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ABSTRACT 

Detailed leading order QCD predictions are given for the scaling, 
angular, and helicity dependence of the reactions yy -f 6 (M=r, K, p, 
etc.) at large momentum transfer. In addition to providing a basic 
test of QCD at short distances, measurements can be used to determine 
the process-independent meson distribution amplitudes $M(x,Q). Other 
related two-photon channels such as yy+yp, y*y+rO, no, n' and nc+yy 

are also discussed. We also prove the existence of a fixed Regge 
singularity at J=O which couples to yp-fyp in the t-channel but not 
yTT+y7T. 

I. INTRODUCTION 

Much effort has recently been devoted to the study of exclusive 

processes involving large transverse momenta within the context of per- 
turbative quantum chromodynamics (QCD).l)y2) Here, as in other appli- 

cations of perturbative QCD photon-induced reactions play an important 

role. The point-like structure of the photon results in substantial 

simplifications of the analysis of these exclusive scattering amplitudes. 

In this paper we present detailed predictions for photon-photon anni- 

hilation into two mesons at large center-of-mass angles 8,.,.. We also 

examine predictions for photon-meson transition form factors, and for a 

number of other two-photon processes relevant to the study of perturba- 
tive QCD. 

Amplitudes for the large-angle exclusive processes discussed here 

factorize into two parts at high energies:l) 
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1. a parton distribution amplitude ~(Xi,Q) for each hadron - the 

probability amplitude for finding valence partons in the hadron, 

each carrying some fraction Xi of the hadron's momentum, and all 

collinear up to kLi N Q, the typical momentum transfered in the 

process; 

2. a hard-scattering amplitude TJ.J - the amplitude for scattering the 

clusters of collinear valence partons from each hadron. 

Thus, for example, the process yxyx, -f ETA is described by the helicity 

amplitudes (see Fig. la) 

JdAXl (S,@ c.m. dxdy $;(x,~~) +;(,,6,) Q(x,Y ; W&) (1) 

where Gx N min(x,l-x) & IsinecBm 1, and similarly for Gy. The quark . 
distribution amplitudes depend only logarithmically on s, having the 

form 

$,(x,Q) = x(1-x)c a:) Ci'2(l-2x) 
n=O 

(2) 

to leading order in as(Q2), the running coupling constant in QCD. The 

hard-scattering amplitude TAX, is computed, in leading order, from Born 

diagrams such as those in Fig. lb. All quark and hadron masses may be 

neglected in these diagrams, resulting in errors only of order 

m2/s << 1. Consequently simple dimensional analysis implies TAX,was/s 

for large s and therefore 

up to factors of (gn slA2>. Furthermore, in vector-gluon theories like 

QCD, quark helicity is conserved along each fermion line when masses 

are neglected. Thus the meson helicities in yy+pp, for example, must 

be equal and opposite, to leading order in m2/s. This is not the case 

in scalar or tensor gluon theories. 3) 

Dimensional counting4) and hadronic helicity conservation are 

general features of the wide-angle exclusive processes which we consider 

here. 5, They are valid to all orders in as, and as such are important 

tests of the theory, testing the scale invariance of the bare couplings, 
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the vector nature of the gluon, and so on. However we can say much 

more about these photon-induced reactions at large momentum transfer. 

Specifically, we give detailed predictions for the magnitude, angular 

distribution, and helicity structure of these amplitudes. 3, Furthermore 

we can use these processes to probe the nonperturbative structure of the 

hadronic wave functions. 

In Section II, we discuss two-photon annihilation into two mesons. 

This analysis is combined with that of the meson's electromagnetic form 

factor so as to remove many of the ambiguities due to renormalization 

scheme, normalization point, and so on, which usually beset such a QCD 

calculation. We also discuss the power-law suppressed contributions 

due to vector dominance and Landshoff pinch singularities. In Section 

III, we examine the photon-meson transition form factor at large Q2 

(for ey + eM at wide angles) and its relation to the pion form factor. 

