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ABSTRACT 

Current 20 GeV/c photoproduction experiments at the SLAC Hybrid Facility 
require a decision to take a picture within 150-300 us after the beam pulse. 
A charged track trigger is provided by a 168/E processor which finds tracks in 
a downstream PWC system. To meet trigger time requirements the 168/E SNOOP 
module CAMAC interface is augmented by a CAMAC Auxiliary Controller and dedi- 
cated I/O cards in the 168/E chassis. Between beam pulses a floating point 
Fortran program executing on a 168/E monitors data acquisition. Experience 
with software development and application are reviewed. 

1. INTRODUCTION 

The current SLAC Hybrid Facility (SHF) experiment studies photoproduction at 20 GeV/c 
using a backscattered laser beam. 1) Electronic detectors downstream of the 40" bubble 

chamber include eleven proportional wire chambers, two multi-cell atmospheric Cerenkov 
counters and a large neutral detector using lead glass blocks. To make this experiment 

practical as regards the quantity of film involved, data from these external detectors is 

used on-line to determine if a picture should be taken and enhance the ratio of pictures 
with hadronic production. Previous SHF experiments used assembly language algorithms 

executing on the host computer for picture selection. For this experiment a system of 

168/E processors 2) was developed to provide more efficient and flexible support for on-line 

picture algorithms. 
The main components of the SHF 168/E system are shown in Fig. 1. The host computer is 

a Data General NOVA 4/X running under RDOS with 256K bytes of memory and 20M bytes of disk 
space. The NC023C controllers in each CAMAC crate are daisy chained together on the NOVA 
I/O bus. The 168/E processors perform as slaves to the host computer which controls them 

via a SNOOP module CAMAC interface. 3) A 50 wire flat cable connects an interface card in 

each 168/E crate to SNOOP modules in the CAMAC crates. Processors #O and #1 can be accessed 

by SNOOP modules in either crate 258 or 268 while 168/E CPU #2 is only connected to CAMAC 

crate 278. Using CAMAC programmed I/O to a SNOOP module, a program on the host computer 

can download a 168/E program, set the program counter, start/stop the processor, read 
results in 168/E memory, etc. SNOOP module CAMAC functions are described in Ref. 3. 

The SNOOP also provides a direct transfer from CAMAC to 168/E data memory by eaves- 
dropping on input from other CAMAC modules in the same crate. For example, a transfer from 
BADC4) to 168/E b0 requires the following sequence of operations: 

i) set interface address register(s) on target 168/E(s); 
ii) set interface device select register for target processor(s); 

* Work supported in part by the Department of Energy, contract DE-AC03-76SF00515 and by 
the U. K. Science Research Council. 
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Fig. 1. Organizat ion of the 168/E and  CAMAC system 
at the SLAC Hybrid Facility. 

iii) enable Listen Mode  on  SNOOP in crate 268;  
iv) read BADC in single instruction or DMA mode;  

v) disable Listen Mode,  clear device select register and  proceed 

with data transfer complete. 

"Listen Mode"  eliminates the overhead of first transferring data to the NOVA and  then 
writing it back to 168/E memory.  For SHF real-time applications the 168/E programs are 

stable (no overlays) and  fast data transfer is only required for trigger algorithms. W ith 

CAMAC the hardware components  of the interface are independent  of the type of host computer  
and  as evident in Fig. I, there is considerable flexibility in the arrangement  of processors 
and  CAMAC crates. 

Several key data acquisit ion modules in the 168/E-CAMAC system are shown in Fig. 1  
and  the current hardware configuration on  each processor is listed in Table I. W e  assume 

the reader is familiar with the basic concepts and  capabilit ies of the 168/E processor.  
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Following descriptions will focus on SHF on-line applications and supplemental hardware 
developed to meet the severe time constraint of the camera trigger. 

