
SIX-PUB-2726
April 1981
(1)

ON-LINE EXPERIENCE WITH THE 168/E*

J. T. Carroll, J. E. Brau, T. Maruyama and D. B. Parker
Stanford Linear Accelerator Center, Stanford, California 94305

J. S. Chima, D. R. Price and P. Rankin
Imperial College, London, England

R. W. Hatley
Rutherford Laboratory, Chilton, Didcot, England

ABSTRACT

Current 20 GeV/c photoproduction experiments at the SLAC Hybrid Facility
require a decision to take a picture within 150-300 us after the beam pulse.
A charged track trigger is provided by a 168/E processor which finds tracks in
a downstream PWC system. To meet trigger time requirements the 168/E SNOOP
module CAMAC interface is augmented by a CAMAC Auxiliary Controller and dedi-
cated I/O cards in the 168/E chassis. Between beam pulses a floating point
Fortran program executing on a 168/E monitors data acquisition. Experience
with software development and application are reviewed.

1. INTRODUCTION

The current SLAC Hybrid Facility (SHF) experiment studies photoproduction at 20 GeV/c
using a backscattered laser beam. 1) Electronic detectors downstream of the 40" bubble

chamber include eleven proportional wire chambers, two multi-cell atmospheric Cerenkov
counters and a large neutral detector using lead glass blocks. To make this experiment

practical as regards the quantity of film involved, data from these external detectors is

used on-line to determine if a picture should be taken and enhance the ratio of pictures
with hadronic production. Previous SHF experiments used assembly language algorithms

executing on the host computer for picture selection. For this experiment a system of

168/E processors 2) was developed to provide more efficient and flexible support for on-line

picture algorithms.
The main components of the SHF 168/E system are shown in Fig. 1. The host computer is

a Data General NOVA 4/X running under RDOS with 256K bytes of memory and 20M bytes of disk
space. The NC023C controllers in each CAMAC crate are daisy chained together on the NOVA
I/O bus. The 168/E processors perform as slaves to the host computer which controls them

via a SNOOP module CAMAC interface. 3) A 50 wire flat cable connects an interface card in

each 168/E crate to SNOOP modules in the CAMAC crates. Processors #O and #1 can be accessed

by SNOOP modules in either crate 258 or 268 while 168/E CPU #2 is only connected to CAMAC

crate 278. Using CAMAC programmed I/O to a SNOOP module, a program on the host computer

can download a 168/E program, set the program counter, start/stop the processor, read
results in 168/E memory, etc. SNOOP module CAMAC functions are described in Ref. 3.

The SNOOP also provides a direct transfer from CAMAC to 168/E data memory by eaves-
dropping on input from other CAMAC modules in the same crate. For example, a transfer from
BADC4) to 168/E b0 requires the following sequence of operations:

i) set interface address register(s) on target 168/E(s);
ii) set interface device select register for target processor(s);

* Work supported in part by the Department of Energy, contract DE-AC03-76SF00515 and by
the U. K. Science Research Council.

(Contributed to the Topical Conference on Application of Microprocessors to High Energy
Physics Experiments, Geneva, Switzerland, May 4-6, 1981.)

Q,B,7! --

f-

Match Polnl
F!ndet

Match Pt. Results Mem.

Comer0
Trigger

CAMAC

CLK Gx

4-8

CC Crole Controller
S SNOOP Module

AUX Auxillory Controller

PWC PWC DigIt 1281
CLK 168/E Clock

BADC Brilliant ADC
<OPI.,

Fig. 1. Organizat ion of the 168/E and CAMAC system
at the SLAC Hybrid Facility.

iii) enable Listen Mode on SNOOP in crate 268;
iv) read BADC in single instruction or DMA mode;

v) disable Listen Mode, clear device select register and proceed

with data transfer complete.

"Listen Mode" eliminates the overhead of first transferring data to the NOVA and then
writing it back to 168/E memory. For SHF real-time applications the 168/E programs are

stable (no overlays) and fast data transfer is only required for trigger algorithms. W ith

CAMAC the hardware components of the interface are independent of the type of host computer
and as evident in Fig. I, there is considerable flexibility in the arrangement of processors
and CAMAC crates.