We also show how current algebra predictions for low Q2 can be combined 

with QCD predictions for high Q2 to obtain a rough prediction for 

F,(Q2) for all Q2. In Section IV we review predictions for a number 

of other two-photon processes. Finally in Section V we summarize our 

results and briefly discuss some of their broader implications. 

II. PHOTON-PHOTON ANNIHILATION INTO TWO MESONS 

In this section we examine the two-photon processes yhyx, + Mhq, 

where P Ih' Mh, are mesons with helicities h and h' respectively. 

Dimensional counting predicts that for large s, s4(do/dt) scales at 

fixed t/s or Bc m up to factors of En(s/A2), for all such reactions. . . 
Hadronic helicity conservation requires that either both meson helici- 

ties are zero, or both are equal to +l, with h=-h'. (There is no a 

priori restriction on the photon helicities.) We discuss these two 

cases separately. 

A. Helicity-Zero Mesons 

Some forty diagrams contribute to the hard-scattering amplitudes 

for yy + Mk (for nonsinglet mesons). These can be derived from the 

four independent diagrams in Fig. lb by particle interchange. The 

resulting amplitudes for helicity zero mesons are: 
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T* 16na 
S 32na ( el -e2)2a 

= 
T 3s [ 1 x(l-x)Y(l-Y) I_ cos2e 

-- c.m. (3) 

T+- 16Ta e e 
S 32na a(y(l-y) +x(1-x)) 

= Cel-e2?1-a) + 1 2 
2 

T-+ t 3s x(1-x)y(l-y) 1-cos2ec m a . . - b%os2ec m . . 1 
where b" I 

= (1-x)(1-y)+xy, the subscripts i+,--,... refer to photon 

helicities, and el, e2 are the quark charges (i.e., the mesons have 

charges ?(el-e2)). To compute the yy + 6 amplitude AA,, (Eq. (l)), 

we now need only know the x-dependence of the meson's distribution 

amplitude $,(x,6); the overall normalization of $M is fixed by the 

'sum rule' (n C = 3) 

1 
fM 

dx G,(x,Q) = - 
2J5 

0 

(4) 

where fM is the meson decay constant as determined from leptonic 

decays. 6, Note that the dependence in x and y of several terms in 

Tn' is quite similar to that appearing in the meson's electromagnetic 

form factor: 

16aas 
1 

FM(s) = 3s / 
dxdy x(1-d y(l-Y) 

0 

(5) 

when @,(x,Q) = $M(l-x,Q) is assumed.7) Thus much of the dependence on 

$(x,Q) can be removed from A.,, by expressing it in terms of the meson 

form factor - i.e., 

Jlt, = 16ra FM(s) u e1-e2j2) 

(6) 

2 
&+- 

= 16na FM(s) (( el-e2 >> 
A-+ i-c0s2ec m . . 

+ 2<ele2> g [ ecarnm9 "Ml 1 
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up to corrections of order as and m2/s. Now the only dependence on 

$M9 and indeed the only unknown quantity, is in the B-dependent factor 

. (7) 

The spin-averaged cross section follows immediately from these expres- 

sions: 

do 2 do = 1 
dt= s dcose c.m. 

(( el-e2 
22 

H 
i-c0s2ec m )2 

+ 2('1'2>(("1- e2j2 > 

( . . i -c0s2ec m . . 

x g II ec m ;a] . . •I- 2(ele2)2 g2[ec.m."Ml (8) 

In Figs. 2 and 3, g[Bc.m.;+M] and the spin-averaged cross section 

(for yy+n~~) are plotted for several forms of $,(x,Q). At very large 

energies, the distribution amplitude evolves to the form 

$,(x,Q) z fi fM x(1-x) Q , (9) 

and the predictions [curve (a)] become exact and parameter-free. How- 

ever this evolution with increasing Q2 is very slow (logarithmic), and 

at current energies $I~ could be quite different in structure, depending 

upon the details of hadronic binding, Curves (b) and (c) correspond to 

the extreme examples $M = [x(1-x)1 a 
and t$,j 0~ 6(x-$), respectively. 