TABLE I. 168/E Configuration 

CPU # 

0 

Function/Contents 

Full Algorithm and Fortran Monitor Program 
Interface to CAMAC Crates 258 and 268 
Integer and Floating Point CPU 
Three Memory Boards (48K Bytes Data Memory) 

1 Hardware and Algorithm Development 
Interface to CAMAC crates 258 and 268 
Integer CPU 
One Memory Board (16K Bytes Data Memory) 
Eight Channel PWC Digitizer Card 

Match Point Results Memory 
Camera Trigger Card 

2 Fast PWC Algorithm 
Interface to CAMAC Crate 278 

Integer CPU 
One Memory Board (16K Bytes Data Memory) 
Camera Trigger Card 

2. ON-LINE SOFTWARE SUPPORT 

Programs for execution on the 168/E are written in IBM Fortran and/or assembly language 
and normally debugged and tested off-line on an IBM 3701168. Compiler and assembler object 

modules are processed by a 168/E Translator which produces microcode for the processor. 
Card image program and data memory files produced by the Translator are transferred to the 
NOVA 4/X and saved on disk using a 9600 bpi WYLBUR link. A Fortran callable subroutine 

(DPDOWN), written in NOVA assembly language, reads these disk files and loads 168/E program 

and data memory. After loading memory, DPDOWN reads 168/E memory, compares each halfword 
with the corresponding datum from disk and sets an error flag if any discrepancy is 

detected- any difference is a fatal error. This readback and compare is a vital step in 

loading 168/E memory. Errors can be produced by WYLBUR-NOVA transfer errors (each line 

includes a checksum), corrupt NOVA disk files, SNOOP I/O errors and 168/E memory failures. 

However, as discussed below, most errors result from legitimate contention for the CAMAC 
bus. Large blocks of constants, e.g., algorithm look-up tables, are maintained on NOVA 
disk files independent of Translator output and loaded into COMMON blocks in 168/E data 
memory using a separate utility (DPxFER). 

The key program in development of this system has been the 168/E Editor (DPEDIT). 
With this interactive program executing on the NOVA 4/X, users can examine and control 
168/E processors from the main NOVA console. DPEDIT can display and modify 168/E memory 
with a word size of half, full or double and a base of decimal, octal or hex. The ability 

to examine processor memory in fullword format is particularly convenient since the NOVA 
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has a 16 bit word size and the SNOOP transfers data in halfwords. DPEDIT can also write/ 
read the 168/E program counter, start/stop processor execution, etc. With the exception 
of "Listen Mode", DPEDIT exercises all SNOOP interface functions required for data acquisi- 

tion. Interface problems have usually been isolated using DPEDIT together with an oscillo- 
scope on the interface flat cable or 168/E backplane. However, some problems.have required 
placing 168/E interface, CPU and memory cards on an open test bus rather than the closed 
168/E crate to allow easy access for test probes. 

Listen Mode data transfers are tested using a memory module in the CAMAC crate. The 
SNOOP module Listen Mode in Crate 268 (see Fig. I) can be tested as follows: 

i) write a pattern into BADC memory; 
ii) set interface device select register for CPU #O, bl or both; 

iii) enable Listen Mode and read BADC; 
iv) disable Listen Mode and read 168/E data memory to compare with 

original pattern. 
This type of test was important for system development but during the last nine months no 
errors have been observed. 

To test the 168/E processor itself we have developed the Integer, Floating Point and 
Memory diagnostics listed in Table II. These diagnostic programs are written in assembly 
language and test all IBM 370 instructions supported by the 168/E. The programs have a 
common structure with definition of each test specified by a few registers. If a diagnostic 

program executing on the 168/E detects an error, it follows a standard procedure which 

includes dumping all registers to data memory for user examination. Checking for successful 

execution of these diagnostics is essential whenever the processor configuration or hardware 

are modified, but during scheduled data acquisition we usually rely on infrequent off-line 

TABLE II. 168/E Diagnostics 

Name Instructions Tested 

INTTESTl Branch, Integer Load and Store 
INTTEST:! Integer Arithmetic and Logical 
INTTEST3 Logical Shift 
INTTEST4 Arithmetic Shift 
FLTTESTl Non-Arithmetic Floating Point 
FLTTESTZ Floating Point Arithmetic - Simple tests 
FLTTEST3 Floating Point Shift Matrix 
FLTTEST4 *. R*4 Floating Point Arithmetic 
FLTTESTS * R*6 Floating Point Multiply/Divide 
FLTTEST6 * R*6 Floating Point Add/Subtract 
MEMTEST * Test any Window in Data Memory 

* => Not executable on IBM 3701168. 

