK permits the next possible
arbitration to occur. Mastership of the bus is re-
leased when the master has set AS=0 and GK=O. When the
slave sees AS=O, it removes AK (Sect. F of Fig. 4b).

Prototyping and Protocol Verification Efforts
Currently SLAC is performing some protocol verifi-

cation tests and studying the implications of imple-
menting the protocol. Three FASTBUS modules have been
built for these tests. These are: a 256 32-bit word
memory module (Ref. 2), a FASTBUS Sequencer (Ref. 3),
and an I/O Register to FASTBUS Interface (IORFI) (Ref.
4). The IORFI is interfaced to an LSI-11 (/2 or /23)
(Ref. 5) via 2bRVlls (Ref. 6).

The FASTBUS Memory Module
The FASTBUS memory module has 256 words in data

space and 4 CSR registers. CSR 0 is the ID register
and bit 1 of CSR 0 is the logical address enable bit.
The other CSRs are used as the logical address regis-
ter, a run options register, and an error counter re-
gister. The module can execute random, extended ad-
dress, and handshake block transfer data cycles. It is
being used as a high speed slave module in the current
tests.

The FASTBUS Sequencer
The FASTBUS sequencer is being used as a high

speed master in the current tests. The sequencer has
only control space addresses. The control space is di-
vided into three sections. These are the status regis-
ter memory, the control memory and the data memory.
The sequencer is operated by loading encoded operation
words (the sequencer program) into the control memory.
The data memory is used as the source of the 32-bit AD
line values to be used for address and data write cycles,
and as the destination of data read during FASTBUS read
cycle(s). The following functions can currently be en-
coded into an operation word to create an instruction
for the sequencer:

Mnemonic Function

AS assert AS line
CB assert CB line
NH assert NH line
RD assert RD line
DC perform a data cycle (only extended

address and random data cycles are
currently implemented)

TERM terminate sequencer operation and
assert the Service Request (SR) line.

FASTBUS Operating System (FBOS)
SLAC FORTH 2.6 (Ref. 7) has been used to develop

an operating system for FASTBUS prototype development
and hardware checkout.

Currently the FBOS (Ref. 8) contains routines for
performing various kinds of FASTBUS transfers, a
Sequencer Program Assembler (Ref. 9), and facilities
for monitoring FASTBUS operations.

A layered approach has been used in the design and
implementation of the system software. The top layer,
called the Complete FASTBUS Operations (CFO) layer is
composed of words which perform complete FASTBUS opera-
tions. That is, calling one word will perform the ar-
bitration for mastership, address cycle, data cycle (or
cycles in the case of a block transfer), and bus re-
lease. Some examples of words in the Complete FASTBUS
Operations layer are:

-3-

I
DRD (DWR)

performs a data word read (write) from (to) data space
XDRD (XDWR)

performs an extended address cycle, followed by a
data word read (write) from (to) data space

DBLKRD (DBLKWR)
performs a handshake block transfer of a block of
data from (to) data space

xcm (XCER)
performs a data word read (write) from (to) control
space.

The next layer is composed of FASTBUS Cycle Ope-
rations and is known as the FCO layer. The FCO words
are used to create the CFO words. However, they are
available to the user who wishes to create his own com-
bination of FASTBUS cycle operations. They can also be
called individually to single-step through a FASTBUS
operation.

For example, ADD-CS, WR-EXT-ADD, and RI&CYCLE
are words contained in the FCO layer.

XCRD is composed of calls to: ADD-CS which per-
forms an address cycle to control space, WR-EXT-ADD
which performs an extended address write cycle, and
RD-CYCLE which performs a read data cycle.

For a complete description of FCO and CFO layer,
as well as the other layers of the system, see Ref. 8.

The Sequencer Program Assembler
The sequencer program assembler encodes symbolic

sequencer operations into a 32-bit instruction word and
stores them in a program array. The AD line values are
loaded in a data array. Figure 5 is a sample of a se-
quencer program.

0 DATA1 0 PGMl STARTPGM initialize the assembler (pass
it data and program arrays
which are to be used for the
assembly)

{AS DC i/1000. AD) address cycle instruction
{AS DC RD DMEM} read instruction
{AS DC NH 1. AD} extended address cycle
(AS DC RD DMEM} read cycle

ITiRM)
empty instruction to drop AS
terminate sequencer operation

ENDPGM indication to the assembler
that this is the program end

Fig. 5. Sequencer Program

FASTBUS Operation Monitoring Facilities
The FBOS contains several debugging facilities.

The simpliest, and most widely used, is the FB command.
This command reads, decodes, and prints symbolically on
the-terminal everything that can be read through the
IORFI about the bus. FB is heavily used by the other
debugging facilities.

The TRACE facility has the commands TRACE-ON and
TRACE-OFF. The trace facility allows the user to
examine (display on the terminal or lineprinter via the
FB command) the FASTBUS bus status at each step in a
FASTBUS operation. This can be used whether the IORFI
is acting as a master or a slave.