Several key data acquisit ion modules in the 168/E-CAMAC system are shown in Fig. 1
and the current hardware configuration on each processor is listed in Table I. W e assume

the reader is familiar with the basic concepts and capabilit ies of the 168/E processor.

-2-

Following descriptions will focus on SHF on-line applications and supplemental hardware
developed to meet the severe time constraint of the camera trigger.

TABLE I. 168/E Configuration

CPU #

0

Function/Contents

Full Algorithm and Fortran Monitor Program
Interface to CAMAC Crates 258 and 268
Integer and Floating Point CPU
Three Memory Boards (48K Bytes Data Memory)

1 Hardware and Algorithm Development
Interface to CAMAC crates 258 and 268
Integer CPU
One Memory Board (16K Bytes Data Memory)
Eight Channel PWC Digitizer Card

Match Point Results Memory
Camera Trigger Card

2 Fast PWC Algorithm
Interface to CAMAC Crate 278

Integer CPU
One Memory Board (16K Bytes Data Memory)
Camera Trigger Card

2. ON-LINE SOFTWARE SUPPORT

Programs for execution on the 168/E are written in IBM Fortran and/or assembly language
and normally debugged and tested off-line on an IBM 3701168. Compiler and assembler object

modules are processed by a 168/E Translator which produces microcode for the processor.
Card image program and data memory files produced by the Translator are transferred to the
NOVA 4/X and saved on disk using a 9600 bpi WYLBUR link. A Fortran callable subroutine

(DPDOWN), written in NOVA assembly language, reads these disk files and loads 168/E program

and data memory. After loading memory, DPDOWN reads 168/E memory, compares each halfword
with the corresponding datum from disk and sets an error flag if any discrepancy is

detected- any difference is a fatal error. This readback and compare is a vital step in

loading 168/E memory. Errors can be produced by WYLBUR-NOVA transfer errors (each line

includes a checksum), corrupt NOVA disk files, SNOOP I/O errors and 168/E memory failures.

However, as discussed below, most errors result from legitimate contention for the CAMAC
bus. Large blocks of constants, e.g., algorithm look-up tables, are maintained on NOVA
disk files independent of Translator output and loaded into COMMON blocks in 168/E data
memory using a separate utility (DPxFER).

The key program in development of this system has been the 168/E Editor (DPEDIT).
With this interactive program executing on the NOVA 4/X, users can examine and control
168/E processors from the main NOVA console. DPEDIT can display and modify 168/E memory
with a word size of half, full or double and a base of decimal, octal or hex. The ability

to examine processor memory in fullword format is particularly convenient since the NOVA

-3-

has a 16 bit word size and the SNOOP transfers data in halfwords. DPEDIT can also write/
read the 168/E program counter, start/stop processor execution, etc. With the exception
of "Listen Mode", DPEDIT exercises all SNOOP interface functions required for data acquisi-

tion. Interface problems have usually been isolated using DPEDIT together with an oscillo-
scope on the interface flat cable or 168/E backplane. However, some problems.have required
placing 168/E interface, CPU and memory cards on an open test bus rather than the closed
168/E crate to allow easy access for test probes.

Listen Mode data transfers are tested using a memory module in the CAMAC crate. The
SNOOP module Listen Mode in Crate 268 (see Fig. I) can be tested as follows:

i) write a pattern into BADC memory;
ii) set interface device select register for CPU #O, bl or both;

iii) enable Listen Mode and read BADC;
iv) disable Listen Mode and read 168/E data memory to compare with

original pattern.
This type of test was important for system development but during the last nine months no
errors have been observed.