checks to confirm normal processor operation. Perhaps the most serious flaw in the entire 
diagnostic procedure is the 168/E processor's inability to test its own program memory in 
the normal crate configuration. However, we have only experienced one program memory 
failure in the last two years. 
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3. NOVA FOREGROUND/BACKGROUND OPERATION 

For SHF data acquisition the NOVA 4/X is run in a Foreground/Background mode. The 
Foreground program is written entirely in Data General-RDOS assembly language and performs 
all t ime critical functions while a run is in progress. Table III lists the sequence of 
168/E related events which occur after the operating system responds to a CAMAC pre-beam 
interrupt and transfers control to the Foreground. Background tasks written mostly in 
Fortran perform functions which are not time critical and usually interactive, e.g., select 
a 168/E diagnostic. Background programs communicate with the Foreground via RDOS system 

calls which read/write to a communications array in the Foreground. The F/B communication 
array contains a set of control words for each 168/E processor, e.g., on/off flag, initial 
value for program counter, data memory address for algorithm results, etc. These control 

words allow 168/E hardware or algorithm development and real-time tests while a run is in 
progress. About 2.5 ms after each beam pulse the Foreground reads a forty word summary of 
algorithm results from each active processor and saves this summary in the communication 

array where it can be examined by the user. 

Time (us) 

- 2025 

Activity 

- 1550* 

Pre-beam interrupt 4 RDOS suspends Background task 
and executes Foreground 
Start match point processor and execute algorithm on 
168/E CPU #l 

- 1425" Initialize algorithm on 168/E CPU //2 and Auxiliary 
Controller 

0 
+ 15 

Beam Pulse (100 ns) 

+ 20 
+ 33 

54 
120-300 

620 

2, digitizer finishes in Crate 278 and sets trigger 
level to start Auxiliary Controller 
28 digitizer finished =$ trigger Auxiliary Controller 

ZY digitizer finished 4 trigger Auxiliary Controller 
Auxiliary Controller starts algorithm on CPU #2 
High Resolution camera trigger 
DMA readout of Crate 258 complete => start algorithm 
on 168/E CPU #O 

2500 
3000 
9500 

Read results from all 168/E algorithms 
Main camera trigger 
DMA readout of BADC complete with data transferred to 
CPU ro 

17000 

38000 

Start monitor program on CPU 10 
Foreground suspends itself and RDOS restores Background 
execution 

97975 Next Pre-beam interrupt 

* These acti ties may be delayed by -500 ps depending on the status of 
the background program at the time of the interrupt. 

TABLE III. Foreground 168/E Control 

The Background start-run task reads 168/E control words and program/data fi lenames 
from a card image disk file and loads processor memory. Another task provides menus of 

diagnostic programs and algorithms with each menu read from a card image file. By editing 
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these card image files, 168/E programs can usually be tested and added to production run 
procedures without modification to NOVA Foreground or Background programs. Since Background 
SNOOP I/O can always be interrupted by the Foreground, data transfer errors are inevitable. 
This happens infrequently for the size of programs used in this experiment and when a 168/E 
program load error is detected the procedure is simply restarted. 

Algorithm execution time is measured in micro-seconds using a 168/E CAMAC clock module 
(see crate 278 in Fig. 1). Each interface board provides a TTL level which is true (high) 
when the processor is running. This level opens or closes a gate for clock pulses to a 
CAMAC scaler. On each beam pulse the Foreground reads the corresponding scaler sub-address 
for each active processor and saves this execution time in the F/B communication array. 
This clock module also has three LED's to indicate when each processor is running. Obser- 
vation of the frequency and intensity of these LED's provides a convenient check for abnor- 

mal processor behavior. 

4. TRIGGER ALGORITHM 

The standard SHF charged track trigger uses PWC's in the nonbend plane (2) to search 

for straight-line trajectories originating from the bubble chamber fiducial volume. When 
a good trajectory is found, the corresponding coordinates in the bend plane (Y) of the BC 
field can be used to calculate the momentum. Experiment BC72173 uses High Resolution Optics 
(HRO) to measure charm particle decay lengths and requires a decision to take a HRO picture 
within 150-300 us after the beam pulse- the main 40" BC camera still has a flash delay of 
3 ms. Digitization and NOVA readout of the three primary PWC stations (o,S,y with Z,Y,U 
at each station) requires a minimum of 150 1~s and space point calculation on the 168/E 
takes a few hundred micro-seconds for normal multiplicities. So these procedures are too 

slow for the HRO trigger which was proposed after the 168/E system and SNOOP interface had 
been developed. 