Remarkably, the cross section for charged mesons is essentially inde- 

pendent of the choice of I$,, making this an essentially parameter-free 

prediction of perturbative QCD. By contrast, the predictions for 

neutral helicity-zero mesons are quite sensitive to the structure of $M. 

Thus we can study the x-dependence of the meson distribution amplitude 

by measuring the angular dependence of this process. 
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The cross sections shown in Fig. 3 are specifically for yy-txr, 

where the pion form factor has been approximated by Fm(s) N 0.4 GeVZ/s. 
The xr+rr- cross section is quite large at moderate s: 

$f (yy -f T+?T-) 
g (YY+u+lJ 

4jF,$s) I2 

1 - c0s4ec m 
. . 

~ 0.6 GeV4 at 0 
2 c.m. =?T/2 . 

S 

(10) 

Similar predictions are possible for other helicity-zero mesons. The 

normalization of yy+& relative to the ~~+ITIT cross section is com- 

pletely determined by the ratio of meson decay constants (fM/fm)4 and 

by the flavor-symmetry of the wave functions, provided only that $M 

and 4~~ are similar in shape. Given this assumption, we obtain the all- 

orders (in as) relations presented in Table I. Note that the cross 

section for charged p's with helicity zero is almost an order of magni- 

tude larger than that for charged 71's (Eq. (10)). Cross sections 

involving the n' have been omitted. Flavor-singlet pseudo-scalar 

mesons, like the n', have a two-gluon valence Fock state which contri- 

butes to leading order. These will be discussed elsewhere. 8) 

Finally notice that the leading order predictions (Eq. (6)) have 

no explicit dependence on a S’ Thus they are relatively insensitive to 

the choice of renormalization scheme or of a normalization scale. This 

is not the case for either the form factor or the two-photon annihila- 

tion amplitude when examined separately. However by combining the two 

analyses as in Eq. (6) we obtain meaningful results without computing 

O(as) corrections. 

B. Helicity - One Mesons 

Again the diagrams of Fig. lb determine the hard-scattering 

amplitudes which describe the production of helicity ?l ("transversely" 

polarized) mesons in yy annihilation. The resulting helicity amplitudes 

for yy-fti are: 

++,-+ =d@+++ =du 
, - -- ,+- 

= “cf--,, = 0 
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A? t-S+- 
= 

Jb,-+ 
-e2)2) + 2(ele2)CoSec.m.(1-CoSec.m.) 

xg, ecm [ ; . . 
(11) 

du +-,4 

= 
A,,+- 

-e2)2) - 2(ele2)CoSec.m.(l+ cosec.m.> 

where we define (in analogy to the helicity-zero case) a "transverse 

form factor" 

1 

FM(s) E F? 
s 

q&x) 4QY ,Gy) 
dxdy ' 1 

x(1-x) y(l-y) ' (12) 
1 

0 

and where 

J dxdy 
k4 Y(-&> a2-b2coys2e 

gl[ec.m. "M ] 

c.m. 
' 

0 
1 1 

/ 
dxdy 

qx ,$I +;jY ,g, 

x(1-x) y(l-y) 
0 

. (13) 

Of course hadronic-helicity conservation (in QCD) implies AAx, 
, 
,+ = 

9x ,-- = 0 as well - i.e., twelve out of the sixteen helicity 

amplitudes vanish in leading order (in QCD). The spin-averaged cross 

section can now be written 

(14) 
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In Fig. 4, g, 
[ 

0 c.m. ;'ML] is plotted for the three ansatzs for +M 
1 

used in the previous section. Hadronic-helicity conservation implies 

that only helicity-zero mesons can couple to a single highly virtual 

photon. SO FQ, the transverse form factor, cannot be directly 

measured experimentally. Here we will assume that the longitudinal 

and transverse form factors are equal so as to obtain a rough estimate 

of the YY+P,P, cross section (Pig. 5). q, Again we see strong depend- 

ence on @M for all angles except ec m N IT/~, where the terms involving 

g, vanish.l 
.  l 

Consequently a measurement of the angular distribution 

would be very sensitive to the x-dependence of 4, , while measurements 

at e c.m. = IT/~ determine FM (s). Notice also tha: the number of charged 

p-pairs (with any helicity) is much larger than the number of neutral 

p's, particularly near ec m = Tr/2. The cross sections are again quite . . 
large with 

