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ABSTRACT 

Two problems of first class relativistic constraint dynamics of 

direct interaction are considered. The first is the relation of the 

gauge motion to the physical motion. In a manifestly covariant formu- 

lation they are shown to be exactly equivalent, the latter duplicating 

the former. The physical motion arises as a consequence of the explicit 

dependence on an (invariant) time parameter introduced by the gauge 

fixations (specification of "equal time" surfaces). No simple relation 

exists in general between the evolution generator and the translation 

generators. The second problem deals with the covariance of the physical 

world lines. It is satisfied trivially for Lorentz covariance (since the 

formalism is covariant) and nontrivially for translations in the equal 

time surface orthogonal to the total momentum. Necessary conditions on 

the fixations are given to ensure this. 
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1. BACKGROUND 

The attempts to formulate relativistic particle dynamics with 

interactions that are not necessarily field mediated go back half a 

century. But the desirability of using more than the minimum number of 

variables together with suitable constraints is ofimuch more recent 

vintage. Constraint formulations in this context were suggested inde- 

pendently and to various degrees of generality and explicitness by at 

least four different authors.lW4 The subsequent development resulted in 

a large number of papers which have recently focussed on the problem of 

evolution of the dynamical system and on the covariance of its world 

lines.5-g 

Of special interest is the constraint dynamics with first class 

constraints because these permit a quantization of this classical 

system.l' The elimination of first class constraints requires "fixations" 

which are time dependent constraints. Such constraints have recently 

been studied in their own right.ll 

The problem of evolution deals with two questions. One is the 

fixation dependence of the dynamics and the other is the relation of the 

gauge dynamics (generated by the first class constraints within an 

equivalence class of points in phase space) and the physical dynamics. 

The two problems are related. 

The problem of covariance is raised by the requirement of relativity 

which demands that different inertial observers see the same world lines. 

This condition is not trivial to satisfy and the so-called "world-line 

condition" has played an important role ever since the no-go theorem of 
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1965.12 

In the present paper we shall study the problems of evolution and 

covariance from a slightly different point of view than has been done 

recently.576y8yg While our approach is in many respects equivalent to 

what was done by these authors and our results overlap, the following 

differences should be noted. 

The present work deals with N-particle systems (N 1 2) and is 

throughout manifestly Lorentz covariant. In view of the results by 

J. N. Goldberg7 this covariance ensures Lorentz covariance in both the 

phase space and configuration space (Minkowski space). As we shall see, 

even this formulation leads to nontrivial problems of the type mentioned 

above. Furthermore, use will be made of the Bergmann-Komar reduced 

variables (star variables).13 These are a much more powerful tool than 

Dirac brackets only. And finally we permit very general fixations which 

we cast into standard forms that are found to be convenient. 

After a brief review of those aspects of first class constraint 

dynamics that are of interest here (Sec. 11) fixations are introduced 

and standardized (Sec. III). Evolution and covariance are then discus- 

sed in Sets. IV and V, respectively. The last section summarizes 

our conclusions. 

II. THE QUOTIENT SPACE 

Classical relativistic dynamics in Hamiltonian form is based on an 

8N dimensional symplectic space p for N spinless particles of masses 

m a > 0 (a = l,...,N). It is spanned by the canonical variables q,, pa 
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which are fourvectors in 3+1 dimensional Minkowski space with metric n 

(trace + 2). They satisfy the covariant Poisson bracket algebra 

The Poincarg generators are determined by 

PU=cPau, Muv=c(9a"P) 
a a v a 

(1) 

(2) 

so that Eq. (1) is a realization of the Poincarg algebra via (2). The 

N constraints 

Ka X 0 (a = 1 ,...,N) (3) 

(the symbol x indicating weak equality, valid in a subspace of l' only) 

are assumed to be first class, 

{Kay 5} z 0 V a,b 

since this is the interesting case for the purpose of quantization. 

The variables Ka are the interacting mass shells 

Ka = pz + mi + $,(Y) 

(4) 

(5) 

with y 5 (ql,...qN, pl,...pN) CF and $a a reasonably well behaved inter- 

action function consistent with Eq. (4). 