To meet the HRO time constraint the current algorithm uses only Z-planes and an Auxili- 

ary Controller provides a fast data transfer to the 168/E. The Auxiliary Controller 
executes CAMAC functions sequentially from its control memory with a cycle time of 1 us. 
It has a 1024 word control memory and a corresponding 1024 word data memory which contains 
input/output data for each control memory read/write. Control word format and the logical 

relationship of 168/E, controller and digitizer modules are shown in Fig. 2. CAMAC functions 
for NOVA I/O to the controller itself are listed in Table IV. 

At the start of each run the Auxiliary Controller is loaded with the sequence of func- 
tions required to read Z,, Z8, Zy (8 hits and multiplicity for each plane) and start 168/E 
CPU 12. Before each beam pulse the Foreground arms the Auxiliary Controller and then avoids 
I/O to crate 278 until the HRO trigger sequence is complete. The first control word to 
read each PWC plane has the corresponding trigger bit(s) set so the controller waits for 
the digitizer module to finish and set a TTL trigger level (True=Low). Since the SNOOP 

module is in Listen Mode, data read by the Auxiliary Controller is transferred to CPU #2. 
When the Controller has finished reading Zy, it disables Listen Mode and starts the pro- 
cessor using SNOOP module CAMAC functions (see Ref. 3). As shown in Table III, this entire 
sequence is completed in 54 us. The NOVA 4/X would require -15 us just to disable Listen 
Mode and start the 168/E while the Auxiliary Controller executes this sequence in 3 ns. 
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Fig. 2. Relationship of CAMAC 
Auxiliary Controller, PWC and  
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format. 

Bits I - I4 = CAMAC Sub-Address, Stotion X and 

Function 

Bit 16 = HALT Flog (=I to halt execution) 

Bits 17-20 = Trigger Address 

r-8, Bit 21 = Trigger Enable (=I to enable) 4091.3 

TABLE IV. Auxiliary Controller Funct ions 

F A Descript ion 

0  0  Read Data Memory at Sl and  Increment 
Address Register at S2 

0  1  Read Control Memory and  Increment Address 

0  2  Read Address Register 
1  0  Read Data Memory 
1  1  Read Control Memory 

8  0  Test Done Flag (LAM if Enabled) 

16  0  Write Data Memory and  Increment Address 

16  1  Write Control Memory and  Increment Address 

17  0  Write Data Memory 

17  1  Write Control Memory 
17  2  Write Address Register 

24  0  Disable I&l 

25  0  STOP Execut ion and  Clear LAM 
26  0  Enable LAM 
27  0  Start Control Memory Execut ion 
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USE 0 AS INDEX TO LOOK-UP 
TABLE FOR ALLOWED B 

--- LOOK-UP TABLE BOUNDARY FOR B 

A flowchart of the algorithm on  CPU #2  and  profile of the bubble chamber  and  Z-planes 
are shown in Fig. 3. The  algorithm is written in IBM assembly language and  uses look-up 
tables rather than a  calculation of al lowed regions for maximum speed.  A single 168/E 
memory board is quite sufficient for this program. PWC data and  algorithm results are 
saved in a  COMMON Block located at a  f ixed address by the 168/E Translator. Consequent ly  
algorithm modif ications seldom require changes in on-lirie constants which provide 168/E 
data addresses for the NOVA Foreground.  