N 5 GeV4 

S2 
8 c.m. =lr/2 

. (15) 

Results for the wl and 0, are given in Table I. 

C. Non-Leading Processes: Vector Dominance; Pinch Singularities 

The QCD predictions given here for wide-angle yy+-g processes 

are in marked contrast to those which are expected from vector domi- 

nance of on-shell photon interactions. Dimensional counting implies 

that contributions from the minimal Fock state of a hadron (i.e., 

Iq;i> for mesons, Iqqq> for baryons) always dominate at high energies 

and large angles. The scattering amplitude is suppressed by an extra 

power of l/& for each additional parton involved in the hard subprocess 

(i.e., T ). H Since the photon is an elementary field, its minimal Fock 

state is just the bare photon itself; the photon couples directly into 

TH for leading subprocesses. On the other hand, vector dominance is 

associated with the Iqq> Fock state of the photon. This Fock state is 

analyzed in the same way any strongly interacting meson is analyzed: 

the photon is replaced by a collinear, on-shell q-{ pair in TH; TH is 

convoluted with the photon's quark distribution amplitude gy(x,$. 

If p-dominance is assumed, 41 y is proportional to $,, and the yy+& 

amplitude due just to the photon's Iq;i> component is proportional to 
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pop0 +ti. Several features distinguish these contributions from the 

leading terms described above: 

1. The amplitude&VD(yy+M@ due to vector dominance is suppressed 

by an additional power of l/s for large s and 0 c.m.' This follows 
directly from dimensional counting. 

2. Hadronic-helicity conservation in QCD (for zero quark mass) 

requires that the sum of the photon helicities equal the sum of 
VD meson helicities for& . 

V-D 
Thus in contrast with Eq. (6), &z 

and& VD 
-- vanish relative to&+ for yy+7r1~, KK,... . If just 

one of the photons couples through its Iqn> state, then all the 

reactions considered above are forbidden in leading order, leaving 

only yy+p,p,, P~IT, and so on. 

3. The vector-dominated amplitudes have pinch singularities, result- 

ing when each constituent from one photon is paired with one from 

the other photon, and the two pairs scatter independently of one 

another. In lowest order this gives an amplitude which is sup- 

pressed by only l/& relative to the leading QCD term. However 

radiative corrections, i.e., Sudakov form factor effects tend to 

further suppress these pinch contributions by about l/&.5) 

We thus predict that the vector-dominated amplitudes for photon-induced 

reactions are unimportant at high energies and wide angles. The possi- 

bility still exists that they may play some role at moderate energies. . 

However datalo) for the closely related process yp-fyp shows no sign 

of vector dominance for s 2 5 GeV2, and Bc m N a/2. . . 
We emphasize that pinch singularities are suppressed in yy-fti 

processes by at least I/& even for amplitudes in which the photon 

couples directly. The pinch singularity can only arise if the quark 

and antiquark coupling to the photon are collinear and near mass-shell, 

in which case the analysis and results are analogous to those for 

pp +ME. The pinch contributions are further suppressed by radiative 

corrections; a leading logarithm analysis results in a correction to 

the leading amplitude which is suppressed almost a full power of s. 5) 

This power-law suppression of pinch singularities, which is a special 

feature of photon-induced reactions , greatly simplifies the analysis 

and interpretation of these hadronic scattering amplitudes. 
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III. MESON-PHOTON TRANSITION FORM FACTORS 