To test the 168/E processor itself we have developed the Integer, Floating Point and
Memory diagnostics listed in Table II. These diagnostic programs are written in assembly
language and test all IBM 370 instructions supported by the 168/E. The programs have a
common structure with definition of each test specified by a few registers. If a diagnostic

program executing on the 168/E detects an error, it follows a standard procedure which

includes dumping all registers to data memory for user examination. Checking for successful

execution of these diagnostics is essential whenever the processor configuration or hardware

are modified, but during scheduled data acquisition we usually rely on infrequent off-line

TABLE II. 168/E Diagnostics

Name Instructions Tested

INTTESTl Branch, Integer Load and Store
INTTEST:! Integer Arithmetic and Logical
INTTEST3 Logical Shift
INTTEST4 Arithmetic Shift
FLTTESTl Non-Arithmetic Floating Point
FLTTESTZ Floating Point Arithmetic - Simple tests
FLTTEST3 Floating Point Shift Matrix
FLTTEST4 *. R*4 Floating Point Arithmetic
FLTTESTS * R*6 Floating Point Multiply/Divide
FLTTEST6 * R*6 Floating Point Add/Subtract
MEMTEST * Test any Window in Data Memory

* => Not executable on IBM 3701168.

checks to confirm normal processor operation. Perhaps the most serious flaw in the entire
diagnostic procedure is the 168/E processor's inability to test its own program memory in
the normal crate configuration. However, we have only experienced one program memory
failure in the last two years.

-4-

3. NOVA FOREGROUND/BACKGROUND OPERATION

For SHF data acquisition the NOVA 4/X is run in a Foreground/Background mode. The
Foreground program is written entirely in Data General-RDOS assembly language and performs
all t ime critical functions while a run is in progress. Table III lists the sequence of
168/E related events which occur after the operating system responds to a CAMAC pre-beam
interrupt and transfers control to the Foreground. Background tasks written mostly in
Fortran perform functions which are not time critical and usually interactive, e.g., select
a 168/E diagnostic. Background programs communicate with the Foreground via RDOS system

calls which read/write to a communications array in the Foreground. The F/B communication
array contains a set of control words for each 168/E processor, e.g., on/off flag, initial
value for program counter, data memory address for algorithm results, etc. These control

words allow 168/E hardware or algorithm development and real-time tests while a run is in
progress. About 2.5 ms after each beam pulse the Foreground reads a forty word summary of
algorithm results from each active processor and saves this summary in the communication

array where it can be examined by the user.

Time (us)

- 2025

Activity

- 1550*

Pre-beam interrupt 4 RDOS suspends Background task
and executes Foreground
Start match point processor and execute algorithm on
168/E CPU #l

- 1425" Initialize algorithm on 168/E CPU //2 and Auxiliary
Controller

0
+ 15

Beam Pulse (100 ns)

+ 20
+ 33

54
120-300

620

2, digitizer finishes in Crate 278 and sets trigger
level to start Auxiliary Controller
28 digitizer finished =$ trigger Auxiliary Controller

ZY digitizer finished 4 trigger Auxiliary Controller
Auxiliary Controller starts algorithm on CPU #2
High Resolution camera trigger
DMA readout of Crate 258 complete => start algorithm
on 168/E CPU #O

2500
3000
9500

Read results from all 168/E algorithms
Main camera trigger
DMA readout of BADC complete with data transferred to
CPU ro

17000

38000

Start monitor program on CPU 10
Foreground suspends itself and RDOS restores Background
execution

97975 Next Pre-beam interrupt

* These acti ties may be delayed by -500 ps depending on the status of
the background program at the time of the interrupt.

TABLE III. Foreground 168/E Control

The Background start-run task reads 168/E control words and program/data fi lenames
from a card image disk file and loads processor memory. Another task provides menus of

diagnostic programs and algorithms with each menu read from a card image file. By editing

-5-

these card image files, 168/E programs can usually be tested and added to production run
procedures without modification to NOVA Foreground or Background programs. Since Background
SNOOP I/O can always be interrupted by the Foreground, data transfer errors are inevitable.
This happens infrequently for the size of programs used in this experiment and when a 168/E
program load error is detected the procedure is simply restarted.