The constraints (3) restrict p(8N) to a constraint hypersurface of 

7N dimensions,A(7N), which is the system mass shell hypersurface. 
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Within& each Ka generates a trajectory for every point y c & , 

parametrized by Xa, such that 

$ = {Y, Ka) (6) 

and these trajectories remain in& for all Xa because the trajectory 

generators are first class, (4). The N trajectories from any point ye&l 

span an N dimensional surface C(N). & (7N) is thus foliated by these 

C(N) and one can define a quotient space Q(6N) by 

Q(6N) =cAt(7N)/C(N) . (7) 

This quotient space is the physical phase space of 6N dimensions. The 

above construction ensures that the reduced 6N dimensional phase space 

Q(6N) carries a nondegenerate symplectic structure, i.e., there exist 

6N canonical variables on it by Darboux's theorem. 

The physical motion takes place entirely in Cp and obeys the 

constraints (3) which satisfy (4) and which now hold strongly on @. All 

points on a given C then are physically equivalent and correspond to a 

single point on @. The surfaces C are thus equivalence classes. The 

"motions" (6) in E: are gauge motions of no physical significance. 

How, then, does one determine the physical motion of the system 

when all the physical information about the interaction between the 

particles is buried in the constraint functions Ka, (5)? 
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111. THE FIXATIONS 

The theory developed so far is still lacking an essential 

ingredient. It is necessary to specify the observer, i.e., a parametri- 

zation by which one can describe the evolution of the system. In Min- 

kowski space Hamiltonian dynamics requires the spgification of three- 

dimensional (usually spacelike) hypersurfaces parametrized by some para- 

meter T, say, so that the infinitesimal evolution takes the system from 

the surface r to the surface 'c + 6~. A corresponding specification of 

hypersurfaces in phase space has not yet been made. In Komar's termino- 

logy14 the syntactic aspect of the theory has been stated but the 

semantic one is still missing. 

If the intended meaning of the q, is a position fourvector for 

particle 2, then q", is its coordinate time. The hypersurfaces to be 

specified are therefore expected on physical grounds to relate the qz 

to T. 

In a non-covariant way the simplest such specification would thus be 

'a 
=q;-t"0 . (8) 

In this case T = t is not a Lorentz invariant parameter. Since the 

physical (intended) meaning of the generators P 
11' (21, of space-time 

translations is that of total momentum and energy, a Lorentz covariant 

statement instead of (8) would be 

A 

x, z - q,*P - T = 0 (9) 
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A 

where the unit vector P is defined as P/ -P2. f- A still more sophisticated 

choice would be the one advocated in Ref. 15 which has the form (at 

least for N= 2), 

A 

'a ' - q 0; + pa*Pr M 0 . 
a 

(10) 

All these are examples of "fixations", const?%nts that specify the 

generalized "equal time surface". In general, they are of the form 

X,(Y) T> = 0 (a = 1 ,...,N) (11) 

but since they are to be monotonic functions of 'c (on physical grounds) 

it is reasonable to assume that (11) can be solved with respect to T 

and we shall restrict ourselves to that case. The fixations can then be 

brought to the "first standard form", 

x, - a,(y) - T x 0 (a = 1 ,...,N) (12) 

and the examples (8) and (9) are of this form. Equation (10) can ob- 

viously also be put into the form (12). A "second standard form" is 

obtained by retaining xN but replacing the other x a 
by x 

a 
- xN, 

xa 5 x, - XN = U,(Y) - a,(v) = 0 (a = 1 ,...,N-1) 

(13) 
XN = XN = ON(Y) - T = 0 . 

This second standard form has the advantage that r occurs in only one 

of the N fixations. 

Geometrically, the N fixations specify an N dimensional surface. 
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When used simultaneously with the constraints (3) they form a set of 

2N second class constraints. We require that the matrix 

A = ((X@, \}) (a, b = l,...,N) (14) 

is non-singular, 

det A # 0 . (15) 

The phase space r(8N) is thus reduced by the complete set of 2N second 
* 

class constraints to a nondegenerate phase space 0 (6N) of 6N dimensions. 

This space is diffeomorphic to the quotient space @ for every fixed r, 

but gives in general a different diffeomorphism for each value of 'c. 

In terms of the geometrical picture of a foliated space ,,M(7N) which 

we had before the introduction of fixations, the N-dimensional fixation 

surface (for a fixed r> can be considered as restricting each surface 

C(N) to a single point, which can be characterized by q:(r) and p:(r), 

‘Y*(r) - cs;,...s;, P;,...P;). The 'c is necessary because different T 

give different fixation surfaces. 