YES END OFB HITS OR 
ABOVE ALLOWED RANGE 

I YES, 

USE (Q-01 AS INDEX TO LOOK- 
UP TABLE FOR ALLOWED (y-01 

I 
1 

NEXT I 
I 

END OF 

I7 

y H!TS YES _ 

NO ,y-a) IN ALLOWED REGION 
= GO00 TRAJECTORY 

I 
TRIGGER HRO CAMERA 

I 
CALCULATE x-VERTEX AND 

SAVE IN COMMON FOR NOVA 

AiLOWED REGION IN y ISET BY MULTIPLE 
SCATTERING WHICH IS f8mm AT y AND 
f4mm AT 8) 

V,:-38cmI 
V2"38cml 

EC VERTEX LIMITS 

PWC!xlcm) 1 MAX WIRE*!BEAM REGION*'(HITS)+ 

B 121 ~ 312 ; ?I5 1.8 
7 ~ 203 600 : f 27 1.3 

*ONE WIRE # =Imm (II PROFILE IS NOT DRAWN TO SCAiEI 
'AVERAGE MULTIPLICITIES FOR BEAM FLUX OF 20 PHOTONS/  
PULSE 

Fig. 3. Flowchart and  BCfPWC X2-profi le for algorithm to find 
straight-line trajectories. 

When  a  good  trajectory is found the algorithm generates the HRO trigger by  writing to 
a  camera trigger card in the 168/E crate. This is a  simple card with a  few gate circuits 
to def ine two high data memory addresses.  An access to these addresses sets or clears an  
external TTL level which provides the camera trigger. The  algorithm can access this pseudo-  
memory card in 300  ns while the NOVA 4/X would need  -17 ps to poll the processor and  set a  
CAMAC register when a  trigger is detected. 

CPU 12  algorithm execut ion time is shown in Fig. 4-this distribution does  not include 
Auxiliary Controller data transfer time. This algorithm usually executes in less than 140  
ps and  the fraction of tr iggers arriving too late for the HRO camera is insignificant. The  
PWC algorithm triggers on  -66% of ot (VP> and  42% of pictures taken with this algorithm 
have hadronic product ion in the bubble chamber.  (A logical OR of the PWC algorithm and  a  
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dynode sum of energy deposited in the lead glass 

detector provides a trigger on -90% of at.) On the 
168/E the algorithm runs -2.4 times slower than on 

No Htts I” One or More the IBM 3701168. Performance checks made by running 

the same algorithm and data off-line show no on-line 
processor errors since the start of production 
operation in July, 1980. 

100 5. 168/E MONITOR PROGRAM 

A Fortran program executing on 168/E CPU #O 
0 

0 4080 120 160 200 monitors SHF data acquisition. Although NOVA Fore- 
a.*/ EXECUTION TIME (ps) _u ground and Background provide many monitor facili- 

Fig. 4. PWC algorithm execution ties, they each have limitations which are overcome 
time on the 168/E. with a dedicated processor. One is normally re- 

luctant to modify the Foreground since it is vital for data acquisition and performance 
checks added to the Foreground decrease time available for Background execution. A Back- 

ground program can only sample beam pulses and must be designed to be interrupted and 
replaced by another task while a run is in progress. The 168/E can monitor every beam 

pulse and the noninteractive Fortran program is easy to modify. Development/debugging are 

done on an IBM 3701168 and the same program can be used for both on-line and off-line 
applications without modification. 

Currently the 168/E monitors data for three detectors-PWC, Cerenkov counters and 

Lead Glass. Statistics collected for each detector are listed in Table V. A subroutine 

which finds all charged tracks in the PWC system is used to calculate PWC efficiencies and 
Cerenkov counter performance. Monitor program execution time is 30-40 ms for normal PWC 

multiplicities so there is ample time available to support new routines and check other 
detectors (current pulse rate is 10 Hz). 

TABLE V. Monitor Program Summary Data 

A. PWC - 
1. Illegal wire data, e.g., zero or negative wire I's, wire I 

disorder, etc. 
2. Chamber multiplicities. 
3. Chamber efficiencies. 

4. Momentum and BC vertex distribution for PWC tracks. 

B. Cerenkov 
1. Cell # and multiplicity. 

2. Average pulse height and pedestal for each cell. 

3. Momentum distribution for PWC tracks with signals above 
theshold in Cl and C2. 

C. Lead Glass Columns 

1. Pulse height distribution in active converter and absorber. 

2. Pedestals for lead glass blocks, reference counters and 
hodoscopes. 

3. Average LED pulse heights for lead glass blocks and reference 
counters. 
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The program on CPU #O and related Foreground control logic include support for a 
trigger algorithm. The 168/E MAIN program calls an assembly language algorithm and the 

monitor in the following sequence: 
i) Foreground starts MAIN which calls the algorithm; 

ii) algorithm finishes and executes a HALT instruction to stop the 
processor; 

iii) Foreground reads algorithm results; 

iv) lead glass data (not required by the algorithm) is transferred 
to CPU I/O; 

v) Foreground restarts the 168/E at instruction following HALT and 
algorithm returns to MAIN which calls monitor. 