Algorithm execution time is measured in micro-seconds using a 168/E CAMAC clock module
(see crate 278 in Fig. 1). Each interface board provides a TTL level which is true (high)
when the processor is running. This level opens or closes a gate for clock pulses to a
CAMAC scaler. On each beam pulse the Foreground reads the corresponding scaler sub-address
for each active processor and saves this execution time in the F/B communication array.
This clock module also has three LED's to indicate when each processor is running. Obser-
vation of the frequency and intensity of these LED's provides a convenient check for abnor-

mal processor behavior.

4. TRIGGER ALGORITHM

The standard SHF charged track trigger uses PWC's in the nonbend plane (2) to search

for straight-line trajectories originating from the bubble chamber fiducial volume. When
a good trajectory is found, the corresponding coordinates in the bend plane (Y) of the BC
field can be used to calculate the momentum. Experiment BC72173 uses High Resolution Optics
(HRO) to measure charm particle decay lengths and requires a decision to take a HRO picture
within 150-300 us after the beam pulse- the main 40" BC camera still has a flash delay of
3 ms. Digitization and NOVA readout of the three primary PWC stations (o,S,y with Z,Y,U
at each station) requires a minimum of 150 1~s and space point calculation on the 168/E
takes a few hundred micro-seconds for normal multiplicities. So these procedures are too

slow for the HRO trigger which was proposed after the 168/E system and SNOOP interface had
been developed.

To meet the HRO time constraint the current algorithm uses only Z-planes and an Auxili-

ary Controller provides a fast data transfer to the 168/E. The Auxiliary Controller
executes CAMAC functions sequentially from its control memory with a cycle time of 1 us.
It has a 1024 word control memory and a corresponding 1024 word data memory which contains
input/output data for each control memory read/write. Control word format and the logical

relationship of 168/E, controller and digitizer modules are shown in Fig. 2. CAMAC functions
for NOVA I/O to the controller itself are listed in Table IV.

At the start of each run the Auxiliary Controller is loaded with the sequence of func-
tions required to read Z,, Z8, Zy (8 hits and multiplicity for each plane) and start 168/E
CPU 12. Before each beam pulse the Foreground arms the Auxiliary Controller and then avoids
I/O to crate 278 until the HRO trigger sequence is complete. The first control word to
read each PWC plane has the corresponding trigger bit(s) set so the controller waits for
the digitizer module to finish and set a TTL trigger level (True=Low). Since the SNOOP

module is in Listen Mode, data read by the Auxiliary Controller is transferred to CPU #2.
When the Controller has finished reading Zy, it disables Listen Mode and starts the pro-
cessor using SNOOP module CAMAC functions (see Ref. 3). As shown in Table III, this entire
sequence is completed in 54 us. The NOVA 4/X would require -15 us just to disable Listen
Mode and start the 168/E while the Auxiliary Controller executes this sequence in 3 ns.

-6-

NC023C Controller

Patch to Snoop ond
Dlgitmr N-Lines

z7 PWC
Digitizer

zp PWC
Dlgituer

Aux Control Word
1 1 I I I

XXX I$ TRIG IHlXl F ; N 1 A
I I

22 I 9 54 I
I 0 0

Fig. 2. Relationship of CAMAC
Auxiliary Controller, PWC and
SNOOP modules and control word
format.

Bits I - I4 = CAMAC Sub-Address, Stotion X and

Function

Bit 16 = HALT Flog (=I to halt execution)

Bits 17-20 = Trigger Address

r-8, Bit 21 = Trigger Enable (=I to enable) 4091.3

TABLE IV. Auxiliary Controller Funct ions

F A Descript ion

0 0 Read Data Memory at Sl and Increment
Address Register at S2

0 1 Read Control Memory and Increment Address

0 2 Read Address Register
1 0 Read Data Memory
1 1 Read Control Memory

8 0 Test Done Flag (LAM if Enabled)