The point yap O* can be constructed by a method due to Bergmann 
k 

and Komar13 in which the r dependence becomes explicit in y . This 

construction is simply the reduction of the 8N component y to that 

particular 6N component y* which is compatible with the 2N constraints. 

For fixed T 

2N 2N 

Y* = Y - ,c, 2 ( YJm} (D-l)mncn 
= 

(16) 
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where 

Cm = x, (m = l,...,N) 

C = Km (m = N+1,...,2N) (17) m 

and the 2N x 2N dimensional matrix D consists of kur N x N submatrices 

D= = (Icm, CJ) 

8 = (Ixa, x81) (a,B = l,--+,N) 

(18) 

(19) 

and A was defined earlier in (14). In (18) 0 indicates the N x N zero 

matrix and is there because of (4). The inverse matrix D 
-1 which occurs 

in (16) follows from (18) to be [it exists in view of (15)l 

-‘-’ ) 
A-1, i-1 (20) 

so that (16) can be written more explicitly as 

Y* = Y - {Y, xa) (-qaaKa 
(21) 

- {Y, Ka}[(qaaxa + (A-l I3 qab,] l 

Here and in the following we use the summation convention for simplicity, 

summing all repeated indices from 1 to N. 

The reduced variables y* are now functions of r via x,in the third 
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term on the right. The 'c dependence disappears in D if we assume one of 

the standard fixation forms (12) or (13). But for any choice of fixations 

the y* are thus uniquely determined functions of 'c. 

The reduction of y to y* via (16) ensures that 

(Y*, xa} = 0, {Y*, Ka} = 0 v-a+ 

and thus identifies the y* as physical variables. 

(22) 

IV. THE EVOLUTION 

Since the fixations are to be preserved throughout the motion, the 

evolution operator should not change them. Now in first class con- 

straint theory the evolution operator is not known: any combination of 

the first class constraints 

H =wK (23) aa 

is acceptable. The wa can be almost arbitrary functions of the q and p 

but will be assumed positive.16 The requirement of conservation of 

fixations, 

dx, ax 
x=2+ 0 

now fixes the w a' From (14) and 

{x,, Kai ma = - $ (24) 
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follows wa uniquely on @*, 

w =- a (25) 

If we adopt the first standard form, (12), this expression simplifies to 

wa = C (‘-l)aa 
a 

- 

and if we adopt the second standard form, (13), of the fixations 

0 = 
a 

Thus, H is uniquely determined by the fixations, 

aN ' 

(264 

(26b) 

(27) 

But this H does not seem to provide for the evolution of the physical 

variables y*. These commute (weakly) with H in view of (22). One does 

observe though that the original variables y now describe a unique 

trajectory on C: 

(28) 

The choice of fixations selects exactly one particular trajectory on the 

N-dimensional surface C. This is, however, a gauge dynamics since it 

relates equivalent points (points on C) to one another, all of which 

referring to the same point on the quotient space. This is not the -- 

evolution of the physical variables. Where then is the evolution of the 
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physical variables? 

The answer to this puzzle lies in the T dependence of the y* 

introduced by the reduction process (21) through the fixations: 

Let us for convenience again adopt the second standard form of the 

fixations so that 

axa -= - 
aT 6 

aN l 

(29) 

(30) 

Then (21) inserted into (29) gives, since the only explicit r dependence 

in (21) occurs in the x, that are not in P.B.'s, 

$= -{Y, Ka}b-1)aa(-6aN)= {Y, Ka) wa - 

Thus one obtains from (28) the fundamental result 

$={Y,K~}w~+,H)=$ . 

(31) 

(32) 

One is led to the important conclusion that the evolution of the physical 

variables is exactly realized by the gauge dynamics. We can thus identify 

T and A, and we have the following picture. 

The -c-dependent realizations @* of the quotient space Q associate 

with each point of the trajectory of y on C (generated by H) a different 

set of physical variables y* , each set being labelled by a different 

value of T. There is (at least locally) a one-to-one map of the 
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trajectory y(X) to the trajectory y*(r), the latter being generated by 

the reduction process for 2N second class constraints. This bijection is 

the fundamental mechanism that permits one to treat the gauge motion as 

if it were the physical motion. It thus resolves the puzzle created by 

papers in the literature that treat the gauge motion as physical motion 

without clear justification. 