As indicated in Table III, the monitor program is executed after all trigger related Fore- 
ground functions and CAMAC data transfers are complete. All monitor input/output data and 

control variables are saved in COMMON blocks. The Foreground sets a single control flag 
which directs the monitor to initialize itself, collect data or produce a summary. At the 

end of each run a Background program reads this summary, saves it on disk and prints the 

results. 

6. 168/E DIGITIZER CARD 

Although the Auxiliary Controller provides satisfactory support for the algorithm 
using three Z-planes, data transfer time would become excessive for a trigger using all 
nine primary chambers. There is also a fourth station (6) with Y- and Z-planes downstream 

of y. Data transfer overhead is eliminated completely by placing the PWC digitizer in the 
168/E crate where results are available as read only data memory. 

The 168/E digitizer 5) with logic for one channel is shown in Fig. 5 -each card has 

eight identical channels. Before a digitizing sequence can begin a "Clear" pulse, usually 
generated externally but optionally from the 168/E, resets the Wire Address and Word 

Counters. Signals from PWC wires set corresponding bits in a shift register which, when 
shifted by "Clock" pulses, are presented as "Data" signals to the digitizer together with 

"Clock" pulses. The "Clock" signal increments a Wire Address Counter which contains the 

wire 1. If a "Data" pulse also arrives indicating a wire has been hit, the contents of 
the Wire Address Counter are loaded into memory for that channel. "Clear", "Clock" and 

"Data" signals are input through BNC connectors added to the front panel of the 168/E crate. 
The loading sequence increments a Word Count register which also acts as an address 

register for channel memory. Each channel can hold sixteen 12-bit wire numbers in sequen- 

tial locations and input which exceeds this limit is lost. The eight channels operate in 

parallel and the digitization sequence ends when the Wire Address Counter reaches its 
(selectable) terminal count and sets the "Ready" flag. The 168/E algorithm is started 

before the beam pulse so it can interrogate the "Ready" flag and proceed as soon as data 

is available. 

To read the digitizer, Data Address signals from the 168/E bus are multiplexed onto 
channel memory address inputs as shown in Fig. 5. Channel memory data are read through a 

block of 128 (8x16) addresses followed by address space for eight word counts. The base 
address is selectable by switch settings- it is currently memory card #3 with address 
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Fig. 5. Block diagram of 168/E PWC digitizer card. 

DC0016 for channel  wire numbers  and  DE0016 for multiplicities. W ire numbers  are read onto 
Data Data lines O-11 and  multiplicities normally go  to 168/E Data Data lines O-3. In 
addit ion to this normal access mode,  a  switch opt ion allows word counts to be  included with 

wire numbers  on  Data Data lines 12-15. "Ready" flag and  "Clear" pulse share a  common 

address (FC0016) which can also be  selected by switches. A read to this address returns 

the "Ready" flag on  Data Data line 15  (l=ready). A write to this address generates "Clear" 

and  reset pulses. 
Development of the Digitizer card was completed recently, and  it is currently opera-  

tional on  168/E CPU tl. The  product ion algorithm from CPU #2  has been  modif ied to read the 

digitizer and  is normally executed on  every beam pulse. CPU l/l algorithm results are read 

by NOVA Foreground and  saved on  SHF data tapes for off-line analysis. 

7. MATCH POINT RESULTS MEMORY 

The Z,Y,U planes at each of the three PWC stations (a,S,y) form a  3-4-5 right triangle 
and  "Space" or "Match Points" are def ined by the relation: 

132  + 4Y - 5U - constant1 < tolerance . 

A hardware match point-f inder (one for each PWC station) has  been  developed to make 
match point results available within the time constraint of the HRO trigger. 6, After 

f inding a  straight-line trajectory in the Z-planes, the 168/E algorithm could use match 
point results to check for one  or more confirmation hits in the Y-planes and  calculate 
momentum. 