The VERIFY facility has the commands VERIN-ON
and VERIFY-OFF. When the verify facility is enabled,
each extended address write cycle and/or random data
write cycle is followed by an extended address read
cycle and/or random data read cycle, respectively. The
readback is compared to what was written, and if they
do not match, the message VERIFY FAILURE is printed on
the terminal. This facility is useful for finding
problems such as stuck bits. It must be used with some
discretion since some verify failures will not neces-
sarily indicate an error. For example, in the case of
writing a bit to CSR 0, the readback will not match the

written data, since the ID of the module will be re-
turned in the read.

The DIAGNOSTIC facility is controlled by the com-
mands DIAG-ON and DIAG-OFF. When the facility is en-
abled, a message is printed for each incomplete FASTBUS
cycle. For example, if slot 5 is empty, and an address
cycle to that slot is performed (i.e., 5. ADD-CS) the
message NO AK RESPONSE will be printed on the terminal.

The IORFI has WT line (Ref. 1) generation logic
which enables it to generate WT on any transition of
AS, AK, DS, or DK. Routines written to facilitate
using this feature include: TT-WT-ENB which enables
the timing transition WT line generation, TT-WT-CLR
which clears a timing transition WT condition and re-
enables WT generation logic, and TT-WT-DIS which dis-
ables the WT generation completely. Thus, the sequen-
cer can be loaded, started, and single-stepped through
its sequence to the memory module. At each step, a
complete display of the FASTBUS bus status (using FB.)
can be seen.

Sample Session

This is a sample session wherein: the FASTBUS
segment is initialized and mapped, the memory module is
loaded and its logical addressing is enabled, the se-
quencer is initialized, loaded with a program and
started, and single stepped through its operations.
After the sequencer has finished, its contents are read
out and the results are displayed on the terminal. The
contents of the memory module are also read out (using
a handshake block transfer) and displayed on the ter-
minal.
1. Initialize the interface and issue a RESET BUS to

the segment.
2. Map the segment:

SLOT ID MODULE TYPE

0 0000 0000 EMPTY SLOT
1 0000 0000 EMPTY SLOT
2 0000 0000 EMPTY SLOT
3 0000 0000 EMPTY SLOT
4 0001 0100 MEMORY MODULE
5 0000 0000 EMPTY SLOT
6 0000 0000 EMPTY SLOT
7 0000 0000 EMPTY SLOT
8 0000 0000 EMPTY SLOT
9 0000 0000 EMPTY SLOT

10 0000 0000 EMPTY SLOT
11 FFFF FFOO NON-STANDARD
12 0000 0000 EMPTY SLOT
13 0000 0000 EMPTY SLOT
14 0000 0000 EMPTY SLOT
15 0000 0000 EMPTY SLOT
16 0000 0000 EMPTY SLOT
17 0000 0000 EMPTY SLOT
18 0000 0000 EMPTY SLOT
19 0001 0200 SEQUENCER
20 0000 0000 EMPTY SLOT
21 0000 0000 EMPTY SLOT
22 0000 0000 EMPTY SLOT
23 0000 0000 EMPTY SLOT
24 0000 0000 EMPTY SLOT
25 0000 0000 EMPTY SLOT

3. Initialize the memory module and enable its logical
addressing:

AS CB GKI GK3 0000 0004
AS AK CB GKI GKB 0000 0004
AS AK DS DK NH GKI GKB 0000 0001
AS AK GKI GKB 0000 0000
AS AK DS DK GKI GKB 0000 1000
AS AK GKI GKB 0000 0000

-4-

As
AS AK
AS AK DS DK
ASAK
AS AK DS DK
AS AK

As
AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK

AS
AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK

CB
CB

NH

CB
CB

NH

CB
CB

NH

GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB

GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB

GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB

0000 0000
0000 0004
0000 0004
0000 0902
0000 0000
0000 0000
0000 0000
0000 0000
0000 0004
0000 0004
0000 0003
0000 0000
0000 0000
0000 0000
0000 0000
0000 0004
0000 0004
0000 0000
0000 0000
0000 0002
0000 0000
0000 0000

4. Load 10 zeros into the memory module data space:

AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK

CB
CB
CB
CB
Ch
CB
CB
CB
CR
CB

GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB

5. Initialize the sequencer:

0000 1000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

AS
AS AK

AS
AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK

AS
AS AK
AS-AK DS DK
AS AK
AS AK DS DK
AS AK

AS
AS AK
AS AK DS DK
AS AK
AS AK DS DK
AS AK

CB
CB

CB
CB

NH

CB
CB

NH

CB
CB

NH

GKI GKB
GKI GKB

GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB

GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB

GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GKB
GKI GK8

0000 0013
0000 0013
0000 0000
0000 0013
0000 0013
0000 0001
0000 0000
0000 0000
0000 0000
0000 0000
0000 0013
0000 0013
0000 0002
0000 0000
oooeoooo
0000 0000
0000 0000
0000 0013
0000 0013
0000 0003
0000 0000
0000 0013
0000 0000
0000 0000