V. COVARIANCE 

The physical trajectory is a one-dimensional object in a 6N+l 

dimensional space, the direct product space of @* = @*(y*) and T. A 

projection into a 3N+l dimensional Minkowski space yields one space- 

time trajectory (world line) for the N particles. When M3N+1 is mapped 

into M3+1 N trajectories result and the conventional space-time 

description emerges: one obtains N world lines in M 3+1' 

It is now necessary to show that the first class constraint 

dynamics just described is consistent with Poincarg transformations 

according to the principle of relativity. 

The generator of infinitesimal Poincare transformations (A ,a) is 

G=L+T 

(33) 

Now all our constraints are manifestly Lorentz invariant, if we exclude 

the type exemplified by (8) which has been discussed before,* 

(Xa, L) = 0 {Ka, L) = 0 . (34) 
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In particular, 'c is a Lorentz invariant parameter. Thus, the y* are 

Lorentz covariant. But translation invariance is not so easily dealt 

with. 

The mass shell constraints are chosen to be translation invariant, 

Ka' T\= 0 (35) 

because one is interested only in translation invariant interactions 4,; 

they can depend only on the position differences q 
b-qc' But the 

fixations are by nature not translation invariant because at least the 

variables qz are involved individually rather than as differences. 

Otherwise "equal r surfaces" could not be specified. Another way of 

saying this is the following: for spatial distances the interparticle 

separations are sufficient and no distinguished point needs to be spe- 

cified; but for the evolution of the system all points in the three- 

space must agree on the same time 'c = 0, say. The examples (8) - (10) 

show this lack of T-invariance explicitly, 

{xa, T)#O . 
(36) 

The second standard form (13) does, however, have the advantage that at 

least in some cases [example (9) but not (lo)] N-l of the N x, are 

T-invariant and only xN is not. 

What effect does this have on y*? One finds easily from (21) 

iv*, p,f = (Y’ PJ - {Yp 'a}@-1)aa {'a' 'U/ (37) 
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because all other terms have vanishing P.B. with P 
lJ' 

Now from the general theory of reduced variables one knows that 

IA*, B) = (A, B*) = {A*, B*j = (A, B)* 

where the last bracket is the Dirac bracket. Therefore 

- 

= iy’ ‘,I - {” Ka} (pl)aa {‘a’ ‘p) 
= Y, P,, - Ka (A-l)aa {xa, ppt] l 

By the same reduction process as used in (16) and (21) 

P* = P 
1-I 1-1 - Ka ('-l)aa {'a' '~1 

(38) 

(39) 

and we see that (38) is in fact a strong equality. Thus, the lack of 

T-invariance of the fixations is exactly taken into account when one 

makes translations with the reduced generators P . 

The reduced translation generators P* can be simply related to H 

if the x - a satisfy the condition 

{x,, P,} = cu 2 . 

In that case, using (25) in (39) 

P," = p -CK 
1-I v a 

%p +CH 
aa a-t lJ 1-1 * 

(40) 

(41) 
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This is a generalization of a result first obtained by Bergmann and 

Komar.* Since the assumption (40) is indeed satisfied in some cases 

[e.g., by the popular fixations (9)l it is desirable to consider its 

consequences. One now finds a relationship between the translations 

(generated by the Pp) and H. From the fundamental relations (32) and 

(41) follows on @* 

dy* dy 
-=-=;Y,H)=${~,P;-p,r . d-c dX (42) 

In conventional Hamiltonian dynamics one identifies the Hamiltonian with 

PO, the total energy of the system. But in those cases P" is a given 

function of the < and G, i.e., P" = P"(T). This is not the case here 

where P" = c pi and the p", are independent of the other variables; here 
a 

{A, P”} = T -$ 
a 

(43) 

which by itself implies no dynamics. The relation (42) is therefore of 

interest. If one uses the fixations (9) 

and 

( 1+H /- -P2 

y p -p* , . 
1-1 1-I 

(44) 

(45) 
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In general. however, (40) is not satisfied as can be seen by the 

example (10). Then there is no simple relation between the dynamics of 

the physical variables dY*/dT and their space-time translations. 