16 0 Write Data Memory and Increment Address

16 1 Write Control Memory and Increment Address

17 0 Write Data Memory

17 1 Write Control Memory
17 2 Write Address Register

24 0 Disable I&l

25 0 STOP Execut ion and Clear LAM
26 0 Enable LAM
27 0 Start Control Memory Execut ion

-7-

USE 0 AS INDEX TO LOOK-UP
TABLE FOR ALLOWED B

--- LOOK-UP TABLE BOUNDARY FOR B

A flowchart of the algorithm on CPU #2 and profile of the bubble chamber and Z-planes
are shown in Fig. 3. The algorithm is written in IBM assembly language and uses look-up
tables rather than a calculation of al lowed regions for maximum speed. A single 168/E
memory board is quite sufficient for this program. PWC data and algorithm results are
saved in a COMMON Block located at a f ixed address by the 168/E Translator. Consequent ly
algorithm modif ications seldom require changes in on-lirie constants which provide 168/E
data addresses for the NOVA Foreground.

YES END OFB HITS OR
ABOVE ALLOWED RANGE

I YES,

USE (Q-01 AS INDEX TO LOOK-
UP TABLE FOR ALLOWED (y-01

I
1

NEXT I
I

END OF

I7

y H!TS YES _

NO ,y-a) IN ALLOWED REGION
= GO00 TRAJECTORY

I
TRIGGER HRO CAMERA

I
CALCULATE x-VERTEX AND

SAVE IN COMMON FOR NOVA

AiLOWED REGION IN y ISET BY MULTIPLE
SCATTERING WHICH IS f8mm AT y AND
f4mm AT 8)

V,:-38cmI
V2"38cml

EC VERTEX LIMITS

PWC!xlcm) 1 MAX WIRE*!BEAM REGION*'(HITS)+

B 121 ~ 312 ; ?I5 1.8
7 ~ 203 600 : f 27 1.3

*ONE WIRE # =Imm (II PROFILE IS NOT DRAWN TO SCAiEI
'AVERAGE MULTIPLICITIES FOR BEAM FLUX OF 20 PHOTONS/
PULSE

Fig. 3. Flowchart and BCfPWC X2-profi le for algorithm to find
straight-line trajectories.

When a good trajectory is found the algorithm generates the HRO trigger by writing to
a camera trigger card in the 168/E crate. This is a simple card with a few gate circuits
to def ine two high data memory addresses. An access to these addresses sets or clears an
external TTL level which provides the camera trigger. The algorithm can access this pseudo-
memory card in 300 ns while the NOVA 4/X would need -17 ps to poll the processor and set a
CAMAC register when a trigger is detected.

CPU 12 algorithm execut ion time is shown in Fig. 4-this distribution does not include
Auxiliary Controller data transfer time. This algorithm usually executes in less than 140
ps and the fraction of tr iggers arriving too late for the HRO camera is insignificant. The
PWC algorithm triggers on -66% of ot (VP> and 42% of pictures taken with this algorithm
have hadronic product ion in the bubble chamber. (A logical OR of the PWC algorithm and a

-8-

dynode sum of energy deposited in the lead glass

detector provides a trigger on -90% of at.) On the
168/E the algorithm runs -2.4 times slower than on

No Htts I” One or More the IBM 3701168. Performance checks made by running

the same algorithm and data off-line show no on-line
processor errors since the start of production
operation in July, 1980.

100 5. 168/E MONITOR PROGRAM

A Fortran program executing on 168/E CPU #O
0

0 4080 120 160 200 monitors SHF data acquisition. Although NOVA Fore-
a.*/ EXECUTION TIME (ps) _u ground and Background provide many monitor facili-

Fig. 4. PWC algorithm execution ties, they each have limitations which are overcome
time on the 168/E. with a dedicated processor. One is normally re-

luctant to modify the Foreground since it is vital for data acquisition and performance
checks added to the Foreground decrease time available for Background execution. A Back-

ground program can only sample beam pulses and must be designed to be interrupted and
replaced by another task while a run is in progress. The 168/E can monitor every beam

pulse and the noninteractive Fortran program is easy to modify. Development/debugging are

done on an IBM 3701168 and the same program can be used for both on-line and off-line
applications without modification.