- 11  - 



The interface between the point-finder and 168/E is a Results Memory card in the 

168/E crate. The interface was designed to meet the following requirements: 
i) compatibility with existing 168/E systems; 

ii) results from each point-finder should be accessible as 
soon as it has finished; 

iii) the 168/E program should be able to check match point- 
finder status; 

iv) the 168/E should be able to initialize each result's 
memory location. 

We considered the option of a multi-port memory permitting DMA transfers from several 

external sources. This would require logic to arbitrate contention between two or more 
ports including the 168/E CPU itself. This option fails requirement i) since 168/E data 

memory control logic would have to be modified to allow a temporary delay in execution of 
a memory access. 

A block diagram of Results Memory designed to meet the above requirements is shown in 
Fig. 6. Three separate memory units are write-only from each point-finder and read-only 

from the 168/E. Match points for a PWC station are transferred to the corresponding memory 
unit over a 50-wire flat cable (one cable from each point-finder). Each memory unit has 

two blocks, P and R, and each block has sixteen halfwords, permitting a maximum of sixteen 
matched (P,R) coordinate pairs per station. If coordinate pairs are transferred they would 

be loaded into sequential locations in memory with 3*Z in P and 4*Y in the R block. The a 
point-finder currently transfers 4*Y to a location in P with address set by the corres- 

ponding Z hit. 
The memory chip used, 748289, has the advantage for this application of separate 

data-in and data-out lines. However, to avoid the possibility of putting spurious signals 

on the 168/E data bus when the point-finder writes to memory, the output lines are buffered 

by 25LS240 bus drivers. These 3-state outputs are only enabled when a 168/E access is 

16’ 168’E BE5 409iAC 

Fig. 6. Block diagram of 168/E Results Memory card. 
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decoded. To make this pseudo-memory compatible with 168/E logic the memory access time 

plus propagation delay of the bus drivers must be less than or equal to that of normal 
168/E memory which is -55 ns. The 168/E PWC digitizer uses the same type of memory and 

bus drivers. 
Results memory is currently memory card #2 on CPU bl with a base address.of SCOO,,. 

Memory-to-Register load instructions are used for both control and data input with eight 
functions decoded from data address lines 6-8 as shown in Fig. 6. Memory unit addresses 

are multiplexed with the address from each point-finder normally selected. For read func- 
tions O-5 the multiplexor is switched to select P,R memory locations from 168/E data address 
lines 2-5. Data from a selected memory unit is placed on the least significant half of the 
168/E data memory bus (DDC-DD15) and the upper halfword is logic zero. 

To avoid possible interference with point-finder input, a 168/E program should not 
attempt to read a,8 or y memory units until the corresponding data transfer is complete. 
The status word with ERROR and DONE bits for each point-finder can be read at any time 
(function=6): 

YY 8 Ba a 

Not Used DE D ED E 

31 4 2 0 

Results Memory Status Word 

ERROR bits are set to one and DONE bits to zero when the point-finders are initialized. 

Each point-finder clears its ERROR bit when the first match point is transferred and sets 
the DONE bit when processing is finished. 

The seventh function, initialization, sets a logic one in bit 15 of the addressed word 

(DAZ-DA5) in all six memory blocks. The algorithm on CPU I1 is started before the beam 
pulse and initializes all memory blocks by reading the sixteen words with data address bits 
6-8 set to one for function seven. The algorithm polls the status word to determine when 

match point data is available and could use bit 15 in each results memory location as a 
flag for valid data. The a match point-finder is operational and Results Memory has been 
read by a 168/E algorithm, saved on NOVA run tapes and verified off-line. 

8. SUMMARY 

The 168/E processor has been versatile and stable in the SHF on-line operating environ- 
ment. Program development and hardware tests can be done with minimal dedicated time on the 
NOVA host computer. Most algorithm development and testing is done off-line on an IBM 370 
and most Results Memory tests were made during production runs. The PWC Digitizer and 
Results Memory cards provide fast 168/E data input, however, they also require algorithms 

which cannot be completely tested off-line. Diagnostic procedures for these cards would be 

more robust if their design allowed the 168/E to write any valid pattern to Results Memory 
and execute production algorithms using this test data. Results Memory is a convenient 

approach to special 168/E I/O since design only requires familiarity with the processor 
bus and timing. 
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