Now it is clear from (39) that the reduced generators P,* and 

M* 
* 

=M 
uv I-iv 

satisfy the PoincarG algebra on 0 . Thus, the physical 

variables must have the appropriate transformation=properties with 

respect to them. For M* this is trivial as indicated above. 
I.lV 

For P,* 

we have from (37) 

{qfs p;} = (+,,) - {4&,} (n-‘)ba {x,3’,,} . (46) 

At this point one must recall that each q: and each pz although a 

fourvector, involves only three independent variables, the space they 

span involving only 6N dimensions. This results from the fact that the 

constraint equations K M 0 and a x 

a 

W 0 are strong equations in Q*. One 

” : -q l ; and the p” E -p A can thus use them to eliminate the q l P in a a a a 
favor of the q', and the pl 

* 
a' Thus the qz and p a can be expressed 

entirely in terms of the q' and the pl 
A 

and P. a a 

One can therefore require correct transformation properties under 

translations only in the hyperplane orthogonal to Pu. Specifically, the 

q*, must transform gvariantly, the pz L_ invariantly under such translations, 

i 
*x 

'a "u 1 1 
pw = pxv 

1 (47) 

(48) 1 
*A pa , Pp PYV = 0 

1 
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where the projection orthogonal to Pu is 

(49) 

The relations (47) and (48) state that in the center of mass frame 

(3 = 0) the threevectors <* 
-k* 

a and p a transform under translations by z, 

respectively, as 

+* 
and p 

+-* 
a+Pa ' (50) 

No statement is made about the q",* and p o* since their transformation a 

properties are fixed in terms of those of the $a and zzby the constraints. 

In order to satisfy the requirements (47) and (48) it is both 

necessary and sufficient that the fixations are restricted by 

(xa5 p,) = eaPll (51) 

a condition which is indeed satisfied by (9) as well as (10). This 

requirement ensures that PE points into the same direction as P 
1-I' 

as 

can be seen from (39). 

This completes the proof that the physical variables transform 

correctly under Poincarg transformations which exclude translations in 

the direction of P'. 

The world line conditions specified in some papers are therefore 

identically satisfied and need not be imposed here as an additional 

restriction. 
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VI. CONCLUSIONS 

The manifestly covariant formulation of relativistic constraint 

dynamics presented in this paper for first class constraints exhibits 

the following results. 

The gauge dynamics within a leaf E(N) of the foliation of the mass 

shell constraint hypersurface &?'(7N) is shown to be weakly equal to the 

physical dynamics of the reduced variables as an explicit function of 

the invariant time parameter r introduced by the fixations. This is 

expressed by Eq. (32). No translations are involved in establishing 

this relationship. 

The fixations are not arbitrary. They must not only be Lorentz 

covariant but must also satisfy (52) the condition that the PC and P 
u 

are parallel. In addition, they must yield w that are translation a 

invariant and that are consistent with a cluster decomposition.15 

The fixations (10) satisfy both of these requirements at least for N= 2. 

The fixations (9) satisfy neither. Indeed, in general they do not even 

give translation invariant wa (necessary for translation invariance of 

dy*/dr): Ix,, \I involves 1x,, $,} which contains a term 

a(qa”) a@b q1 a a4b 
.-=-.- 

apC aqC aqC 

which is not translation invariant unless the 0, depend on momenta only. 

Thus, A is not so invariant and consequently neither are the oa. The 
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fixations (9) are good only for position independent interactions. 

There is in general no simple relation between the evolution gene- - 

rator H and the translation generators P . 
P 

A relation like (41) is 

spurious because it is based on the assumption (40) that is not satis- 

fied in general. (The commonly used fixations (9) which do satisfy it 

are not admissible except for position independen&interactions.) 

Finally, full Poincarg covariance for L + T( B3) is demonstrated 

for the qz and L-covariance and T(E3) invariance for the pz. Here lR3 

is the three-dimensional hypersurface in M 
3+1 orthogonal to P . 

P 
Covariance of the world lines is thus ensured. 

I want to thank Sidney Drell and the Theory Group at SLAC for their 

hospitality during the Spring Quarter 1981. 
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16. For a given choice of the wa and a trajectory parameter A one 

has 

so that comparison with (6) leads to the identification 

w a = dXa/dX. It is for this reason that one assumes wa > 0. 