Currently the 168/E monitors data for three detectors-PWC, Cerenkov counters and

Lead Glass. Statistics collected for each detector are listed in Table V. A subroutine

which finds all charged tracks in the PWC system is used to calculate PWC efficiencies and
Cerenkov counter performance. Monitor program execution time is 30-40 ms for normal PWC

multiplicities so there is ample time available to support new routines and check other
detectors (current pulse rate is 10 Hz).

TABLE V. Monitor Program Summary Data

A. PWC -
1. Illegal wire data, e.g., zero or negative wire I's, wire I

disorder, etc.
2. Chamber multiplicities.
3. Chamber efficiencies.

4. Momentum and BC vertex distribution for PWC tracks.

B. Cerenkov
1. Cell # and multiplicity.

2. Average pulse height and pedestal for each cell.

3. Momentum distribution for PWC tracks with signals above
theshold in Cl and C2.

C. Lead Glass Columns

1. Pulse height distribution in active converter and absorber.

2. Pedestals for lead glass blocks, reference counters and
hodoscopes.

3. Average LED pulse heights for lead glass blocks and reference
counters.

-9-

The program on CPU #O and related Foreground control logic include support for a
trigger algorithm. The 168/E MAIN program calls an assembly language algorithm and the

monitor in the following sequence:
i) Foreground starts MAIN which calls the algorithm;

ii) algorithm finishes and executes a HALT instruction to stop the
processor;

iii) Foreground reads algorithm results;

iv) lead glass data (not required by the algorithm) is transferred
to CPU I/O;

v) Foreground restarts the 168/E at instruction following HALT and
algorithm returns to MAIN which calls monitor.

As indicated in Table III, the monitor program is executed after all trigger related Fore-
ground functions and CAMAC data transfers are complete. All monitor input/output data and

control variables are saved in COMMON blocks. The Foreground sets a single control flag
which directs the monitor to initialize itself, collect data or produce a summary. At the

end of each run a Background program reads this summary, saves it on disk and prints the

results.

6. 168/E DIGITIZER CARD

Although the Auxiliary Controller provides satisfactory support for the algorithm
using three Z-planes, data transfer time would become excessive for a trigger using all
nine primary chambers. There is also a fourth station (6) with Y- and Z-planes downstream

of y. Data transfer overhead is eliminated completely by placing the PWC digitizer in the
168/E crate where results are available as read only data memory.

The 168/E digitizer 5) with logic for one channel is shown in Fig. 5 -each card has

eight identical channels. Before a digitizing sequence can begin a "Clear" pulse, usually
generated externally but optionally from the 168/E, resets the Wire Address and Word

Counters. Signals from PWC wires set corresponding bits in a shift register which, when
shifted by "Clock" pulses, are presented as "Data" signals to the digitizer together with

"Clock" pulses. The "Clock" signal increments a Wire Address Counter which contains the

wire 1. If a "Data" pulse also arrives indicating a wire has been hit, the contents of
the Wire Address Counter are loaded into memory for that channel. "Clear", "Clock" and

"Data" signals are input through BNC connectors added to the front panel of the 168/E crate.
The loading sequence increments a Word Count register which also acts as an address

register for channel memory. Each channel can hold sixteen 12-bit wire numbers in sequen-

tial locations and input which exceeds this limit is lost. The eight channels operate in

parallel and the digitization sequence ends when the Wire Address Counter reaches its
(selectable) terminal count and sets the "Ready" flag. The 168/E algorithm is started

before the beam pulse so it can interrogate the "Ready" flag and proceed as soon as data

is available.