The photon-meson transition form factor FMy(Q2) can be measured 
using two-photon events in which one-photon is far off mass-shell (with 
q2 = -Q2). This is just the exclusive limit of the photon structure 

function (i.e., ey-ter) or fragmentation function (i.e., eZ+ylr). Only 

neutral pseudo-scalar mesons couple, and the y*yM vertex has the form 

r = 
u 

-ie2FMy(Q2) cuvpoPzcp qo 

where PM is the meson's momentum and cp the polarization vector of the 

initial (on-shell) photon. A complete analysis of this form factor for 

large Q2 has been given in Ref. 1. For pions, the final result is 

@=min(x,l-x)Q) 

Unlike the electromagnetic form factor F,(Q2) (Eq. (5)), this form 

factor in leading order has no explicit dependence on as(Q2). Con- 

sequently an accurate measurement of F 

]dx [4+&x(1-d]. 

.,(Q2) determines 

This can be combined with the normalizing sum 

!ule (Eq. (4)) t o constrain the x-dependence of 1$,(x,6>. To illustrate 

this, consider normalized distribution amplitudes of the general form 

(17) 

where large n(c) implies a sharply peaked (at x=1/2> distribution and 

small n(c) gives a broad distribution. This ansatz gives a my transi- 

tion form factor 

Q2 Fny(Q2) 2n+1 = 2f - IT 3n (18) 

which is clearly quite sensitive to the parameter n (see Fi-g. 6). For 

very high Q2, n(Q)+1 and thus 

2f 
F -t 71 as Q2+m 

TY Q2 
(19) 
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The x-dependence of the integrand in Eq. (16) is identical to that 

in Eq. (5) for Fr(Q2). Consequently all dependence on 4, can be removed 

by comparing the two processes. In fact, a measurement of each provides 

a direct determination of as(Q2):') 

as(Q2) = & 
FT (Q2) 

Q2 IF,y(Q2) 1 2 
+ O(aE) . (20) 

Once the O(ai) corrections have been computed, this could be used to 

measure a s and the QCD scale parameter A for a given renormalization 

prescription. 

Of course all of these formulae are valid only at large Q2; 

O(m2/Q2) corrections become important at lower Q2. However the Q2+0 

behavior of F 
TY 

is fixed by the experimental rates for the decay 1~'+2y, 

or, equivalently as it turns out, by current algebra which implies8) 

Fny(Q2) + -+ 
2 as Q +O 

4r f IT 

. 

To estimate the effects due to O(m2/Q2) corrections, we 

terms of a dipole form 

(21) 

write F in 
TY 

1 F-- 1 0.27 GeV-' ~ 
TY 4ir2fn l+(Q2/8n2f;) 1+Q2/M2 

( M2 N .68 GeV2 > 
(22) 

7 3 
which interpolates between the Q'=O and Q'=m limits (Eqs. (21) and 

(19)) - The mass scale M2 is quite similar to that measured for Fn(Q2). 

If the best n(Q) in Eq. (17) is appreciably different from n=l at 

current Q2, this mass-scale parameter might actually be more like 

M2(d = .68 GeV2 y . (23) . 

Curves for Q2Fry(Q2) which include such n-dependent mass effects are 

also given in Fig. 6. Mass corrections do not greatly alter the pre- 

dictions for Q2 2 5 GeV2. 

Similar predictions can be derived for F and F 
11Y rl’Y’ 

If the n, n 

and n' distribution amplitudes are all similar in shape, then we have 
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f 
Fny (Q2) = & c Fry(Q2) 

(24) 

F ,,,(Q2) 2 ff 
= 3 + F,,(Q2) J- 71 

to all orders in as and to leading order in m2/Q2. Presumably the 

decay constants, f*, fn, and fn,, are all roughly equal. The gluonic 

valence state in the n' does not contribute in leading order to this 

process. 