6. Load the sequencer program:

AS MEM (0) = 0000 1001
AS DC MEM (1) = FlFl FlFl
AS DC NH MEM (2) = 0000 0002
AS DC MEM (3) = F2F2 F2F2
AS DC RD MEM (4) = 8181 8181
AS DC NH MEM (5) = 0000 0001
AS DC RD MEM (6) = 8181 8181

EMPTY INSTRUCTION
TERM

7. Start the sequencer:

As CB GKI GKB 0000 0013
AS AK CB GKI GKB 0000 0013
AS AK DS DK NH GKI GKB 0000 0000
AS AK GKI GKB 0000 0000
AS AK DS DK AR GKI GKB 0000 0008
AS AK AR GKI GKB 0000 0000

AR GKI GKB 0000 0000

8. Sequencer in operation (single stepping):

AS WTB GKB WTT 0000 1001
AS AK WTB GKB WTT FlFl FlFl
AS AK DS WTB GKB WTT FlFl FlFl
AS AK DS DK WTB GKB WTT FlFl FlFl
AS AK DK WTB GKB WTT FlFl FlFl
AS AK NH WTB GKB WTT 0000 0002
AS AK DS NH WTB GKB WTT 0000 0002
AS AK DS DK NH WTB GKB WTT 0000 0002
AS AK DK NH WTB GKB WTT 0000 0002
AS AK WTB GKB WTT F2F2 F2F2
AS AK DS WTB GKB WTT F2F2 F2F2
AS AK DS DK WTB GKB WTT F2F2 F2F2
AS AK DK WTB GKB WTT F2F2 F2F2
AS AK RD WTB GKB WTT 0000 0000
ASAKDS RD WTB GKB WTT F2F2 F2F2
AS AK DS DK RD WTB GKB WTT F2F2 F2F2
AS AK DK RD WTB GKB WTT F2F2 F2F2
AS AK NH WTB GKB WTT 0000 0001
AS AK DS NH WTB GKB WTT 0000 0001
AS AK DS DK NH WTB GKB WTT 0000 0001
AS AK DK NH WTB GKB WTT 0000 0001
AS AK RD WTB GKB WTT F2F2 P2F2
ASAKDS RD WTB GKB WTT FlFl FlFl
AS AK DS DK RD WTB GKB WTT FlFl FlFl
AS AK DK RD WTB GKB W!JT FlFl FlFl
AS AK WTB GKB WTT 0000 1001

9. The sequence now contains:

AS MEM (0) = 0000 1001
AS DC MEM (1) = FlFl FlFl
AS DC NH NEM (2) = 0000 0002
AS DC MEM (3) = F2F2 F2F2
AS DC RD MEM (4) = F2F2 F2F2
AS DC NH MEM (5) = 0000 0001
AS DC RD MEM (6) = FlFl FlFl
EMPTY INSTRUCTION
TERM

10. Read the memory module memory:

AS AK SR GKI GKB 0000 1000
AS AK DS DK RD CB SR GKI GKB 0000 0000
AS AK RD CB SR GKI GKB FlFl FlFl
AS AK DS DK RD CB SR GKI GKB F2F2 F2F2
AS AK RD CB SR GKI GKB 0000 0000
AS AK DS DK RD CB SR GKI GKB 0000 0000
AS AK RD CB SR GKI GKB 0000 0000
AS AK DS DK RD CB SR GKI GKB 0000 0000
AS AK RDCB SR GKI GKB 0000 0000
AS AK DS DK RD CB SR GKI GKB 0000 0000
AS AK RD CB SR GKI GKB 0000 0000

SR ' 0000 0000

-5-

11. List of the memory module contents: REFERENCES

0 0000 0000
1 FlFl FlFl
2 F2F2 F2F2
3 0000 0000
4 0000 0000
5 0000 0000
6 0000 0000
7 0000 0000
8 0000 0000
9 0000 0000

Summary
A brief explanation of the FASTBUS protocol has

been given along with a short description of the 3
FASTBUS modules and operating system which are being
used in the initial prototyping and verification
efforts.

1.

2.

3.

4.

5.

6.

7.

8.

9.

FASTBUS Modular High Speed Data Acquisition System
for High Energy Physics and other Applications,
U.S. NIM Committee.
Memory Module - Specifications, Boris Bertolucci,
8/l/80, SLAC.
FASTBUS Sequencer - Interim Description, Dale
Horelick, 10/10/80, SLAC.
I/O Register to FASTBUS Interface, Connie Logg and
Leo Paffrath, (SLAC EIN Note), March 1981.
Microcomputers and Memories, Digital Equipment
Corporation, 1981.
Microcomputer Interfaces Handbook, Digital
Equipment Corporation, 1980.
SLAC FORTH Programmer's Guide, M. Stoddard,
J. Kieffer, and S. Deiss (SLAC EIN software note),
Aug. 1980.
Sequencer Program Assembler and Driver Routines,
C. Logg (SLAC EIN software note), March 1980.
Software for the FASTBUS Prototype Development,
C. Logg (SLAC EIN software note), March 1981.