To read the digitizer, Data Address signals from the 168/E bus are multiplexed onto
channel memory address inputs as shown in Fig. 5. Channel memory data are read through a

block of 128 (8x16) addresses followed by address space for eight word counts. The base
address is selectable by switch settings- it is currently memory card #3 with address

- 10 -

“Clear” I P “Clock” I P “Dolo n” I P

-.-.- .-.-.-.-.-.-.--.-.-. -,-.-.-.-.-
r----p--------7l

DIGITISER CARD . CHANNEL n 1:
OP 2 output , Data Pulse One of E,qht !
I P = Input , Detector and

/ Averoglng
ldentfcol Channels *

/ Logic
!!

I
INC ;;

I Reset Ward Counter
and I.

L.

A-
,

INC
Average
/ Bll

Reset
> I

Wire
Address ~ ,, 1

Rend Reodv Flno Counter *

Reody/C!eoi Dolo/W.C.
,

wet+ Logic Select Logic , ,

I 1
(DAIO-DA161 Ready Slotus

.~.~.~.~.~.~.~.~.~.~. ~.~.~._ -.-.l
Dato Address

RDD
Do!o Data

iDAO-DA161 iDDO- /
168/E Bus

Fig. 5. Block diagram of 168/E PWC digitizer card.

DC0016 for channel wire numbers and DE0016 for multiplicities. W ire numbers are read onto
Data Data lines O-11 and multiplicities normally go to 168/E Data Data lines O-3. In
addit ion to this normal access mode, a switch opt ion allows word counts to be included with

wire numbers on Data Data lines 12-15. "Ready" flag and "Clear" pulse share a common

address (FC0016) which can also be selected by switches. A read to this address returns

the "Ready" flag on Data Data line 15 (l=ready). A write to this address generates "Clear"

and reset pulses.
Development of the Digitizer card was completed recently, and it is currently opera-

tional on 168/E CPU tl. The product ion algorithm from CPU #2 has been modif ied to read the

digitizer and is normally executed on every beam pulse. CPU l/l algorithm results are read

by NOVA Foreground and saved on SHF data tapes for off-line analysis.

7. MATCH POINT RESULTS MEMORY

The Z,Y,U planes at each of the three PWC stations (a,S,y) form a 3-4-5 right triangle
and "Space" or "Match Points" are def ined by the relation:

132 + 4Y - 5U - constant1 < tolerance .

A hardware match point-f inder (one for each PWC station) has been developed to make
match point results available within the time constraint of the HRO trigger. 6, After

f inding a straight-line trajectory in the Z-planes, the 168/E algorithm could use match
point results to check for one or more confirmation hits in the Y-planes and calculate
momentum.

- 11 -

The interface between the point-finder and 168/E is a Results Memory card in the

168/E crate. The interface was designed to meet the following requirements:
i) compatibility with existing 168/E systems;

ii) results from each point-finder should be accessible as
soon as it has finished;

iii) the 168/E program should be able to check match point-
finder status;

iv) the 168/E should be able to initialize each result's
memory location.

We considered the option of a multi-port memory permitting DMA transfers from several

external sources. This would require logic to arbitrate contention between two or more
ports including the 168/E CPU itself. This option fails requirement i) since 168/E data

memory control logic would have to be modified to allow a temporary delay in execution of
a memory access.

A block diagram of Results Memory designed to meet the above requirements is shown in
Fig. 6. Three separate memory units are write-only from each point-finder and read-only

from the 168/E. Match points for a PWC station are transferred to the corresponding memory
unit over a 50-wire flat cable (one cable from each point-finder). Each memory unit has

two blocks, P and R, and each block has sixteen halfwords, permitting a maximum of sixteen
matched (P,R) coordinate pairs per station. If coordinate pairs are transferred they would

be loaded into sequential locations in memory with 3*Z in P and 4*Y in the R block. The a
point-finder currently transfers 4*Y to a location in P with address set by the corres-

ponding Z hit.
The memory chip used, 748289, has the advantage for this application of separate

data-in and data-out lines. However, to avoid the possibility of putting spurious signals

on the 168/E data bus when the point-finder writes to memory, the output lines are buffered

by 25LS240 bus drivers. These 3-state outputs are only enabled when a 168/E access is

16’ 168’E BE5 409iAC

Fig. 6. Block diagram of 168/E Results Memory card.