IV. OTHER PROCESSES 

Other two-photon processes which can be analyzed perturbatively in 

QCD include: 

(a) yy+pi5,nG,... The analysis for baryon-antibaryon final states 

is closely analogous to that for mesons, except that in general there 

are many more subprocesses contributing to TH. 12) Dimensional counting 

predicts s6(do/dt) scaling up to logarithmic factors, and hadronic- 

helicity conservation implies that the baryons have equal and opposite 

helicities. We note that data exists for both the proton's Compton 

amplitude (yp-typ) and for its magnetic form factor. l)sl") A detailed 

comparison with yy+pp will provide new insights into the nucleon wave 

function. do The Compton amplitude is dt N .l nb/GeV2 at s w 9 GeV2 and 

13 = IT/~, suggesting that yy+pp may be comparable with ~~+PP,ITIT,... 

for s 5 10 GeV2 and 8 - lT/2. 

b) YY -f 'I~+'. . . One of the classic applications of two-photon 

physics is to the study of even charge conjugation mesons. Particularly 

interesting are the heavy-quark pseudo-scalar mesons such as the n,. 

As is well known, the leading n,yy coupling can be decomposed into a 

nonrelativistic wave function (evaluated at T =O> multiplying a per- 

turbative amplitude for cc-tyy. This factorization is valid, subject 

to very general assumptions, to lowest and first order in as(M2 
% 

), and 

until nonperturbative bound state effects of O(v2/c2> .become important. 

The total hadronic width of the n, is analyzed in a similar fashion, 

proceeding via n, + 2 gluons in lowest order. Because the lowest order 

amplitudes for two-photon and two-gluon decay are identical (up to over- 

all color factors), the ratio of these widths is an especially clean 

prediction of perturbative QCD. All dependence on the wave function 
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cancels, 2 2 as do all O(v /c > corrections, to give (in MS scheme) 10) 

I' n,+hadrons) ( 2 

I- % ( + YY > 
= - 

9 

Thus a precise measurement of this ratio, for either the n, or the n 
b' 

determines the QCD scale parameter A. This must agree with that obtained 

from r(T+hadrons)/r(T+u+u-) or other short-distance processes. 

Quantities, such as this one, which are proportional to (as)n will 

probably be the most useful for determining the parameters of QCD. In 

contrast, measuring small deviations from the scaling behavior predicted 

by naive parton models is difficult; interpreting these deviations is 

equally challenging due to higher twist effects. 

cc> YY + YP. Dimensional counting predicts s3(do/dt) scaling 

(up to logarithms) for yy-fyp at fixed ec m . However in QCD hadronic . . 
helicity conservation requires that the p have zero helicity, which is 

impossible, when its mass is neglected, if it is coupled to the photons 

in a gauge-invariant and Lorentz-covariant fashion. Thus QCD requires 

additional suppression by a factor of O(m2/s), and s4(da/dt> scaling 

is more likely. This is not necessarily the case for theories with 

scalar or tensor gluons. These do not conserve hadronic helicity and 

SO s'(do/dt) scaling may result. 

V. SUMMARY AND CONCLUSIONS 

As we have discussed in this paper, two-photon exclusive channels 

at large momentum transfer provide a particularly important laboratory 

for testing QCD since the large-momentum transfer scaling behavior, 

helicity structure, and often even the absolute normalization can be 

rigorously computed for each channel. The yy-+m and y*y+M processes 

provide detailed checks of the basic Born structure of QCD, the scaling 

behavior of the quark and gluon propagators and interactions, as well 

as the constituent charges and spins. Conversely, the angular depend- 

ence of the yy-tm amplitudes can be used to determine the shape of the 

process-independent distribution amplitude +,(x,Q) for valence quarks 

in the meson q; Fock state. The cosec m -dependence of the yy+g . . 
amplitude determines the light cone x-dependence of the meson distri- 

bution amplitude in much the same way that the xBj dependence of deep 
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inelastic cross sections determines the light cone x-dependence of the 

structure functions (quark probability functions) G ,/,(x,Q> * 
The form of the predictions given here are exact to leading order 

in as(Q2). Power-law (m/Q)2 corrections can arise from mass insertions, 
. higher Fock states, pinch singularities and nonperturbative effects. 

In particular, the predictions are only valid when s-channel resonance 

effects can be neglected. It is likely that the background due to 

resonances can be reduced relative to the leading order QCD contributions 

if one measures the two-photon processes with at least one of the photons 

tagged at moderate spacelike momentum q', since resonance contributions 

are expected to be strongly damped by form factor effects. In contrast, 

the leading order QCD y1y2+@ amplitudes are relatively insensitive to 

the value of q: or qz for jqfl << s. 

Finally, we note that the amplitudes given in this paper have simple 

crossing properties. In particular, we can immediately analyze the 

Compton amplitude yM+yM in the region t large with s >> [tl in order 

to study the leading Regge behavior in the large momentum transfer 

domain. In the case of helicity 21 mesons, the leading contribution 

to the Compton amplitude has the form (s >> It() 

dtx yM+yM = lbnaFML(t)(e:+ei) 

(26) 

( x A’ 
Y= Y ' xM = AA) 

which corresponds to a fixed Regge singularity at J=O. In the case of 

helicity zero mesons, this singularity actually decouples, and the 

leading J-plane singularity is at J=-2. 
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TABLE I 

Wide-angle high-energy relations for yy annihilation into 
two helicity 0 (h=O) or helicity +1 (h=+l) mesons. Here 
O-T-I' mixing is neglected and probably f, * f, = 93 MeV. 
The I$ is assumed to have only strange quarks in its 
valence Fock state. 

h=O 

h=?l 
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YY -f P+P- 

0 0 
P P 

POW 

cow 

$4 

YY -+ POW 

ww 

99 

CROSS SECTION 

2 x S(yy + ?T+TI-) 

do 0.3 x dt ( yy + Tr"lTo > 

2 
0.1 x 0 5 do 

f Xdt 
( 0 0 

YY-f”” > 
IT 

f 4 
0.4x 9 x$f(yy 0°) 0 +lTll 

?T 

7.5 x $(YY + -f IT 7r- > 

7.5 x $(YY -+717r O "> 

3 x g<yy + Tr"llo) 

8 x g (yy -t TOTTO) 

1.4 x %(YY +lTlT O ") 

0.4 x $(yy -fP P O ") 

1 x g (YY + P0P9) 

0.2 x g(yy -fP P O ") 
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FIGURE CAPTIONS 

Fig. 1. (a) Factorized structure of the yy -f s amplitude in QCD at 

large momentum transfer. The TH amplitude is computed with 

quarks collinear with the outgoing mesons. 

(b) Diagram contributing to TH (yy + I@) to lowest order in a S’ 

Fig. 2. The e-dependent factor gCcosec m ;cj,l of Eq. (7) required for 
l .  

computing the yy -+ e amplitude for helicity zero mesons. The 

curves (a), (b) and (c) correspond to the distribution amplitudes 

$,(x,Q) = x(1-x), [x(1-x) 1 k , and cS(x-4), respectively. 

Fig. 3. QCD predictions for yy + ITR to leading order in QCD. The 

results assume the pion form factor parameterization F,(s) 1~ 

0.4 GeV2/s. Curves (a), (b) and (c) correspond to the dis- 

tribution amplitudes I$~ = x(1-x), [x(1-x) 1 % , and 6(x-%), 

respectively. Predictions for other helicity zero mesons are 

obtained by multiplying with the scale constants given in 

Table I. 

Fig. 4. The factor glccosec m . . ;$,I of Eq. (7) required for computing 

the yy + ti amplitude for helicity +l mesons. See Fig. 2. 

Fig. 5. QCD predictions for yy + plpl with opposite helicity +l to 

leading order in QCD. The normalization given here assumes 

that the p distribution amplitude is helicity independent. 

Other vector meson results are obtained from the scale 

constants given in Table I. 

Fig. 6. Dependence of the y*y + r transition form factor F .,(Q2) on 
the parameterization of the pion distribution amplitude given 

in Eq. (17). 
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