- 12 -

decoded. To make this pseudo-memory compatible with 168/E logic the memory access time

plus propagation delay of the bus drivers must be less than or equal to that of normal
168/E memory which is -55 ns. The 168/E PWC digitizer uses the same type of memory and

bus drivers.
Results memory is currently memory card #2 on CPU bl with a base address.of SCOO,,.

Memory-to-Register load instructions are used for both control and data input with eight
functions decoded from data address lines 6-8 as shown in Fig. 6. Memory unit addresses

are multiplexed with the address from each point-finder normally selected. For read func-
tions O-5 the multiplexor is switched to select P,R memory locations from 168/E data address
lines 2-5. Data from a selected memory unit is placed on the least significant half of the
168/E data memory bus (DDC-DD15) and the upper halfword is logic zero.

To avoid possible interference with point-finder input, a 168/E program should not
attempt to read a,8 or y memory units until the corresponding data transfer is complete.
The status word with ERROR and DONE bits for each point-finder can be read at any time
(function=6):

YY 8 Ba a

Not Used DE D ED E

31 4 2 0

Results Memory Status Word

ERROR bits are set to one and DONE bits to zero when the point-finders are initialized.

Each point-finder clears its ERROR bit when the first match point is transferred and sets
the DONE bit when processing is finished.

The seventh function, initialization, sets a logic one in bit 15 of the addressed word

(DAZ-DA5) in all six memory blocks. The algorithm on CPU I1 is started before the beam
pulse and initializes all memory blocks by reading the sixteen words with data address bits
6-8 set to one for function seven. The algorithm polls the status word to determine when

match point data is available and could use bit 15 in each results memory location as a
flag for valid data. The a match point-finder is operational and Results Memory has been
read by a 168/E algorithm, saved on NOVA run tapes and verified off-line.

8. SUMMARY

The 168/E processor has been versatile and stable in the SHF on-line operating environ-
ment. Program development and hardware tests can be done with minimal dedicated time on the
NOVA host computer. Most algorithm development and testing is done off-line on an IBM 370
and most Results Memory tests were made during production runs. The PWC Digitizer and
Results Memory cards provide fast 168/E data input, however, they also require algorithms

which cannot be completely tested off-line. Diagnostic procedures for these cards would be

more robust if their design allowed the 168/E to write any valid pattern to Results Memory
and execute production algorithms using this test data. Results Memory is a convenient

approach to special 168/E I/O since design only requires familiarity with the processor
bus and timing.

- 13 -

ACKNOWLEDGEMENTS

We thank D. Bernstein and L. Paffrath for design and development of the SNOOP module

interface and Auxiliary Controller. Consultation with P. F. Kunz has been most helpful in
development of this system and V. Bevan provided software development for the point-finder.

REFERENCES

1. K. C. Moffeit et al - -* 9 SLAC Proposal BC72 (1979); G. Kalmus et al - -* 9 SLAC Proposal
BC73 (1979).

2. P. F. Kunz et al - -- 9 "The LASS Hardware Processor," Proc. of the 11th Annual Micro-
programming Workshop, SIGMICRO Newsletter 2, 25 (1978).

3. D. Bernstein et al - -* 3 "SNOOP Module CAMAC Interface to the 168/E Microprocessor,"
Proc. of the 1979 Nuclear Science Symposium, IEEE Trans. on Nucl. Sci. NS-27, 587
(1980).

4. M. Breidenbach et al - -* * "Semi-Autonomous Controller for Data Acquisition the Brilliant
ADC," Proc. of the 1977 Nuclear Science Symposium, IEEE Trans. on Nucl. Sci. NS-25,
706 (1978).

5. This digitizer was adapted from a design by D. Freytag, "A Compact Time Digitizer in
CAMAC Format," Nucl. Instrum. Methods 138, 685 (1976).

6. BC72/73 Collaboration Letters from Dave Price, Imperial College (1979-1980).

- 14 -

